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Abstract
The correct interpretation of any biological experiment depends in an essential way on the accuracy
and consistency of the existing annotation databases. Such databases are ubiquitous and used by all
life scientists in most experiments. However, it is well known that such databases are incomplete
and many annotations may also be incorrect. In this paper we describe a technique that can be used
to analyze the semantic content of such annotation databases. Our approach is able to extract implicit
semantic relationships between genes and functions. This ability allows us to discover novel functions
for known genes. This approach is able to identify missing and inaccurate annotations in existing
annotation databases, and thus help improve their accuracy. We used our technique to analyze the
current annotations of the human genome. From this body of annotations, we were able to predict
212 additional gene–function assignments. A subsequent literature search found that 138 of these
gene–functions assignments are supported by existing peer-reviewed papers. An additional 23
assignments have been confirmed in the meantime by the addition of the respective annotations in
later releases of the Gene Ontology database. Overall, the 161 confirmed assignments represent
75.95% of the proposed gene–function assignments. Only one of our predictions (0.4%) was
contradicted by the existing literature. We could not find any relevant articles for 50 of our predictions
(23.58%). The method is independent of the organism and can be used to analyze and improve the
quality of the data of any public or private annotation database.
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1 INTRODUCTION
Gene annotation databases are widely used as public repositories of biological knowledge.
Understanding almost any genetic experiment involves consulting such annotation databases
at some point. The content of such annotation databases is meant to constantly capture the
scientific community's progress in understanding the way genes function and they should
represent the compounded state-of-the-art knowledge about the genes of various organisms.
In spite of their undoubted importance, it is generally acknowledged that annotation databases
have important problems (Karp, 1998).

Firstly, the existing annotations databases are incomplete. For virtually all sequenced
organisms only a subset of genes are known, and even a smaller subset of genes are functionally
annotated (King et al., 2003). As more knowledge is accumulated, genes and annotations are
gradually added to such databases. This means that at any moment in time, it is likely that an
annotation database will contain only a subset of all the genes of the given organism, and even
for those genes that are included, possibly only a subset of their functions. Furthermore, most
annotation databases are built by curators who manually review the existing literature. It is
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possible that certain published facts might get lost in this process. For instance, we found
references in literature published in the early 1990s for 65 functional annotations that are yet
not included in certain annotation databases. As an example, the gene HMOX2 was shown to
be involved in the process of pigment biosynthesis in 1992 (McCoubrey et al., 1992) and was
still not annotated as such in the Gene Ontology (GO) database as of May 2004.

Also, many pieces of information in such databases may also be incorrect. In UniProt
annotations at EBI using the (GO), out of the 20 257 total biological process annotations
available for Homo sapiens, 12 239 associations are inferred exclusively from electronic
annotations (i.e. without any expert human involvement)
(http:// www.geneontology.org/GO.current.annotations.shtml). Some of these inferences may
be incorrect (King et al., 2003; Wang et al., 2004). Even though in some cases the error is very
conspicuous to a human expert, currently, there are no automated techniques that could analyze,
discover and correct such erroneous assignments.

Finally, another problem of current annotation databases is related to how these annotations
are entered and stored. For example, the gene SLC13A2 [solute carrier family 13 (sodium-
dependent dicarboxylate transporter), member 2 (H.sapiens)] encodes the human Na(+)-
coupled citrate transporter and is annotated in GO for the molecular function organic anion
transporter activity. However, this gene is not annotated for the corresponding biological
process, which is organic anion transport. For the curator, and for the human expert who queries
GO for this specific gene, this is not a problem. For them, it is obvious that a gene that has
organic anion transporter activity will be involved in the organic anion transport. The problem
is that such gene specific query is neither the typical, nor the most informative query performed
in annotation databases. Recently, an automatic functional profiling approach has been
proposed to help researchers interpret the results of high throughput experiments (Drăghici et
al., 2003a,b; Khatri et al., 2004, 2002). This approach queries an annotation database in each
of the GO categories and performs a statistical significance analysis that generally pinpoints
the biological mechanisms involved in the condition under study. Many other tools that use
the same approach have been developed since (Al-Shahrour et al., 2004; Beissbarth and Speed,
2004; Hosack et al., 2003; Joel Richardson, http://www.informatics.jax.org/∼jer/vlad/;
Zeeberg et al., 2003; Zhang et al., 2004). Any ontological analysis software that tries to find
out what underlying biological processes are represented by a given list of genes containing
the SLC13A2 gene illustrated above, will either fail to consider the organic anion transport if
no other genes are involved in it, or will calculate its statistical significance incorrectly by
ignoring this gene. Also, any query that tries to find all genes involved in the process of organic
anion transport will fail to retrieve this gene.

In this paper, we describe a new technique that is able to (i) discover potential inconsistencies
in existing annotations and (ii) discover implicit gene–function relationships and propose them
to the curators as novel annotations. Our approach applies latent semantic indexing (LSI) to
the existing genome annotations databases to discover the missing functional annotations. LSI
uses singular value decomposition (SVD) to find semantic relationships in the data that are not
explicitly expressed (i.e. hidden) in the initial data. We demonstrate our technique using the
annotations of the human genome stored in the Onto-Tools database (Drăghici et al., 2003b;
Khatri et al., 2004), which includes all known annotations from the GO Consortium.

LSI has been previously used in the analysis of genome-wide expression data (Alter et al.,
2000). Other approaches able to predict functional annotations for a given gene do exist. The
most commonly used approach for function prediction uses sequence similarity. This approach
is based on the hypothesis that a function can be transferred between similar sequences in
different organisms since such similarity has been conserved over long periods of evolution
(Devos and Valencia, 2000). This method of annotation transfer can result in incorrect function
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predictions due to reasons such as divergence of function within homologous proteins.
Furthermore, this type of inference can also be incorrect because the annotations are only
transferred from the closest homolog (Karp, 1998). In order to overcome these problems,
approaches combining sequence similarity data with structural information have been proposed
(Fetrow et al., 2001; Skolnick and Fetrow, 2000). The guilt by association (GBA) approach
(Quackenbush, 2003; Walker et al., 1999; Zhou et al., 2004), based on the observation that
functionally related genes tend to share similar mRNA expression profiles, has also been widely
applied to predict gene functions (Brown et al., 2000; Eisen et al., 1998; Hvidsten et al.,
2001; Roch et al., 2003; Wu et al., 2002). This approach clusters the genes based on their
expression profiles in order to predict the gene functions. The GBA approaches are affected
by issues such as data transformation (Geller et al., 2003; Pan et al., 2002) and filtering intended
to boost the signal-to-noise ratio (Herrero et al., 2003). An alternative approach uses sequence
similarity and protein domain data in order to predict functional annotations (Schug et al.,
2002). Raychaudhuri et al. (2002) proposed a natural language processing approach for
automatically extracting gene–function associations from the literature abstracts. The
technique we are proposing is a novel, organism-independent approach that analyzes the entire
body of annotations for a given organism. The same technique can be applied on annotation
databases constructed for any organism. Unlike previous techniques that focus on specific
genes, our technique is intended for the curation and maintenance of existing annotation
databases.

2 METHODS
The complete functional annotations of a given organism can be represented using a matrix
GF, with g rows and f columns. The rows of this matrix correspond to genes, while its columns
correspond to functions. The element gfij of the GF matrix is 1 if a gene gi is known to be
involved in a function fj , and 0 otherwise:.

(1)

Our approach uses a functional annotation database using the structure proposed by the GO
Consortium (Ashburner et al., 2000). GO provides an organism-independent ontology
described as a directed acyclic graph (DAG) of functional categories. When a gene is annotated
using GO, the efforts are made to annotate the gene with the most specific functional category
available. For instance, if a gene is known to induce apoptosis in a cell through extracellular
signals, it is annotated with the specific category ‘induction of apoptosis by extracellular
signals’, instead of a higher level, more general category such as ‘induction of apoptosis’ or
‘apoptosis’. However, a gene involved in induction of apoptosis by extracellular signals is
actually involved in induction of apoptosis, which is indeed part of the apoptosis phenomenon.
For this reason, we will consider that a gene annotated with a specific GO function f is also
involved in all the functions described by the more general categories, represented by f's
parents. In order to represent this in our data, we modify the GF matrix as follows:

(2)

Note that owing to the hierarchical structure of GO, the root of the ontology will have 1 for all
genes. For instance, the node associated with ‘biological process’ will have 1 for all genes that
have any biological process annotation at all. The i-th row of the matrix GF will represent all
functional categories directly or indirectly associated with gene gi (e.g. through its parents).
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Similarly, the j-th column of the matrix GF will represent all genes known to be directly or
indirectly involved in the function fj .

We then decompose the matrix GF as follows:

(3)

Here, Gm and Fm are matrices of the left and the right singular vectors and Sm is an m × m
diagonal matrix (Golub and van Loan, 1983). The elements of Sm are the singular values of
GF and m is the rank of GF (i.e. the number of linearly independent rows or columns). The
rows and columns in Sm will be called eigengenes and eigenfunctions, respectively. This
decomposition of the matrix GF is represented in Figure 1. The square matrix Sm has m rows
and m columns. This matrix also has the property that each eigengene is decoupled from all
the other eigengenes. In other words, the m-th eigengene is only annotated by the corresponding
m-th eigenfunction.

The matrices G and  are the basis sets of size g × m and m × f , respectively. The vector in
the i-th column of matrix Gm lists all known genes involved in the i-th eigenfunction. Similarly,
the vector in the i-th row of matrix  lists all functional categories the i-th eigengene is known
to be involved in. In addition, both matrices Gm and Fm are orthonormal i.e.

(4)

where I is the identity matrix. Hence, each eigengene (or eigenfunction) is not only decoupled,
but it is also decorrelated from all other eigengenes (or eigenfunctions).

Next, we reduce the dimensionality of the system by selecting only the first k largest singular
values of Sm and their corresponding columns in the Gm and Fm matrices, creating the matrices
Sk, Gk and Fk. The product of these, , is a unique matrix, which is the closest rank k
approximation of GF in the least squares sense (Fig. 2):

(5)

When we reduce the dimensionality by selecting the largest k singular values (i.e. the k largest
independent linear components) from Sm, we are essentially constructing a model of the
relationships between the genes and the functions by eliminating much of the noise. This model
will allow us to extract implicit gene–function relationships from the data. Note that the new
matrix  has not lost any genes or functions as a result of dimension reduction and has the
same dimensions as the original matrix GF. The matrix  only contains the gene–function
relationships that are strongly represented in the data. The remarkable fact is that such strong
relationships will be present in  , even if they were never explicitly present in the original
data.

We can now use the matrix  to study the semantic relationships of the gene–function
associations. This is done by choosing a threshold T . If the value of  is >T , our analysis
suggests that gene i has function j. Those gene–function associations that had gfij = 1 in the
original GF matrix and now have  > T in our projection space correspond to known
annotations confirmed by our analysis. The gene–function associations that had gfij = 0 in the
original GF matrix and now have  > T in our projection space correspond to newly
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discovered associations between genes and functions. Finally, gene–function associations that
had gfij = 1 in the original GF matrix and now have  ≤ T in our projection space correspond
to known annotations that seem semantically inconsistent with the other data. Discretion needs
to be exercised before concluding that an inconsistency exists because truly novel phenomena
may appear inconsistent with the rest of the annotations just because not enough data exists at
that particular time.

3 RESULTS AND DISCUSSION
We used our proposed technique to analyze the existing body of annotation of the human
genome as captured by the GO database. Our aim was to analyze the semantic consistency of
this body of data. In particular, we wanted to find incomplete and/or incorrect annotations:
implicit gene–function relationships that can be semantically inferred from the data and
annotations that are potentially inconsistent, respectively.

We constructed a gene–function matrix GF using all known human annotations contained in
the Onto-Tools database (Drăghici et al., 2003b; Khatri et al., 2004). The relevant information
originated in UniGene built #168, released on March 26, 2004 and GO, released in March
2004. This initial matrix contained 11 203 genes, 5201 ontological categories (molecular
functions, biological processes and cellular components) and 58 266 803 gene–function
associations. Note that the unused GO terms are not included in the initial matrix. This is
because these terms are not associated with any genes from the given set and hence, they do
not contain any implicit semantic information. We decomposed this matrix as in Figure 1 and
we reduced the dimensionality to the largest k = 500 eigenvalues that preserved 59.6% of the
variance of the data. We then constructed the new  matrix as in Figure 2.

In order to calculate an appropriate value for the threshold T above, we proceeded as follows.
We assume that the annotation database studied contains mostly correct but also some incorrect
gene–function associations. For the purpose of defining a threshold, we assume that the true
gene–function associations are those revealed by the LSI, i.e. those captured by . In this
hypothesis, the gene–function associations for which gfij = 1 in the original GF matrix and

 > T are true positives (TP). The gene–function associations for which gfij = 0 in the original
GF matrix and  > T are false negatives (FN). In other words, FN are the relationships that
were not present in the original annotation database although they are true. In the same
hypothesis, gene–function associations for which gfij = 1 in the original GF matrix and  ≤
T are FP. These correspond to relationships that were initially present in the database but that
are not supported by the rest of the data. Finally, the associations that were not in the database
initially (gfij = 0), and are also not revealed by the LSI (  ≤ T ) are TN.

Figure 3 shows the number of FP, the number of FN, and the total presumed existing error (FP
+FN) plotted against various values of threshold T. The graph shows that a threshold close to
one will fail to assign many gene–function relationships, which would imply that the existing
database has very many FP relations. Clearly, this cannot be true since most relationships are
verified experimentally and known to be true. Similarly, for a threshold close to zero, the
algorithm associates many genes with many functions, which would imply that the original
dataset had many FNs. Using a criterion analogous to Occam's razor, we chose the value of
the threshold T that corresponds to the assumption that the initial dataset has the minimum
amount of errors. For the human annotations in the GO database as of March 2004, this value
is T 0.37.

Other approaches that can be used to select the threshold include an expectation maximization
(EM) algorithm and a fuzzy logic approach. The EM (Dempster et al., 1977) can be used to
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find the maximum-likelihood estimates of the parameters of the underlying distributions of the
values of the  matrix for each given gene. Subsequently, the optimal threshold can be
calculated as the value for which the two probability density functions intersect. The
disadvantage of this approach is that EM is unstable when the two distributions are substantially
overlapping. The fuzzy logic approach would use a gradual transition in which the [0, 1] interval
is divided into [0, T1] representing gene and functions that are not associated in a meaningful
way, (T1, T2117:606) representing an uncertainty interval and [T2, 1] representing strong
associations.

At T = 0.37, our analysis preserved most known relationships: most zero elements in the original
matrix were close to zero in the new matrix, as well, and most one elements in the original
matrix were also close to one in our results. However, several values which were initially zero
became larger than our threshold, indicating novel associations between genes and functions.
We found 1196 such putative novel associations between several genes and various ontological
categories. In order to make a validation process feasible, we focused on the predicted
associations with a  > 0.5. There were 212 such novel gene–function assignments.

The most convincing category of predictions involved annotations that were not included in
GO at the time we downloaded the data for our analysis (March 2004), but have been added
since. Examples of predictions from this category include the genes RNF14 [ring finger protein
14 (H.sapiens)] and NDUFS7 [NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20 kDa
(NADH-coenzyme Q reductase) (H.sapiens)]. RNF14 was predicted to exhibit ubiquitin–
protein ligase activity whereas NDUFS7 was predicted to have NADH dehydrogenase activity.
In both cases, our method associated these genes with the exact same molecular function that
was later officially assigned to them by the GO Consortium. Overall, 23 gene–function
relations predicted by our technique were later officially added to the GO annotations.

Many of the relationships we predicted were validated by both existing literature and other
annotations present in GO. For instance, our analysis predicted that RFC1 [replication factor
C (activator 1), 145 kDa (H.sapiens)] should be associated with the chromosome, telomeric
region of the cell. Our prediction is confirmed by papers such as the one by Uchiumi et al.
(1996), which showed that RFC recognizes preferentially 5′-phosphoryl groups at the ends of
double-stranded telomere repeats and suggested its involvement in telomere stability or
turnover. In spite of the fact that this gene has been annotated for the biological process
telomerase-dependent telomere maintenance, there was no annotation associating this gene
with a specific cellular location.

Our analysis also predicted the involvement of SLC13A2 [solute carrier family 13 (sodium-
dependent dicarboxylate transporter), member 2 (H.sapiens)] in the biological process of
organic anion transport. This gene is annotated for the molecular function organic anion
transporter activity, but there was no annotation for its involvement in any biological processes.

These are excellent examples in which curators might have annotated a particular gene for one
of the GO category, but not for the others, even if such inferences were obvious. This type of
missing annotations represent an unsurmountable obstacle for the classical ontological analysis
used by all existing functional profiling tools that performs a simple lookup on one ontological
category at a time. This shows that our proposed approach is able to perform automatic quality
checks in annotation databases and bring to the attention of the curators obvious, yet missing,
pieces of information.

Even more interestingly, our analysis was also able to link genes to specific functions even in
those cases in which no other annotation available explicitly in GO would suggest such a very
specific association. For example, our analysis predicted that SQLE [squalene epoxidase
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(H.sapiens)] is involved in cholesterol metabolism. It is known that squalene epoxidase is a
key enzyme in cholesterol biosynthesis. This enzyme catalyzes the conversion of squalene to
(S)-squalene-2,3-epoxide, the first reaction in a chain of reactions that will lead to the formation
of cholesterol. A subsequent literature search showed that this gene is also highly regulated by
cholesterol (Nagai et al., 2002). Thus, this involvement of SQLE in the cholesterol metabolism
is strongly supported by both well-known biochemical pathways and by recent literature.

Another very accurate and extremely specific prediction was obtained for HMOX2 [heme
oxygenase (decycling) 2 (H.sapiens)]. The existing GO annotations only link HMOX to the
process of heme oxidation. In contrast, our analysis was able to predict that HMOX2 is involved
in pigment biosynthesis. This prediction is supported by McCoubrey et al. (1992) who
characterized the human heme oxygenase 2 and showed that it has a significant heme oxigenase
activity. It is known that heme oxygenase catalyzes the conversion of heme to biliverdin, a
green pigment that is subsequently converted to bilirubin, a reddish-yellow pigment.

Another example is the prediction of the relationship POP4 [processing of precursor 4,
ribonuclease P/MRP subunit (Saccharomyces cerevisiae) (H.sapiens)] with the ribonuclease
P complex cellular component. This gene has been previously annotated for ribonuc-lease P
activity. However, a protein can be involved in ribonuclease P activity without being
necessarily included in the ribonuclease P complex. The literature search revealed that our
prediction is strongly supported by van Eenennaam et al. (1999) who suggested that hPOP4,
the protein encoded by this gene, is a subunit of the human RNase MRP and RNase P
ribonucleoprotein complexes. Even if hPOP4 is probably not directly bound to the RNase MRP
and RNase PRNA components, it is suggested that hPop4 binds to the respective complexes
through protein–protein interactions.

Several other interesting predictions are shown in Table 1. All predictions shown here are
supported by peer-reviewed articles as well as other existing annotations. Figure 4 shows a
small part of the  matrix representing the semantic associations between the genes and the
functions. In this figure, the height represents the strength of the predicted association between
gene and a function. The colors represent various height ranges (red is > 0.9).

The receiver operating characteristic (ROC) curve is a method often used to evaluate the quality
of diagnostic tests and prediction algorithms. The ROC curve is defined as a plot of sensitivity
versus 1-specificity (the TP rate versus the FP rate). Figure 5 shows the ROC curve for our
method using the definitions of the FP and TP above. The area under the curve (AUC)
represents the average value of sensitivity for all possible values of specificity. As illustrated
in Figure 5, the AUC for our algorithm is 0.99, which reflects the fact that most of our gene–
function assignments are in concordance with the original GO annotations.

Out of the 212 predicted associations, we were able to find evidence supporting 161 of them.
This represents 75.95% of the putative gene–function assignments proposed by our method.
Only one of our predictions (0.4%) was contradicted by the existing literature. We could not
find any relevant articles for 23.58% of our predictions. These predictions are truly novel and
remain to be verified by future research. Our analysis did not find any clear semantic
inconsistencies in the current human annotation data analyzed.

4 CONCLUSIONS
Gene annotation databases represent an essential resource for modern research in genetics.
Such databases are used on a daily basis by thousands of researchers worldwide. However, it
is well known that these annotations are incomplete and it is likely that some annotations are
also incorrect. In this paper, we have proposed a method that can be used to perform a global
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semantic analysis of the content of such databases using a latent semantic indexing approach.
The technique proposed is able to predict novel functional annotations for known genes as well
as find the weak semantic links. The method is independent of the organism and can be used
to analyze and improve the quality of the data of any public or private annotation database.
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Fig. 1.
Singular value decomposition of the gene–function association matrix GF. There are g genes
and f functions. Sm is a diagonal matrix such that Sij = 0, if i ≠ j and Sij ≥ 0, if i = j. The rows
and columns in Sm are GF's eigengenes and eigenfunctions, respectively.
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Fig. 2.
The dimensionality reduction from m to k produces an approximation matrix  of the original
matrix GF. By reducing the dimensionality we force the new matrix to capture the latent
semantics and filter out the noise. This essentially will capture those interactions that are
strongly represented in the data.
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Fig. 3.
The number of FPs (dot-dash blue line), the number of FNs (dashed magenta line) and the total
error FP+FN (green continuous line) as functions of the threshold. The optimal threshold value
is the one that yields a minimum total error. This corresponds to the assumption that the initial
dataset had a minimum number of errors. For the human annotations in the Gene Ontology
database as of March 2004, the optimal threshold is 0.37.
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Fig. 4.
Novel gene–function relationships discovered by our analysis. Each bar represents the
relationships between the corresponding gene and function. The height shows the predicted
strength of the relationship. The relationships in red are discussed in details in the text. The
ones in yellow are detailed in Table 1.
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Fig. 5.
The ROC curve (sensitivity versus 1-specificity). The AUC is 0.99. Note the graph is enlarged
and only shows the region up to 0.0018 on the horizontal axis. The graph shows that most of
our gene-function assignments are in concordance with the original GO annotations.
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Table 1

Other predicted associations between genes and several ontological categories

Gene Predicted association

DGKD [diacylglycerol kinase, delta 130 kDa (Homo sapiens)] Triacylglycerol metabolism (BP)
SLC1A7 [solute carrier family 1 (glutamate transporter), member 7 (Homo sapiens)] Amino acid transport (BP)
OXT [oxytocin, prepro- (neurophysin I) (Homo sapiens)] Pregnancy (BP)
OXCT1 [3-oxoacid CoA transferase 1 (Homo sapiens)] Ricarboxylic acid cycle (BP)
GRM6 [glutamate receptor, metabotropic 6 (Homo sapiens)] Phototransduction (BP)
CHRNB3 [cholinergic receptor, nicotinic, beta polypeptide 3 (Homo sapiens)] Acetylcholine binding (MF)
CD47 [CD47 antigen (Rh-related antigen, integrin-associated signal transducer) (Homo sapiens)] Integrin complex (CC)
GRIN2D (glutamate receptor, ionotropic, N-methyl D-aspartate 2D) Glutamate signaling pathway (BP)
SLC1A4 [solute carrier family 1 (glutamate/neutral amino acid transporter), member 4 (Homo sapiens)]Acidic amino acid transporter activity (MF)

BP stands for biological process, MF stands for molecular function and CC stands for cellular component. These are shown in yellow in Fig. 4.
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