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Abstract

Motivation—Annotation databases are widely used as public repositories of biological knowledge.
However, most of these resources have been developed by independent groups which used different
designs and different identifiers for the same biological entities. As we show in this paper, incoherent
name spaces between various databases represent a serious impediment to using the existing
annotations at their full potential. Navigating between various such name spaces by mapping 1Ds
from one database to another is a very important issue which is not properly addressed at the moment.

Results—We have developed a web-based resource, Onto-Translate (OT), which effectively
addresses this problem. OT is able to map onto each other different types of biological entities from
the following annotation databases: Swiss-Prot, TFTEMBL, NREF, PIR, Gene Ontology, KEGG,
Entrez Gene, GenBank, GenPept, IMAGE, RefSeq, UniGene, OMIM, PDB, Eukaryotic Promoter
Database, HUGO Gene Nomenclature Committee and NetAffx. Currently, OT is able to perform
462 types of mappings between 29 different types of IDs from 17 databases concerning 53 organisms.
Among these, over 300 types of translations and 15 types of IDs are not currently supported by any
othertool or resource. On average, OT isable to correctly map between 96% and 99% of the biological
entities provided as input. In terms of speed, sets of approximatively 20,000 IDs can be translated in
under 30 seconds, in most cases.

Availability—Onto-Translate is a part of Onto-Tools, which is freely available at
http://vortex.cs.wayne.edu/Projects.html.

Contact—sorin@wayne.edu

1 INTRODUCTION

Gene annotations databases are widely used as public repositories of biological knowledge.
Understanding the results of almost any molecular biology experiment involves consulting
such annotation databases. Our current knowledge is spread out over a number of databases

(DBs) such as: Entrez Gene [19], UniProt [3], Protein Data Bank [5], RefSeq [20], RGD, SGD,

WormBase and Gene Ontology (GO) [2], to name just a few. Many such databases support

multiple organisms but are specialized on a subset of specific biological entities. For instance,

UniProt focuses on proteins, Entrez Gene focuses on genes, EPD focuses on eukaryotic

promoters, etc. Other databases aim to provide a wider angle but focus on specific organisms.
Examples could include RGD for rat, SGD for yeast, WormBase for C. Elegans, etc. Obtaining

a complete understanding of an experiment, usually requires combining information from
several such annotations databases. Unique key identifiers (IDs) in the internal structure of

each such database represent biological entities such as genes, proteins, and mMRNAs. Design

and implementation restrictions specific to each database ensure that, within each database,
the data are consistent, coherent and non-redundant. However, most of these annotation
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databases have been developed by independent groups which have used completely different
designs and completely different sets of key identifiers for the same biological entities. Because
of this, the ensemble of such annotation databases, which is the current repository of all our
biological knowledge is inconsistent, incoherent and highly redundant.

At the same time, the old-fashion gene-centric approach of research in life sciences has been
all but substituted by more high-throughput approaches involving entire sets of genes,
sometimes entire genomes. In many current life science experiments, researchers obtain results
identifying many genes that are interesting in a given condition. In order to fully interpret such
results, researchers must combine annotations from several different databases which
essentially requires mapping tens or hundreds of IDs across all databases involved. If performed
manually, this mapping often leads to incomplete and incorrect results, and is time consuming
and error prone even for short lists of genes. Even if performed automatically, querying various
databases for the same data often yields different results. This represents a very important
problem that has not been satisfactorily addressed yet.

2 NAME SPACE ISSUES IN ANNOTATION DATABASES

Identifiers used in different databases often represent different types of biological entities (e.g.
genes, ESTs, mRNAs, proteins, etc.). Usually, there is a very clear and biologically meaningful
mapping from one such entity to another. For instance, in the simplest case, a gene has a unique
DNA sequence, which in turn can be mapped to an mRNA sequence, that is translated into a
protein sequence, which perhaps has a known protein structure. However, the problem is further
complicated by one-to-many mappings at various levels. For instance, several ESTs can
represent the same gene, several alternatively spliced mRNAs can be constructed from the
same gene DNA sequence, several structures corresponding to alternative folding patterns or
different possible ligands can be associated with the same protein, etc. Specific annotations
are available at each level (gene, mMRNA, protein, structure, etc.). Given for instance a set of
genes found to be differentially expressed in a specific condition of interest, one wishes to
quickly find all known annotations about this set of genes, at all levels: the known GO
categories associated with each of these genes, their proteins, the annotations associated with
these proteins, etc. This information is currently spread out over many different databases, and
each such database uses its own type of IDs. For instance, Table 1 shows 8 different 1Ds used
to refer to the same XBP1 gene in 7 different databases, as well as 7 different probe 1Ds used
on several Affymetrix arrays. Because the same biological entity is referred to by many
different IDs, one needs to first map these IDs from one database to another and then query
each database with its own specific IDs. This apparently trivial problem has become a challenge
because various databases contain redundant information about the same biological entity. For
instance, the GO categories known to be associated to a specific gene are stored in many
databases such as UniProt [3]1, Entrez Gene [19], NetAffx[18] and GO itself [1,2]. In spite of
everybody's best efforts, because these databases are managed separately and they have
different release and maintenance cycles, any data stored in more than one database creates
very serious consistency and coherency problems.

A brief example will hopefully illustrate the gravity of the issues involved. Let us consider for
instance, the example of a microarray experiment involving Affymetrix's GeneChips. Let us
assume that a specific probe ID, 39755 _at, corresponding to the human gene XBP1, is found
to be differentially expressed. The researcher may be interested in finding the corresponding
UniGene [21] cluster ID for the selected probe 1D, 39755 _at. This can be achieved by querying
NetAffx [18] with the given probe 1D, 39755 _at, which yields the Hs.437638 cluster ID.
Alternatively, one can find the cluster ID by querying NCBI's UniGene database with the gene

1SWiss-Prot, TrEMBL and PIR have been recently merged as a single database in UniProt.
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name, XBP1. In thisexample, there exist at least two paths which yield the required information
and following both paths yields the same final result. However, let us now assume that one is
interested in the GO annotations associated with this gene. Querying each of the resources
above with the IDs representing the same gene, XBP1, yields very different results. UniProt
queried with P17861 provides 2 unique GO terms: transcription factor activity and immune
response; QuickGO queried with the same P17861 provides 8 unique GO terms: protein
dimerization activity, sequence-specific DNA binding, immune response, DNA-dependent
regulation of transcription, transcription, DNA binding, transcription factor activity and
nucleus; NCBI's Entrez Gene entry XBP1 provides 7 unique GO terms: immune response,
protein dimerization activity, sequence-specific DNA binding, DNA-dependent regulation of
transcription, transcription, transcription factor activity and nucleus; PIR's iProClass [23] entry
P17861 provides 5 unique GO terms: immune response, nucleus, DNA-dependent regulation
of transcription, transcription factor activity, DNA binding, whereas GO (XBP1_HUMAN)
provides only 2 unique GO terms: immune response and transcription factor activity.
Essentially, querying 5 different resources can yield anything between 2 and 8 GO terms for
the same gene. This situation is nothing short of disastrous. When one retrieves annotations
for a set of genes from a particular source, one is always left to wonder whether the results
obtained are really the entire picture or just a part of it, and whether one should continue to
query other sources or just use the data retrieved so far.

Until the various resources currently available are organized into a real semantic web, free of
coherency and consistency problems, arguably the best approach to retrieving annotations for
a set of given biological entities is to query the authoritative source of such annotations for the
given entity. In turn, in order to do this, one must map various types of IDs onto each other.
This is also a tremendous challenge since various IDs can be mapped onto each other by
traversing a number of alternative paths from one database to another. Since no unified map
of the various databases exists, one is forced to rely on one's inherently limited personal
understanding of the relationships between such databases in order to determine such a path
on a case by case basis. Unfortunately, due to the lack of global consistency and coherency,
the path used to travel from one resource to another often influences dramatically the results
obtained.

Another important problem is related to the cross referencing between various annotation
databases. Databases such as Entrez Gene and HGNC provide gene information and are
supposed to cross-reference each other. For example, gene SMCR (Smith-Magenis syndrome
chromosome region) has the identifier 11113 in HGNC. The same gene is identified by Entrez
Gene as gene 6600. Entrez Gene cross-references HGNC i.e. the entry 6600 contains a field
with the HGNC ID 11113. However, the reverse is not true. HGNCs entry for this gene does
not contain the appropriate Entrez Gene ID. Here the data are mapped only one way, from
Entrez Gene to HGNC number. If the user queries HGNC using its I1Ds, (s)he will not be able
to link to NCBI and thus will not have access to all the annotations regarding this gene available
in Entrez Gene.

This problem is more widespread than one would like to believe. For instance, both UniGene
and Entrez Gene focus on non-redundant genes. However, only 69.53% of the genes in
UniGene can be mapped on Entrez Gene entries. Furthermore, only 43.54% of the IDs in Entrez
Gene can be mapped back to UniGene. An even more striking example is the mapping between
GenBank dbEST and GenPept. GenPept is supposed to contain the protein translations of the
sequences in GenBank dbEST, so going back and forth between these resources should be
trivially simple. However, this is far from being the case. At the moment, 91.6% of the entries
in dbEST can be mapped to GenPept entries but the reverse mapping is possible only for 1.82%
of the entries. Clearly, translations and mappings that are theoretically both meaningful and
useful, cannot always be performed just by querying the resources which are supposed to allow

Bioinformatics. Author manuscript; available in PMC 2008 June 22.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Draghici et al.

Page 4

them. These examples strongly support the idea that ID mappings cannot be done casually, by
ad-hoc, need-driven queries, or quick-and-dirty Perl scripts, as most researchers currently do.
These quick solutions might satisfy an immediate need for a translation but offer no guarantees
that the translation performed is the best possible mapping, nor that the results are correct or
complete. At this time, the issues of incoherent name spaces between various databases
represent a serious impediment to using the existing annotations at their full potential.
Navigating between various such name spaces by mapping IDs from one database to another
is a very important issue that must be addressed in a thorough and systematic way.

3 METHODS

In order to address the above problems, we undertook a thorough study of the following 17
annotations databases and their respective types of IDs: Swiss-Prot (IDs, accession numbers),
TrEMBL (accession numbers, TrEMBL IDs), NREF (protein IDs), PIR (accession 1Ds), GO
(GO IDs), KEGG (pathway IDs), Entrez Gene (Gene ID, gene symbol), GenBank (Gl ID,
accession and sequence numbers), GenPept (accession numbers), IMAGE (clone ID), RefSeq
(protein, genome, MRNA accession number), UniGene (cluster ID), OMIM (OMIM number),
PDB (PDB ID), Eukaryotic Promoter Database (accession number), HUGO Gene
Nomenclature Committee (HGNC ID) and NetAffx (Affymetrix probe IDs). Based on the
structure of these databases, we developed a relational database that allows meaningful
mappings of various types of IDs onto each other. This meta-database was implemented in
Oracle and all relevant data from the above databases was downloaded and used to populate
the local database. Fig. 1 shows a simplified schema of the part of the Onto-Tools database
that is used by Onto-Translate (the complete schema includes over 70 tables). As shown in the
figure, Entrez Gene, RefSeq and iProclass databases are used as central hubs that link all other
source databases.

Using this database as a back-end resource, we developed a tool, Onto-Translate, that can
perform arbitrary translations in an optimal manner. Given two types of IDs, a translation
source ID and a translation destination ID, as well as a list of specific source 1Ds, the algorithm
calculates an optimal route between the source type and the translation type and performs the
translation. The optimality of the translation is not intended in the sense of finding the
translation that involves the shortest path (i.e., the lowest number of intermediate translations)
but rather by the trustworthiness of the data contained in various databases. A path is defined
as trustworthy if for every ID type used in any of the necessary intermediate translations, the
path passes through the tables corresponding to the database that is considered as the
authoritative source for that particular type of ID. For instance, Entrez Gene is considered as
the authoritative source for gene data, KEGG is considered the authoritative source for pathway
data, PDB the authoritative source for protein structures, etc. Thus, even if the entries of many
databases across the world contain protein structure I1Ds, for instance, a translation involving
this type of ID must use data from PDB in order to be valid. Table 2 shows some examples of
some ID types and their authoritative sources.

The tables in the OT database and their relationships are represented as nodes and edges,
respectively, in a graph structure. The basic relationships between IDs remain as given in the
source databases. In a first step, the algorithm traverses the graph to find all possible paths
between the source type and the destination type. This is done based on the semantic
relationships between various source databases which are captured by the constraints of the
Oracle database dictionary. After obtaining all possible paths between the source type and the
destination type, OT removes the paths that are not trustworthy according to the criterion
defined above. If the algorithm cannot find a trustworthy path between the source and the
destination type, an error message is generated. If several trustworthy paths are found between
the source and the destination ID, several criteria are used in order to rank them: i) a manually
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curated database will always be preferred to a database containing unverified data); ii) a
database containing more entries will be preferred to a database with fewer entries and iii)
everything else being the same, a shorter path (involving fewer intermediate translation) will
be preferred to a longer one. These criteria are also centered around biological motivations. A
manually curated database reflects our preference towards accuracy rather than coverage: fewer
but accurate translations are deemed preferable to a larger number of translated 1Ds but
potentially including some incorrect translations. The second criterion above is motivated by
the fact that the a priori probability of finding a mapping for a given ID is directly proportional
to the number of entries in a database. Thus, intermediate translation through a large database
is more likely to successfully find mappings for all IDs required, compared to a smaller database
that might contain the same types of IDs but fewer entries. Finally, the third ranking criterion
is based on the assumption that the probability of losing some IDs in each intermediate
translation is non-zero and constant. In these circumstances, a shorter translation path will
minimize the number of IDs lost in translation and will be better than a longer one.

Once all trustworthy paths are ranked according to these criteria, the top path between the
source and the destination type is chosen as the optimal one for the required translation. At this
point, OT dynamically creates a database query that follows this translation path. Besides
providing an output list with the translation of the input IDs into the desired type of IDs, the
algorithm also identifies the specific IDs which could not be translated, as well as the exact
source database which broke the intermediate chain of translations required for each such
specific ID. This gives the user the ability to verify that indeed the translation of that specific
ID failed because the source database lacks the necessary information rather than because of
a bug or missing information in our database.

Since the name-space issues that motivated the creation of OT in the first place are caused by
the existence of several databases that maintain arbitrary cross-links and contain redundant
information, one might ask whether the addition of yet another database would not exacerbate
the problem by adding yet another level of redundancy and many more cross-references (in
essence, we created cross-references from our Onto-Translate database to each of the 17
databases above). This is not the case. There are two major aspects that differ between our
resource and any other major resource currently available. Firstly, most other databases are
focused on either some type of biological entity (e.g. Entrez Gene for genes, UniProt for
proteins, etc.) or to some specific organism (e.g MGD for mouse, RGD for rat, etc). In contrast,
our focus is on maintaining the ID mappings themselves rather than any specific annotations.
The second aspect follows from this. If a database stores annotations, the maintenance and
release cycle are dictated by the evolution of the annotation activities in that area. Since the
Onto-Translate database does not store annotations as such, we only need to maintain the
synchronization between IDs which can be done much more frequently and much more rapidly.
In practice, this must be done every time any of the 17 mapped databases has a new release.
In the future, this can be upgraded to an automatic overnight push of any new IDs from these
databases to ours.

Onto-Translate currently supports biological categories such as genes, proteins, promoters,
pathways, RNAs, OMIM, ESTs, and functional annotations. It can map between 29 different
types of IDs which includes: Swiss-Prot protein ID, Swiss-Prot accession number, TTEMBL
accession number, TrTEMBL ID, non-redundant reference (NREF) protein ID from PIR, PIR
accession ID from PIR, Gene Ontology (GO) ID, KEGG [13] pathway ID, GenBank Gl ID,
dbEST nucleotide accession number, Entrez Gene ID, Gene symbol, GenBank [4]'s dbEST
[6] nucleotide accession number, GenPept protein accession number, RefSeq's protein,
genome, mRNA accession number, UniGene cluster ID, clone IDs from UniGene, OMIM
number, allelic variant from OMIM, Protein Data Bank (PDB) 1D, Eukaryotic Promoter
Database (EPD) accession number, EPD ID, HGNC ID, and probe IDs from commercial
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microarrays such as Affymetrix arrays, Agilent Technologies arrays, Amersham's CodeLink
arrays, SuperArray, etc. The Onto-Translate tool is implemented in Java as a web application,
fully integrated with the Onto-Tools [10,11,12,14,15,16,17].

4 RESULTS AND DISCUSSION

Clearly, the need for a reliable way of mapping IDs from one database to another has been felt
in the past. In response to this needs, several approaches have been proposed to deal with this
issue although none of them addressed the problem to its full extent. The best known resources
currently able to perform a non-trivial mapping of various biological entities are: SOURCE
[9] from Stanford University, MatchMiner [7] from NCI, RESOURCERER [22] from TIGR,
and GeneMerge [8] from Harvard.

We compared Onto-Translate with each of these existing resources in terms of scope, accuracy
of translation, speed and scaling capabilities. We define scope as the number of different
mappings between types of 1Ds supported by a given resource. The comparison in Table 3
shows that OT has vastly larger capabilities compared to any of the existing resources. Figure
2 shows the specific translations that can be performed by each of the resources considered.
Again, the difference in scope is striking.

Of course, the scope is irrelevant if the accuracy of the mappings performed is inadequate. In
order to compare the accuracy of the existing resources, we performed a number of translations
using OT, SOURCE, and MatchMiner (top 3 in terms of scope), and compared the number of
input IDs correctly mapped by each resource for each data set. OT consistently mapped more
correct input IDs than both SOURCE and MatchMiner. The sets of genes to be translated were
taken from popular human and mouse Affymetrix arrays. The set of genes contained on the
HG-U133 Plus 2.0 array was used to test the translations from gene symbols to UniGene IDs,
gene symbols to Entrez Gene IDs, and Entrez Gene IDs to gene symbols. Finally, for the
translations involving mouse genes, we used the set of genes contained on the MG-430A 2.0
arrays. These genes were translated from gene symbols to UniGene IDs, gene symbols to Entrez
Gene IDs and Entrez Gene IDs to gene symbols. Fig. 3 shows a comparison of the accuracy
of these translations. OT was the most accurate resource in all cases, with accuracies between
96% and 99%. For human data, SOURCE is second best with an accuracy hovering around
93%. MatchMiner is weaker with an accuracy of around 70%. For mouse data, MatchMiner
is better than SOURCE: 94-98% for MM, compared to 81-94% for SOURCE.

Fig. 4 shows a comparison of the time (in seconds) necessary to perform a sample translation
from gene symbols to gene IDs with Onto-Translate, MatchMiner and SOURCE. The time
necessary to translate fewer than 1,000 genes is approximately the same for the 3 resources.
However, when longer lists are involved, OT is approximately 2 times faster than SOURCE
and approximatively 10 times faster than MatchMiner, in all translations performed.

5 CONCLUSIONS

This paper discusses various issues related to name space inconsistencies between existing
annotation databases. The distribution of our knowledge over several databases forces
researchers to navigate from one such database to another, in order to construct the correct
interpretation of any given experiment. Currently, the lack of the ability to map correctly
various IDs from one DB to another creates very substantial problems in annotation retrieval.
We have developed a resource that addresses this stringent need. This resource includes a back-
end database as well as a web tool, Onto-Translate, that provides a convenient user interface.
Currently, OT is able to perform 462 types of mappings between 29 different types of IDs from
17 databases concerning 53 organisms. This is better than the other resources we have
investigated in terms of: i) number of translations possible, ii) types of IDs supported, iii)
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curacy and iv) speed. Onto-Translate is a part of Onto-Tools, which is freely available at

http://vortex.cs.wayne.edu/Projects.html.
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Fig. 1.

Onto-Translate relational database schema. This schema contains an entity for each of the
source databases used by OT. The shapes represent the type of the given biological entity. A
relationship between two databases is represented by a line connecting the two entities. The
type of relationship between two entities is indicated by labels on the corresponding line. For
instance, the relationship between Entrez Gene and Gene Ontology is many-to-many. In other
words, a gene may be annotated using zero or more GO terms and a GO term may be used to
annotate zero or more genes.
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SOURCE ; 4+ GeneMerge

A comparison of the scopes of Onto-Translate, RESOURCERER, MatchMiner, SOURCE,
and GeneMerge. in terms of possible mappings between various types of IDs.
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A comparison of the accuracy of Onto-Translate, MatchMiner and SOURCE. The input file
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included 19,248 gene symbols (19,562 Entrez Gene IDs) for human, and 12,991 gene symbols
(13,023 Entrez Gene IDs) for mouse, from the respective Affymetrix arrays. The graph shows
the percentages of the input genes successfully translated in each case.
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Fig. 4.

Scaling properties of Onto-Translate (OT), MatchMiner (MM) and SOURCE. The graph shows
the time (in sec) necessary to translate various sets containing between 10 and 19,119 distinct
genes from Affymetrix 133 Plus 2.0. At fewer than 1,000 genes, the 3 resources have very
comparable query times of under 10 seconds. When larger sets are involved, there is a
substantial performance difference.
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Table 1

Human gene XBP1 is represented by six additional distinct identifiers (IDs) in six different databases, as well
as by one nucleotide sequence ID, one protein sequence ID and 7 different probe IDs on several different

Affymetrix arrays.
Database Identifier (1D)
UniGene Hs.437638
HGNC 12801
Entrez Gene 7494
Swiss-Prot P17861
ENSEMBL ENSG00000100219
PharmGKB PA37400
RefSeq NM_005080, NP_005071
NetAffx RC_W90128 s_at (HU35ksubd), 200670_at (HGU 133), 71584 _at (HGU95¢),

M31627_at (HG FL), 39756_g_at (HGU 95av2), 39755_at (HG U95a),
04827057 3p s at (U133 X3P)
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Authoritative database sources in Onto-Translate for different types of biological entities. A path is considered
biologically valid if it either starts or ends in one of the authoritative sources. For instance, when converting from
or to a gene 1D, the path must start or end in Entrez Gene, respectively.

Biological entity

Authoritative source

Gene Entrez Gene
Protein UniProt
Protein structure PDB
Nucleotide sequence GenBank
Nucleotide sequence cluster UniGene
Pathway KEGG
Disease OMIM
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A comparison of the scopes of Onto-Translate, SOURCE, MatchMiner, GeneMerge and RESOURCERER: types
of input IDs supported and number of possible translation types.

Software name

Types of input IDs

Number of translations

Onto-Translate
MatchMiner
SOURCE
GeneMerge
RESOURCERER

22
11
6
12
1

462
137
96
30
16
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