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Abstract: Evidence suggests inflammation, mitochondria dysfunction, and oxidative stress play major roles in Parkin-

son’s disease (PD), where the primary pathology is the significant loss of dopaminergic neurons in the substantia nigra 

(SN). Current methods used to treat PD focus mainly on replacing dopamine in the nigrostriatal system. However, with 

time these methods fail and worsen the symptoms of the disease. This implies there is more to the treatment of PD than 

just restoring dopamine or the dopaminergic neurons, and that a broader spectrum of factors must be changed in order to 

restore environmental homeostasis. Pharmacological agents that can protect against progressive neuronal degeneration, 

increase the level of dopamine in the nigrostriatal system, or restore the dopaminergic system offer various avenues for 

the treatment of PD. Drugs that reduce inflammation, restore mitochondrial function, or scavenge free radicals have also 

been shown to offer neuroprotection in various animal models of PD. The activation of peroxisome proliferator receptor–

gamma (PPAR- ) has been associated with altering insulin sensitivity, increasing dopamine, inhibiting inflammation, al-

tering mitochondrial bioenergetics, and reducing oxidative stress - a variety of factors that are altered in PD. Therefore, 

PPAR-  activation may offer a new clinically relevant treatment approach to neuroinflammation and PD related neurode-

generation. This review will summarize the current understanding of the role of PPAR-  agonists in neuroinflammation 

and discuss their potential for the treatment of PD. 
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PARKINSON’S DISEASE 

 Parkinson’s disease (PD) is a disorder that affects ap-
proximately 1-3% of the population in the US [7, 115] and 
currently has no known cure. The primary pathology of the 
disease is significant loss of the dopaminergic neurons in the 
substantia nigra (SN), which leads to a significant loss of 
striatal dopamine [96, 158]. This is because the cell bodies of 
the dopaminergic neurons are located in the SN and project 
their axons into the striatum, where they release the neuro-
transmitter dopamine. It is the loss of striatal dopamine that 
gives rise to some of the clinical signs of the disease [21]. 
Clinical motor related signs of PD include tremor, bradyki-
nesia, rigidity, and postural instability [95]. Marked gliosis 
and the presence of Lewy body-like inclusions [70] are an-
other hallmark of this disease. Cellular dysfunctions such as 
mitochondrial or proteasomal dysfunction, oxidative stress, 
and chronic inflammation have been hypothesized to play a 
role in PD [78, 94, 103, 130, 143, 193].  

THE CURRENT TREND IN PARKINSON’S DISEASE 
TREATMENT 

 The current non-invasive methods used to treat PD focus 
mainly on replacing dopamine in the nigrostriatal system 
with L-Dopa and its analogs. L-Dopa is the pre-cursor to 
dopamine and it restores striatal dopamine levels to alleviate 
some of the motor dysfunctions observed in PD patients. 
However, after a few years of treatment, the patients get 
worse [76], most likely as a result of only replacing or alter-
ing one factor in a multifactor environment. Thus, L-Dopa 
therapy is usually reserved for the treatment of late stage PD  
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because of the toxic side effects that arise with its usage. 
Inhibition of monoamine oxidase activity, with drugs such as 
rasagiline, also increases dopamine levels by decreasing do-
pamine breakdown [27, 28]; however, these drugs only alter 
one factor like L-Dopa. Another method of trial employed to 
treat PD is grafting dopaminergic neurons into the striatum 
[142, 161]. These surgeries were successful to some degree 
as they restored the dopaminergic part of the nigrostriatal 
system; however, the new neurons died with time and the 
grafts failed [142, 161]. These studies imply that there is 
more to the treatment of PD then just increasing striatal do-
pamine or restoring the dopaminergic neurons of the SN 
because in PD the entire nigrostriatal environment has been 
altered. For example, chronic inflammation is present in the 
PD brain [129, 130, 133], and if the chronic inflammation in 
PD is not attenuated, then the neurotoxic inflammatory re-
sponse will continue to damage cells, leading to the progres-
sive neuronal loss associated with the duration of the disease. 
We propose that a broader spectrum of factors must be 
changed therapeutically in order to restore the environmental 
homeostasis required to allow life of the neurons and effi-
cient treatment of PD. This concept was previously proposed 
by Hirsch et al. when they suggested that agents with a 
broader spectrum of action on inflammation would be more 
likely to protect dopaminergic neurons [93]. Support for us-
ing anti-inflammatory drugs for PD therapy comes from two 
studies showing that nonsteroidal anti-inflammatory drugs 
may reduce the risk of PD [25, 26]. Therefore, combinations 
of dopamine replacement therapies and anti-inflammatory 
drugs may alleviate the motor symptoms as well as slow the 
progression of the disease. 

 Restoration of the inflammatory environment is also cru-
cial to therapies such as glial cell line-derived neurotrophic 
factor (GDNF), which has shown promise in humans and 
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nonhuman primates [73, 80, 175]. This trophic factor en-
hances the function of the surviving dopaminergic neurons 
and allows compensation for those that were lost. However, 
as mentioned with the dopamine replacement therapies, there 
is no attenuation of the toxic inflammatory environment. 

 Pharmacological agents that can protect against progres-
sive neuronal degeneration, increase the level of dopamine in 
the nigrostriatal system, or restore the dopaminergic system 
offer various avenues for the treatment of PD. Drugs that 
reduce inflammation, restore mitochondria function, or scav-
enge free radicals have shown neuroprotection in various 
animal models of PD [6, 61, 89, 100, 127, 183, 192]. Genetic 
evidence from specific knockout of inflammatory response 
related genes such as, cyclooxygenase - 2 (COX-2) [68, 192] 
or the inducible nitric oxide synthase (iNOS) [47, 102, 120] 
have also shown partial neuroprotection in PD animal mod-
els. However, since PD is considered to be of a multifactor 
origin [55], it would be logical that restoring multiple altered 
factors or deficits involved in the disease would produce a 
more optimal PD treatment. Since a trend in neurology is 
currently evolving for the role of inflammation in the pathol-
ogy of several neurodegenerative diseases such as Alz-
heimer’s disease, amyotrophic lateral sclerosis, and multiple 
sclerosis as well as in head trauma and stroke, researchers 
have extensively searched for new drugs to control or mod-
ify inflammation. As a result, several studies have pointed to 
the potential use of agonists of the peroxisome proliferator 
activated receptor-gamma (PPAR- ). 

PEROXISOME PROLIFERATOR ACTIVATED RE-

CEPTORS  

 Peroxisome proliferator activated receptors (PPARs) are 
members of the nuclear receptor superfamily, and they regu-
late gene expression using various ligand-dependent and -
independent molecular processes. Three different isoforms 
of the PPARs exist and they are encoded by separate genes: 
PPAR-  (NR1C3), PPAR-  (NR1C1), and PPAR-  (NR1C2, 

, or NUC-1) [60, 132, 186]. While these isoforms have 
similar protein sequence and structure, they differ in their 
ligand-binding domains and have different tissue distribu-
tion, ligand specificity, and biological actions [81]. Most of 
the biochemical functions that have been ascribed to the 
PPARs require that the receptor is part of a heterodimeric 
complex with a retinoid X receptor (RXR; also known as 
NR2B), which is another member of the nuclear-receptor 
superfamily (16). Therefore, these ligand-dependent tran-
scription factors regulate target gene expression by het-
erodimerizing with RXR prior to binding to specific perox-
isome proliferator response elements (PPREs) in the pro-
moter region of regulated genes. This subsequently results in 
transcriptional regulation as agonist binding alters the PPAR 
conformation to allow the recruitment of transcriptional co-
activators [52, 97, 160, 189, 205]. Several isoforms of RXRs 
also exist, have distinct tissue distribution [23, 124], and can 
be activated by 9-cis retinoic acid to synergizes PPAR acti-
vation; although, this binding is not required [113]. The 
RXRs may even heterodimerize with other nuclear receptors 
resulting in a decrease of PPAR-regulated transcriptional 
activation because of the competition among various RXR 
heterodimerization partners for the RXR [118]. 

 While the PPAR:RXR heterodimer is crucial for deter-
mining specific gene transcription, transactivation of the 
target gene requires a large protein complex [14, 185]. Thus, 
the involvement of co-activators and co-repressors makes 
PPAR-regulated transcriptional activation more complex 
[204, 205]. Non-ligand bound PPARs are considered to be in 
an inactive state as they are bound with co-repressor proteins 
in what is known as the co-repressor complex (nuclear recep-
tor co-repressor/silencing mediator for retinoid and thyroid 
hormone receptors, NCoR/SMRT), which because of its as-
sociation with histone deacetylases, represses gene transcrip-
tion [58, 88, 202]. It has recently been shown that SUMOy-
lation of the PPAR-  ligand-binding domain enables its di-
rect interaction with the nuclear co-repressor complex, which 
prevents the degradation of the repressor complex and keeps 
gene transcription silenced [147]. Some cell types even have 
a cytoplasmic rather than a nuclear location for non-ligand 
bound PPARs [13, 31]; therefore, translocation to the nu-
cleus is also important in these cells. Competitive inhibition 
for available PPRE sites can negatively regulate the agonist 
induced transactivation activities of both PPAR- and 
PPAR-  as both cannot bind to DNA while associated with 
the co-repressor complex, unlike the PPAR- /  [171]. This 
mechanism provides a unique role for the ubiquitously ex-
pressed PPAR- /  to act as a tonic suppressor of all PPAR-
induced activities under physiological conditions. However, 
upon ligand activation, minor structural changes occur to the 
receptor causing the co-repressors to dissociate from PPARs 
as co-activators are recruited [204, 205]. The co-activator 
complexes, such as cAMP response element binding protein 
(CBP)/p300 and steroid receptor co-activator 1, reorganize 
chromatin to allow the transcriptional machinery to gain ac-
cess to the promoter regions of the PPAR target genes, as a 
result of their histone-acetyltransferase activity [56, 57, 201, 
204, 205]. Secondary complexes may also form with pro-
teins such as the vitamin-D-receptor interacting protein/thy-
roid-hormone-receptor-associated protein (DRIP/TRAP) com-
plex [201], as well as the protein complexes that are associ-
ated with the basal transcription machinery, so that transcrip-
tion can be initiated. 

 Regulation of gene transcription by nuclear hormone 
receptors extends beyond their transactivation abilities as 
many members of the nuclear-hormone-receptor superfa-
mily, once activated by an agonist, can interact physically 
with other types of transcription factors to influence their 
functional properties. PPARs can suppress the activities of 
many distinct families of transcription factors through vari-
ous mechanisms; although, agonist-induced activation of the 
PPAR is required most of the time for effective transrepres-
sion to occur. There are at least three different ways in which 
ligand-activated PPAR–RXR heterodimers can negatively 
regulate the activities of other transcription factors. One 
mechanism, involves squelching of essential, shared co-
activators by activated PPAR–RXR heterodimers, which 
occurs only when the levels of specific co-activators are rate 
limiting [119]. This co-activator competition, results in sup-
pression of the other transcription factors dependent on the 
same co-activators. Another method of transrepression oc-
curs through a process known as ‘cross-coupling’ or ‘recep-
tor mutual antagonism.” This is a direct result of activated  
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PPAR–RXR heterodimers forming complexes with other 
types of activated transcription factors. For example, PPAR-
 plays regulates inflammation by attenuation of the inflam-

matory response, which is a result of antagonism of proin-
flammatory transcription pathways, such as nuclear factor-
kappa B (NF B), activator protein-1 (AP-1), signal trans-
ducer and activator of transcription (STAT), or nuclear fac-
tor of activated T Cells (NFAT) [12, 48, 146, 157]. This re-
sults in a functional cross-inhibition of transcription-factor 
activities of both participants. The third mechanism of trans-
repression involves regulation of the mitogen-activated pro-
tein kinase (MAPK) cascade, where activated PPAR–RXR 
heterodimers inhibit the phosphorylation and activation of 
certain members of the MAPK cascade. This was demon-
strated when PPAR- agonists suppressed the activation of 
both c-Jun N-terminal kinase and p38 MAPK [51]. For a 
more detailed review of the structure and physiology of 
PPARs, see Ricote et al. 1999 [156] and for further informa-
tion on transcriptional control see Devchand et al. 1999, 
Clark et al. 2002, Berger et al. 2002, and Blanquart et al.
2003 [9, 15, 32, 53]. However, for the remainder of this re-
view we will focus on PPAR- , which has been shown to 
play a role in adipogenesis, cell cycle regulation, cell differ-
entiation, insulin sensitivity, and of particular importance to 
this review, inflammation [19, 45, 52, 105, 121, 149, 157, 
162, 196]. 

PPAR-  REGULATES INFLAMMATION 

 It has been hypothesized that PPARs are actively in-
volved in immunoregulation, through their ability to regulate 
membrane lipid composition, cell proliferation, sensitivity to 
apoptosis, energy homeostasis, and various inflammatory 
related transcription factors. Overall, the general consensus 
is, PPARs play a role in controlling the inflammatory re-
sponse, mainly through their transrepression capabilities; 
although, the transactivation of certain target genes can oc-
cur. Several inflammatory signaling systems maybe affected 
by PPAR-mediated transrepression such as NF B, STAT, 
AP-1, or NFAT. These signal pathways are involved in vari-
ous aspects of immunoregulation including: the functions of 
macrophages, endothelial cells (ECs), dendirtic cells (DCs), 
T cells, and B cells (for reviews see Daynes and Jones 2002 
and Clark 2002) [32, 44].  

 Initial evidence for PPAR-  expression and function in 
the immune system came from a study that showed a trun-
cated PPAR-  transcript in peripheral blood lymphocytes 
[79] and from a study that demonstrated PPAR-  expression 
in the rat Peyer’s patches and spleen [17]. Subsequent stud-
ies showed PPAR-  is highly expressed in macrophage de-
rived foam cells of atherosclerotic lesions [126, 155, 184]. 
PPAR-  was also shown to be expressed in monocytes/ 
macrophages as it plays a role in differentiation and activa-
tion as well as in the regulation of the inflammatory response 
[31, 105, 139, 155-157, 184]. In addition, many studies have 
demonstrated PPAR-  ligands to inhibit the macrophage- 
inflammatory response [29, 156] as the secretion of pro-
inflammatory mediators such as cytokines and the expres-
sion of iNOS and the transcription of the scavenger receptor-
A gene are inhibited [105, 157]. Another study demon-
strated, that PPAR-  activation induced apoptosis in both 
activated and non-activated macrophages [31]. Others have 

suggested, that PPAR-  ligands have a more complex pattern 
of macrophage-inflammatory responses as they stimulate the 
expression of the proinflammatory receptors and increase the 
expression of the class B scavenger receptor [30, 139, 184]. 
Therefore, the effects of PPAR-  ligands on monocyte/ 
macrophage inflammatory responses are not simple and ap-
pear to depend on the PPAR-  agonist used, the mode of 
macrophage activation, and the inflammatory response pa-
rameters measured. 

 Another major cell type that relates PPAR-  to inflamma-
tion and immunity are the ECs, which play role in homing 
the relevant immune cells and in localization of the inflam-
matory response. ECs express PPAR-  and agonists mediate 
their effects on cell survival, surface-protein expression, and 
cytokine and chemokine expression. PPAR-  agonism also 
induces EC apoptosis [13], and several studies have demon-
strated anti-inflammatory effects with PPAR-  agonism 
[116, 125]. However, as with the macrophages, a clear pic-
ture has not yet been determined for the role of PPAR-  in 

modulation of the inflammatory response by the ECs.  

 PPARs also play an important immunomodulatory role in 
DCs, which primarily monitor the surrounding environment 
for potential pathogen infection [178]. DCs express PPAR-
and agonist-induced activation of PPAR-  influences DC 
maturation [77]. The PPAR-  agonist, rosiglitazone, was 
shown to alter the membrane phenotype of DCs during 
maturation induced by lipopolysaccharide (LPS) or CD40 
ligand [64, 77]. These studies suggested that activation of 
DC PPAR-  influences effector T-cell differentiation as a 
result alterations in the DC cell-surface phenotype as well as 
by down-regulating the expression of the cytokines and 

chemokines required for T helper 1 (TH1)-cell development.  

 The expression of PPAR-  by T cells [33, 42, 86, 87, 
106, 144, 145, 194, 199] provided another possible role for 
PPAR-  in the regulation of inflammation and immunity. 
Several studies have also shown that PPAR- is present at 
low levels in resting T cells and its expression is upregulated 
following T-cell activation [33, 42, 106]. In one study, 
PPAR-  agonists inhibited the anti-CD3 antibody-stimulated 
proliferative response of T-cell clones and freshly isolated T-
cell-enriched splenocytes as well as the antigen (BMBP)-
stimulated response, where inhibition occurred at the level of 
the T cell [33]. PPAR-  agonists also inhibited cytokine ex-
pression in human peripheral blood T cells, as a partial result 
of PPAR-  effects on interleukin-2 (IL-2) promoter activity 
as well as from activated PPAR-  physically associating with 
NFAT, which blocked the downstream effects of these tran-
scription factors [199, 200]. This implies that PPAR- could 
have a suppressive effect on the development of an immune 
response. Another study demonstrated that PPAR-  agonists 
mediate T-cell apoptosis [86]. PPAR- agonists can even 
inhibit the activation-induced production of several T-cell 
cytokines, such as interferon-gamma [42]. Furthermore, it 
was shown that the anti-inflammatoy cytokine, IL-4, can 
induce the upregulation of expression of PPAR- in T cells 
as well as provide a potential ligand for PPAR-  [200]. 
Overall, T-cell studies agree on a functional role of PPAR-
activation in inhibiting activated T-cell proliferation; al-
though, the mechanism(s) are not totally clear. 
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 Several studies have demonstrated PPAR-  expression in 
B cells and that PPAR- agonists have antiproliferative and 
cytotoxic effects [144, 145]. The one study, suggested that 
PPAR-  agonism induces apoptosis in normal murine B cells 
and B-cell lines [144]. In addition, a study using ppar-  +/-
mice demonstrated that B cells isolated from ppar- -+/-mice 
are hyperproliferative and have increased viability after ex-
posure to LPS or after cross-linking their antigen receptors 
[170]. However, further study will be required to address the 
effects of PPAR-  ligands on the normal B-cell immune re-
sponse.  

 The role of PPAR-  in inflammation has also been stud-
ied in PPAR-  null macrophages as PPAR- -deficient ani-
mals are not available for study as a result of embryonic le-
thality. These studies have allowed new insights into the role 
of PPAR-  in macrophage differentiation and function. One 
study, demonstrated that PPAR-  is not essential for macro-
phage differentiation or for phagocytosis as well as cytokine 
production and expression of the scavenger receptor-A; how-
ever, PPAR-  was required for basal expression of CD36 
[136]. In the same study, the PPAR- -deficient macrophages 
showed no difference from wild-type macrophages in the 
expression of CD14 or other macrophage-specific surface 
markers and they also produced similar levels of proinflam-
matory cytokines when stimulated with LPS [136]. This 
suggested a lack of PPAR-  ligand involvement in the nor-
mal regulation of macrophage-cytokine secretion. PPAR-  is 
neither essential for nor substantially affects the develop-
ment of the macrophage lineage in vitro and in vivo; how-
ever it is an important regulator of the scavenger receptor 
CD36 [24]. These results suggested that PPAR-  agonists 
have anti-inflammatory effects independent of PPAR-  as 
well as show that PPAR-  is required for the positive effects 
of its ligands in modulating macrophage-lipid metabolism. 

 Overall, the role of PPAR-  in the regulation of the in-
flammatory response is far from complete; however, a pleth-
ora of studies link agonism of PPAR-  to the attenuation of 
inflammation [59, 105, 157]. Therefore, PPAR-  activation 
can influence the development and intensity of the inflam-
matory response, where it is generally accepted that PPAR-
activation negatively regulates the inflammatory response 
(see Fig. 1). However, in the studies using the natural ligand 
of PPAR- , 15d-PGJ2 [69, 112], or the synthetic ligand, thi-
azolidinediones, [8, 117] anti-inflammatory activities have 
been shown to occur in a PPAR-  dependent and –inde-
pendent manner [24, 32]. And, the recent suggestion that 
15d-PGJ2 is not a biologically relevant PPAR-  agonist [75] 
makes the specific immunomodulatory role for PPAR-  even 
less clear and more complex. Therefore, caution should be 
used in interpreting results in which 15d- PGJ2 or the thia-
zolidinediones were used as PPAR - specific agonists. How-
ever, as a result of numerous reports showing beneficial ef-
fects of PPAR agonists in animal models of inflammation, 
several clinical trials using synthetic PPAR agonists have 
begun in the treatment of diseases involving aberrant or 
chronic immune/inflammatory responses [150, 159]. 

PPAR-  IN NEURODEGENERATION 

 With the realization that inflammation plays a role in 
several neurodegenerative diseases, researchers have begun 

to search for a role of PPAR-  in neurodegeneration. This is 
because PPAR-  activation can regulate the inflammatory 
response and decrease the expression of a variety of pro-
inflammatory genes such as COX-2, iNOS, and various cy-
tokines [11, 105, 110, 157], all of which have been associ-
ated with inflammation induced neurodegeneration [4, 5, 91, 
120, 134, 152, 192]. Since evidence shows that PPAR-  is 
expressed in certain areas of the brain [137] such as neurons 
[17] and glia [11, 40, 41, 90], it is possible that PPAR-  ago-
nism could potentially inhibit neuroinflammation and subse-
quently neurodegeneration. It is hypothesized, that this may 
partially occur through the abilities of agonist bound PPAR-
RXR heterodimers to antagonize NF B mediated gene tran-
scription of several inflammatory mediators such as COX-2, 
iNOS, and various proinflammatory cytokines [11, 49, 63, 
91, 92, 105, 109, 110, 169, 173, 179]. Although, transrepres-
sion of other signal pathways may also play a role in the 
anti-inflammatory effects of PPAR-  agonism [48, 146, 
157]. These data suggest, that PPAR-  agonists may be used 
to suppress inflammatory molecules, which are involved in 
the perpetuation the inflammatory response that is known to 
produce secondary neurodegeneration. 

 Studies showing increased PPAR-  in the temporal cor-
tex of patients with Alzheimer’s disease [111] as well as 
within the ischemic brain [181] support a role for PPAR-  in 
neuroinflammation and neurodegeneration. Since these dis-
coveries, agonists of PPAR- , have been used to demonstrate 
anti-inflammatory effects within the CNS as they inhibit 
inflammatory molecule production by the glia [11, 12, 15, 
39, 91, 109, 110]. For a more detailed review of PPAR-  in 
microglia (the macrophages of the brain) mediating the in-
flammatory response, see Bernardo and Minghetti 2006 [12]. 
The PPAR-  agonists also yield protection in models of mul-
tiple sclerosis [1, 66, 140, 168, 169] by exerting anti-
inflammatory effects on glial cells, by reducing T cell activa-
tion and proliferation, and by induction of T cell apoptosis. 
The PPAR-  agonist, pioglitazone, has even been used to 
successfully treat multiple sclerosis [150]. PPAR-  agonists 
also offer neuroprotection in ischemia [172, 179, 181, 191, 
203] where they decrease microglial activation and the pro-
duction of pro-inflammatory molecules. They protect in 
models of amyotrophic lateral sclerosis [108, 169] by de-
creasing microglial activation as well as COX-2 and iNOS 
expression. The PPAR-  agonist also show potential in Alz-

Fig. (1). PPAR-  plays a role in immunomodulation. PPAR-  is 

expressed in monocytes/macrophages, microglia, endothelial cells, 

dendritic cells, T cells, and B cells; and numerous studies have 

demonstrated that PPAR-  agonism has immunomodulatory effects 

in these cells, which can alter the immune response. 
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heimer’s disease research [39, 43, 72, 92, 101, 114, 148, 
197] by decreasing glucocorticoids, beta-secretase, glial ac-
tivation, proinflammatory molecule production, and amy-
loid-beta secretion as well as attenuating the decrease in in-
sulin degradation enzyme and through the modulation of the 
wnt signal cascade. Agonists of PPAR-  are even being 
tested in Alzheimer’s disease clinical trails where patients 
receiving a PPAR-  agonist exhibit cognitive and functional 
improvements, such as better delayed recall and selective 
attention [65, 159, 195]. However, in the study by Watson et
al. the PPAR-  agonist, rosiglitazone, did not cross the 
blood-brain barrier [195], which implies that the protective 
effects of this PPAR-  agonist are not mediated by local 
CNS PPAR-  activation. For a more extensive review on 
PPAR-  agonist effects in various neurodegenerative dis-
eases see Sundararajan et al. [180]. While these studies offer 
various explanations for the attenuation of inflammation or 
neuroprotection that are both PPAR-  dependent [101, 122, 
166] and –independent [66, 67], they all support the use of 
PPAR-  agonism to treat neurodegeneration via the attenua-
tion of the inflammatory response.  

 Other evidence to support a role for PPAR-  agonists in 
protection against neuroinflammation and neurodegeneration 
comes from a study using intracerabellar LPS, where PPAR-
 agonists attenuated increased iNOS and cell death [91]. 

Another study, showed that PPAR-  agonists induce motor-
neuron survival through a PI3 kinase mechanism independ-
ent of PPAR-  [75, 141]. In addition, it has been demon-
strated that PPAR-  agonism promotes neurite extension 
[167]; although, a caveat to this was the use of 15d-PGJ2 as 
a PPAR-  agonist, which has recently been shown not to be a 
biologically active PPAR-  agonist [75]. The overall consen-
sus, from these studies, supports the use of PPAR-  agonism 
to treat neuroinflammation and neurodegeneration. 

PPAR-  ACTIVATION MAY HAVE POTENTIAL USE 

FOR PD TREATMENT 

 Since PPAR-  agonism has proven successful in various 
forms of neuroinflammation and neurodegeneration, it is 
hypothesized that the PPAR-  agonist, pioglitazone, could be 
used as a novel treatment approach to controlling the neu-
roinflammation observed in PD. As a result, pioglitazone 
treatment was shown to be neuroprotective in the 1-methy-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD [18, 
46]. In the first study by Breidert et al. using an acute MPTP 
model, pioglitazone attenuated SN inflammation and dopa-
minergic cell loss but it did not attenuate striatal microglial 
activation or the loss of striatal tyrosine hydroxylase im-
munoreactivity, nor did it restore the dopamine levels [18]. 
Therefore, the authors concluded that PPAR-  agonism with 
pioglitazone affects primarily the SN in the MPTP model of 
PD as a result of attenuating SN inflammation. At best, this 
study suggests a very weak therapeutic effect. 

 In a more chronic MPTP dosing study by Dehmer et al.
pioglitazone had a modest protective effect as it reduced glial 
activation and iNOS expression in both the SN and striatum 
as well as attenuated the oxidative stress marker, 3-nitro-
tyrosine, in the remaining dopamine neurons. This lead to 
dopaminergic neuroprotection and a partial restoration of 
striatal dopamine [46]. This study implied that PPAR-  ago-

nism with pioglitazone has both an anti-inflammatory and 
antioxidant effect, which may account for the attenuation of 
dopaminergic cell loss. It was also suggested that these ef-
fects were due to PPAR-  activation, increased I B expres-
sion, and inhibition of p65 nuclear translocation in both the 
dopaminergic neurons and glia [46]. This is important be-
cause the NF B signaling pathway has been implicated in 
the pathogenesis of PD [98, 99] as inflammation [93, 129-
131] and oxidative stress have been implicated in PD [2, 54, 
74, 104] as well as in MPTP-induced PD [3, 151]. 

 While only a modest effect was seen in the MPTP stud-
ies, it is important to note two things: (1) most PD cases are 
not induced by MPTP exposure and (2) MPTP is a dopa-
minergic specific neurotoxin; therefore, the effects of piogli-
tazone take place after significant dopaminergic cell damage 
occurs. This implies that pioglitazone can offer protective 
properties to an already damaged nigrostriatal environment, 
which is important to think about when attempting to trans-
late into a clinical application where this environment is al-
ready damaged. 

 Recently, our own lab studies suggested that pioglitazone 
offers neuroprotective properties in the LPS-induced in-
flammation model of PD because of its anti-inflammatory 
and anti-oxidative stress properties, which resulted in re-
stored striatal dopamine, mitochondria function, and signifi-
cant dopaminergic neuroprotection [100]. Therefore, offering 
support to the hypothesis that pioglitazone, as well as other 
agonists of PPAR- , may offer a new clinically relevant 
treatment approach to neuroinflammation and PD related 
neurodegeneration. Several other studies that have demon-
strated an ability for PPAR-  agonists to protect against LPS 
toxicity support our data [36, 37, 62, 109], where in these 
studies, the protection appears to be mediated in part by 
PPAR-  activation. 

 As previously, mentioned, our study and the one by 
Dehmer et al. also supports the idea that pioglitazone offers 
what appears to be an antioxidant effect [46, 100] as both 
demonstrated the attenuation of oxidative stress markers. 
This concept of an antioxidant property, is supported by oth-
ers who have demonstrated that PPAR-  agonists decrease 3-
nitrotyrosine and increase CuZn superoxide dismutase, as 
well as by the fact that troglitazone, a PPAR-  agonist, has 
an antioxidant chromanol moiety [82, 83, 108, 141, 172]. 
However, one study argues against antioxidant properties of 
PPAR-  agonism because superoxide dismutase levels were 
not altered [169]. 

 We also demonstrated that pioglitazone restores mito-
chondria function [100], which is supported by studies show-
ing that thiazolidinediones alter mitochondria bioenergetics 
[16, 50] as well as directly inhibit mitochondrial fatty acid 
metabolism [20, 71] and alter mitochondrial uncoupling pro-
tein expression [84, 85, 107, 153]. Therefore, since PPAR-
agonism also affects mitochondria bioenergetics [16, 50, 
100], induces a heat shock response [38], and regulates insu-
lin sensitivity [9, 135, 177], some of the protective properties 
may result from insulin sensitization or alterations in mito-
chondria function. In other words, PPAR-  agonists may be 
altering glucose metabolism, lactate production, or mito-
chondrial bioenergetics to provide their protective effects, 
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and several studies have demonstrated these properties [8, 
50, 67, 162]. 

 One mechanism that appears to be of relevance is that 
PPAR-  agonism regulates insulin sensitivity, which is of 
particular interest because epidemiological evidence shows 
7% of PD patients have type-II diabetes or insulin desensiti-
zation [22]. In fact, insulin receptors and dopaminergic neu-
rons are densely represented in the SN [115, 187] and there 
is a significant decrease in the insulin receptor in the SN of 
PD patients [138, 182]. There is also reduced insulin-mediate 
glucose uptake in newly diagnosed and untreated PD patients 
[188], where a high prevalence of insulin resistance typically 
occurs [164]. It has even been suggested that diabetes accel-
erates the progression of the motor and cognitive symptoms 
of PD [165], and drugs used to treat PD such as L-dopa or 
bromocriptine alter insulin signaling and sensitivity [174, 
188]. Therefore, a potential role of insulin or insulin desensi-
tization in the nigrostriatal system exists in relation to PD. 
The fact that pioglitazone is used to treat type-II diabetes 
mellitus by its regulation of insulin sensitivity [176] causes 
the speculation that some of the protective effects seen with 
pioglitazone in the PD models may be because of its ability 
to regulate insulin signaling, glucose metabolism, or lactate 
production. In our intrastriatal LPS study, pioglitazone at-
tenuated the LPS-induced decrease in the insulin receptor 
beta subunit [100], which may imply that PPAR-  agonism 
altered insulin signal transduction. This is important because 
control or modulation of insulin is beneficial in sepsis and 
inflammation [34, 163, 190]. Support for changes related to 
insulin and neurodegeneration comes from a review that 
links insulin or hyperinsulinaemia with Alzheimer’s disease 
[154]. Therefore, the anti-inflammatory, anti-oxidative stress, 
and the insulin sensitizing properties of PPAR-  activation 
may allow the neuroprotection seen with PPAR-  agonism.  

 Changes in mitochondrial uncoupling protein expression 
could also provide partial protection in these PD models 
since PPAR-  agonism is know to regulate the expression of 

the uncoupling proteins [84, 107, 153] and these proteins 
have demonstrated neuroprotective properties [128]. While 
this has not yet been determined, it seems likely that uncou-
pling protein expression could potentially play a role in the 
LPS PD model as pioglitazone demonstrated protective 
properties related to mitochondrial bioenergetics [100]. 

 In these PD studies, pioglitazone may also afford neuro-
protection by a method completely unrelated to its ability to 
bind and activate PPAR-  because the dose administered was 
much higher then the max clinical dose. So the question is, 
what are the molecular targets being affected when adminis-
tered high doses of pioglitazone? Recently, it was shown that 
photoprobe pioglitazone binds a novel mitochondrial protein 
termed “mitoNeet” with a high affinity, and mitoNEET is 
found in brain mitochondria [35]. This means it is possible 
that pioglitazone may be binding and modifying the function 
of the mitochondrial target protein to contribute to the pro-
tective actions of the drug without the activation of PPAR-
[67]. However, when taking into account the fact that mi-
toNEET showed specificity in thiazolidinedione binding [35] 
there appears to be a role for at least some of the protective 
properties being mediated by PPAR-  agonism. However, 
this does not rule out the potential for binding mitoNEET in 
our LPS model of PD where mitochondrial bioenergetics 
were altered by LPS and were restored by pioglitazone [100] 
or in the MPTP studies that used pioglitazone [18, 46]. Thus, 
the mitoNEET issue, in these studies, remains unsolved. 

CONCLUSIONS 

 It is clear that agonists of PPAR-  may have therapeutic 
potential for the treatment of neuroinflammation and neu-
rodegeneration, with an emphasis on PD related degenera-
tion. However, the exact mechanisms of protection are not 
clear. Therefore, more studies with these agonists will need 
to be run not only to test their effectiveness but also to de-
termine and validate their mechanisms of action. Regardless 
of the exact mechanisms, the PPAR-  agonist, pioglitazone, 
seems to offer a broad range of potentially protective proper-

Fig. (2). PPAR-  agonism offers protective properties to dopaminergic neurons. PPAR-  agonists inhibit inflammation and oxidative stress, 

alter mitochondrial bioenergetics, and potentially regulate insulin sensitivity, glucose metabolism, and lactate production. The attenuated 

microglial activation and toxic molecule production results in improved mitochondrial function, which subsequently leads to the attenuation 

of dopaminergic neuronal loss. 
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ties that may be important in attenuating the chronic neuroin-
flammation and oxidative stress that is responsible for the 
progression of dopaminergic neurodegeneration in PD. This 
is because pioglitazone will decrease microglia activation 
and the subsequent release of potential neurotoxins, which 
attenuates oxidative stress and allows restoration of mito-
chondria function. This will subsequently attenuate dopa-
minergic cell loss and the depletion of striatal dopamine (see 
Fig. 2). Therefore, pioglitazone could easily be used to treat 
PD because (1) it is already FDA approved, (2) it has proven 
to be safe for long term use when prescribed as a diabetes 
medication, (3) because it crosses the blood brain barrier 
[123], (4) PPAR-  is expressed in the region of the brain that 
is affected in PD [137], and (5) because pioglitazone has 
shown neuroprotection in the MPTP and LPS models of PD 
[18, 46]. Further testing of the PPAR-  agonists should con-
tinue in various models of PD as well as in graft transplant 
studies, stem cell research, in clinical trials, in combination 
with deep brain stimulation, or with trophic factors, such as 
GDNF, to see if PPAR-  activation can help restore some of 
the diseased environment in the PD nigrostriatal system. 
However, some concern and caution should be used with the 
administration of PPAR-  ligands as some of the agonists 
promote carcinogenesis, weight gain, hemodilution, edema, 
plasma-volume expansion, increased adiposity, and cardio-
megaly, which may limit their clinical applications [10, 198]. 
Work should also continue to identify novel PPAR-  ago-
nists with improved tolerance, efficacy, and targeting. 
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