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Abstract
Human African trypanosomiasis (HAT) is caused by the protozoan parasite Trypanosoma brucei.
The cysteine proteases of T.brucei have been shown to be crucial for parasite replication and represent
an attractive point for therapeutic intervention. Herein we describe the synthesis of a series of
thiosemicarbazones and their activity against the trypanosomal cathepsins TbcatB and rhodesain, as
well as human cathepsins L and B. The activity of these compounds was determined against cultured
T.brucei, and specificity was assessed with a panel of four mammalian cell lines.

The protozoan parasite Trypanosoma brucei causes Human African trypanosomiasis (HAT),
a major health concern in sub-Saharan Africa with an estimated 50,000 cases and 60 million
at risk of infection.1 The toxicity and impractical dosing regimens of the currently available
drugs requires the development of new therapies. The urgency of the situation is further
underscored by emerging clinical resistance to Melarsoprol, the front-line therapy for late stage
parasitemia.2–4

One potential strategy for discovering new chemotherapies is to target T.brucei’s cysteine
proteases. Irreversible peptidyl cysteine protease inhibitors are potent trypanocides5,6 and can
arrest T.brucei infections in a mouse model.7 The parasite’s major papain-like protease,8
known interchangeably as brucipain, trypanopain, and rhodesain, was presumed until recently
to be the target of these inhibitors. However, recent studies indicate that a second cysteine
protease, TbcatB, may also be a target for these inhibitors.9,10

The biological functions of TbcatB and rhodesain are poorly understood. It has been suggested
that they may be involved in nutrient aquisition, degradation of host proteins, evasion of the
host immune response, or crossing of the blood brain barrier.8,11 Because T.brucei expresses
only two proteases of the papain-like protease family, the biology of these two enzymes should
be amenable to study by specific small molecule inhibitors.
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Our prior work has shown that thiosemicarbazones have potent activity against rhodesain.12,
13 However, the relationships between these compounds’ in vitro activity against rhodesain
and TbcatB and their in vivo activity in cultured T.brucei has not been assessed. Here we report
the synthesis of a third generation thiosemicarbazone series and its activity against cultured
T.brucei proliferation and the parasite’s two cathepsins. In addition, activity against human
cathepsins B and L was determined, and cytotoxicity evaluated in a panel of four mammalian
cell lines to determine a cellular therapeutic index.

Thiosemicarbazones were synthesized by the general route (Scheme 1) previously described.
13 Briefly, acid chloride 1 was reacted with the appropriate boronic acid to yield the ketone
intermediate 2. The crude reaction was filtered and concentrated in vacuo, and the resulting
solid was partially purified by silica chromatography. Acid catalyzed reaction with
thiosemicarbazide afforded the target thiosemicarbazones 3a–m. Purification was achieved by
silica chromatography, and the overall yield was 15% to 40%. Purity of target compounds was
confirmed by LCMS using both C4 and C18 columns.

Each inhibitor was tested for activity against the trypanosomal cathepsins TbcatB and
rhodesain as well as against T.brucei proliferation. In order to assess potential therapeutic
utility, activity against human cathepsins B and L was determined, and general human
cytotoxicity was evaluated in cultures of Raji (a lymphoblastoid cell line derived from a
Burkitt’s lymphoma), HEK 293 (a human embryonic kidney cell line), BJ (a human fibroblast
line), and HEP G2 (a human liver cell line derived from a hepatoblastoma). Membrane
permeability was assessed in a parallel artificial membrane permeability assay (PAMPA).

Previous research demonstrated that aryl substituents are tolerated at the R and R1 positions
by rhodesain.13 We further explored this observation and found that a variety of aryl moieties
were well tolerated at these positions (Table 1). Nearly all compounds displayed
submicromolar potency against rhodesain. Although several compounds displayed
submicromolar potency against TbcatB, the protease was less sensitive to inhibition by this
compound series. Unlike rhodesain, TbcatB did not tolerate phenylethyl substituted
compounds.

We hypothesized that thiosemicarbazones might act through TbcatB, or through both rhodesain
and TbcatB, to kill the parasite. Regression analysis conducted on the compound series detected
only a weak positive association between rhodesain inhibition and trypanocidal activity
(R2=0.3). For TbcatB, no statistically significant relationship between inhibition and
trypanocidal activity was observed. Membrane permeability of the compound series was tested
by PAMPA, and it was found the inhibitors generally exhibited similar permeabilities
(Supporting Information). This suggests that differences in intracellular accumulation are
unlikely to explain the lack of correlation between protease inhibition and trypanocidal activity.

It is clear that activity against the parasite cannot be explained by either rhodesain or TbcatB
inhibition alone, or simply by their acting in synergy. Although it is difficult to interpret the
mechanism of action of these inhibitors, it is interesting to note that all reasonably active
compounds against TbcatB were also active against T.brucei (3a–c). In contrast, at least one
compound highly active against rhodesain and inactive against TbcatB was completely inactive
against the parasite (3h). The lack of correlation observed between trypanocidal activity with
activity against either protease target suggests that at least some of the compounds in this series
exert their effects at unknown targets. This is not unexpected, as the thiosemicarbazone scaffold
has reported activity against a wide range of cell types and molecular targets.12,14–18

Significant specificity for the parasitic proteases was not achieved in this compound series
relative to the human cathepsins. However, a high degree of specificity was observed for the
two cathepsin L-like enzymes (cathepsin L and rhodesain) relative to the two cathepsin B-like
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enzymes (cathepsin B and TbcatB). These results are similar to previous TbcatB studies with
purine nitrile inhibitors, in which TbcatB was generally less sensitive to inhibition than
cathepsin L.10 A number of inhibitors displayed absolute specificity for rhodesain over
TbcatB. These compounds are potent inhibitors of rhodesain and show little or no toxicity
against the parasite. They are also membrane permeable, making these compounds attractive
tools for studying rhodesain function in T.brucei.

General cytotoxicity of each inhibitor was evaluated by EC50 determination in cultures of BJ,
Raji, HEK 293, and HEP G2. Of the four cell lines, Raji was the most sensitive. A cellular
therapeutic index for each cell line was determined and defined as: (EC50 Raji)/(EC50
T.brucei). Compounds in this series generally killed the parasites with significant selectivity
relative to mammalian cells, with several exhibiting index values upwards of 20 fold in various
cell lines (Supporting Information). These data indicate the trypanocidal effects of these
inhibitors are not due to general cytotoxicity, and it is notable that 3f displayed an index value
of over 20 fold in all four cell lines.

We have reported the synthesis and evaluation of a series of thiosemicarbazones against two
human and two trypanosomal cathepsins. Each compound was assayed for activity against
T.brucei and for cytotoxicity in a panel of four mammalian cell lines. This inhibitor series was
determined to have low overall cytotoxicity, with several compounds killing the parasite
selectively relative to the mammalian cell lines tested. All inhibitors from this series exhibited
potent activity against rhodesain, and a subset of these compounds was active against TbcatB.
Several compounds were potent trypanocides. However, no strong correlation was observed
between trypanocidal activity and potency against either protease. Although the mechanism
of action of these compounds remains unclear, the low cytotoxicity and good membrane
permeability of this series suggests that thiosemicarbazones warrant further examination as
leads for the therapy of Human African trypanosomiasis.
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Figure 1.
Conditions: (i) PdCl2(PPh3)2, K3PO4, toluene, 70°C, 2 to 5 h; (ii) thiosemicarbazide, HOAc,
H2O/EtOH, 80°C, 72 to 96 h.
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