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CD59a deficiency exacerbates influenza-induced
lung inflammation through complement-dependent

and -independent mechanisms
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Influenza-specific immune activity not only promotes virus clearance but also causes
immunopathology, thereby underlining the importance of mounting a measured anti-
viral immune response. Since complement bridges both the innate and adaptive
immune systems and has been implicated in defence against influenza, the role of the
complement regulator CD59a in modulating the response to influenza was explored.
For this purpose, immune responses to influenza virus, strain E61-13-H17, in mice
deficient in the complement regulator protein CD59a (Cd59a™~ mice) were compared
to those in wild-type mice. The severity of lung inflammation was significantly
enhanced in the lungs of Cd59a™~ mice with increased numbers of infiltrating
neutrophils and CD4% T cells. When complement was inhibited using soluble
complement receptor 1, the frequency of lung-infiltrating neutrophils in influenza-
infected Cd59a™~ mice was much reduced whilst numbers of CD4" T cells remained
unchanged. These results demonstrate that CD59a, previously defined as a complement
regulator, modulates both the innate and adaptive immune response to influenza virus
by both complement-dependent and -independent mechanisms.
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Introduction

Influenza virus infection represents a major health
problem, causing high morbidity and mortality world-
wide. Studies of mouse models have revealed that the
pathology resulting from influenza infection reflects
both direct virus-induced damage as well as indirect
effects of the immune response stimulated following
infection. Cells of the innate and adaptive immune
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system have been implicated in virus-induced lung
pathology and the extent of cellular infiltration,
including neutrophils, eosinophils and T cells, has been
shown to correlate with the degree of lung damage
[1-5]. These cells migrate to the lungs, leading to
disruption and occlusion of airways [3, 5, 6]. Release of
pro-inflammatory cytokines and chemokines by both
infected and immune cells further promotes influenza-
induced pathology through direct effects on lung tissue
and by further recruitment of inflammatory cells and
T cells to the site of infection [7-10]. The involvement of
the immune system in lung pathology is also corrobo-
rated by histological studies of lung biopsies of humans
with influenza pneumonia, which revealed the presence
of lymphocytic infiltrates in the injured tissue [11].
The complement system bridges both innate and
adaptive immunity and promotes migration of immune
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cells into lungs. Administration of cobra venom factor, a
potent activator of the complement system, has been
used to induce lung injury in a mouse model.
Complement activation products, generated as conse-
quence of systemic complement activation by cobra
venom factor, caused neutrophil migration and seques-
tration in lungs [12, 13]. Moreover, complement is
known to influence both virus-specific immune re-
sponses in the lung and lung injury [14-18]. In
particular, mice deficient in complement component
C3, the lynchpin of the complement cascade, display
reduced influenza virus-specific T cell responses in
infected lungs, implying that complement activation
plays an important role in T cell activation and/or
recruitment [12]. Collectively, these studies imply that
activation of the complement system markedly influ-
ences the extent of cellular infiltration into the lungs of
influenza-infected mice and, as a consequence, the
degree of lung damage.

We reasoned that defects in complement regulation
would also influence the clinical course of influenza
infection by permitting enhanced complement activa-
tion. In order to test this hypothesis, wild-type (WT)
mice and mice lacking CD59a, the membrane regulator
of complement membrane attack complex (MAC)
formation, were infected with influenza virus. A
comparison of the degree of cellular infiltration into
the lungs of both mouse groups revealed an enhanced
infiltration of neutrophils, CD4"* T cells and CD4/CD8
double-positive (DP) cells in the lungs of the Cd59a™~
mice. This was accompanied by an increase in lung
pathology, observed by histology, in the mice lacking
Cd59a. Thus, our results demonstrate that clinical
disease following influenza infection is enhanced in
the absence of CD59a, and that severity correlated with
the infiltration of neutrophils and CD4 " T cells into the
lungs of the infected mice. Analysis of the role of
complement in the enhanced injury and inflammation in
the lungs of influenza-infected Cd59a~~ mice revealed
that increased neutrophil infiltration was dependent on
complement activation whilst enhancement of the CD4*
T cell response was complement-independent. These
results demonstrate that CD59a modulates the immune
response to influenza virus by both complement-
dependent and -independent mechanisms.

Results

Cd59a™" mice exhibit increased lung pathology
compared to WT mice

Experimental influenza infection results in significant
lung injury that can be detected by histological study of

infected lungs. Cd59a”~ and WT mice were infected
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with influenza virus (H17, H3N2) [19] intranasally (i.n.)
and lungs were evaluated 8 days post-infection by
analysing H&E-stained sections of influenza-infected
lungs. Stringent scoring of histological sections was
performed by two independent investigators blinded to
the various treatment regimes and mice used. Influenza-
infected WT mice showed a moderate increase in
leukocyte infiltration compared to uninfected mice
(representative sections in Fig. 1A-C). There was no
significant difference in lung pathology between naive
WT and Cd59a”~ mice. In contrast, Cd59a”~ mice
showed pronounced and significant elevation in all
parameters indicative of pulmonary injury resulting
from influenza infection, namely, the degree of
haemorrhage, interstitial leukocyte infiltration and
perivascular lymphoid aggregation (Table 1). Interest-
ingly, mild fibrosis was also noted in the Cd59a™~ mice
but was absent in all WT mice (data not shown).

Despite clear histological evidence of increased lung
_/_

pathology in Cd59a™" compared to WT mice, no obvious
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Figure 1. (A-C) Histological analysis of lung sections taken
from Cd59a”, WT and age-matched WT controls. Lung
histology (H&E stain) demonstrating pulmonary injury 8 days
after infection with influenza virus (n=9/group). Representative
views of mouse lungs (x20 original magnification) from WT (A)
or Cd59a”" (B) mice infected with influenza are shown. A
representative section from an uninfected WT control (C) is
also included. In Cd59a”~ mice there is mild hyperplasia of
alveolar type-II cells and an extensive infiltrate of mono-
nuclear cells into the interstitium (arrows). The alveolar walls
contained dilated capillaries filled with RBC, with mild fibrotic
changes (f) and perivascular lymphocytic infiltrates (g). In the
healthy lung (C), the alveoli (a), alveolar septa (s) and alveolar
duct (d) are marked for comparison. (D) Mice on the Balb/c
background were infected with influenza virus and weight was
monitored daily. Results represent mean values + SEM of five
mice per group. Statistical significance was evaluated using the
Student's t-test. p value was <0.02 at all time points measured
after infection.
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physical symptoms of influenza infection were observed
in either group. Since Balb/c mice are more likely to
develop clinical symptoms than C57BL/6 (B6) mice
following infection with the same dose of influenza virus
(T. Hussell, personal communication), we also investi-
gated the effect of CD59a on the outcome of influenza
virus infection in Balb/c mice. For this purpose, Balb/c

Table 1. Histological Analyses of Influenza-Infected Lungs
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WT and Balb/c.Cd59a™~ mice (the latter kindly
provided by Professor Marina Botto, Imperial College,
London, UK) were infected with the same low dose of
influenza virus used to infect the B6 mice, and weight
loss was monitored daily. Infection resulted in rapid
weight loss in Balb/c.Cd59a™~ mice while body weight
in Balb/c.WT mice remained almost constant (Fig. 1D).

Haemorrhage®  Leukocyte infiltration® Perivascular lymphoid Fibrosis® Histological score”
aggregates®

WwWT
1 2.5+0.5 2.54+0.5 0 0 5+1
2 2.0+1.0 2.54+0.5 0 0 4.5+2.5
3 1.5+1.5 2.54+0.5 0 0 442
4 0.5+0.5 3.0+1.0 0 0 3.5+1.5
5 1.5+1.5 2.54+0.5 0 0 442
6 0 2+0 0 0 2+0
7 1.5+1.5 1.54+1.5 0 0 343
8 0 0 0 0 0
9 0.5+0.5 0 0 0 0.5+0.5
Mean+sem® 1.140.3 1.840.3 0 0 2.940.6
CD597~
1 1.0£1.0 2.54+0.5 0 0 3.5+0.5
2 3.0+0 5.0+0 2.0+0 0 10+0
3 3.0+0 5.0+0 2.5+0.5 0.5+0.5 11.5+0.5
4 3.0+0 4.0+1.0 1.5+1.5 0 8.5+2.5
5 3.0+0 5.0+0 3.0+0 0.5+0.5 11.5+0.5
6 3.0+0 4.0+0 0 0 7+0
7 3.5+0.5 4.0+0 2.0+2.0 0.5+0.5 10+3
8 3.0+0 3.5+1.5 1.0+0 0 7.5£1.5
Mean-+sem® 2.8+0.2* 4.0+0.3* 1.5+0.4* 0.2+0.1 8.6+0.8*
Naive
WwWT 0 0 0 0 0
CD597" 0 0 0 0 0

3 The severity of these parameters have been graded by two blinded observers

b Gumulative histological scores for each parameter for each CD597~ and WT are presented.

9 The sum of scores for these pathological indices comprised the histological score for each section (mean+sem). There was no
evidence of pathological change in either naive CD597~ and WT mice, each having a histological score of 0, respectively. No
necrosis or granuloma was observed in any of the sections assessed. * p<0.001 and ** p<0.005 (Mann Whitney U test).
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Enhanced neutrophil and CD4" T cell lung
infiltration in infected Cd59a™" mice

In order to compare cellular infiltrates in the lungs of WT
and Cd59a~~ mice on the B6 background, lungs were
harvested 3 and 8 days post-infection with influenza
virus, and the different cell types analysed by flow
cytometry. No difference was observed in the extent of
NK cell, macrophage and eosinophil recruitment
between the groups of mice (data not shown), but
higher numbers of neutrophils were observed in the
lungs of Cd59a~~ compared to WT mice (Fig. 2A).
Influenza infection of Balb/c.Cd59a™~ mice replicated
the previous findings with B6.Cd59a™~ mice in that the
degree of cellular infiltration was enhanced in mice
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Figure 2. Increased immune cell recruitment in the lungs of
influenza-infected Cd59a™~ mice. Cd59a~~ and WT mice (n=5/
group) were infected in. with influenza virus. Lungs were
harvested at the times indicated and lung-infiltrating neu-
trophils (A) CD8* (B) and CD4" T cells (C) were enumerated by
flow cytometry. Neutrophils were identified as SSC™&" CD11b*
Gr1Meh F4/80". Each symbol represents an individual mouse.
Means are represented in all graphs. Statistical significance
was evaluated using Student's t-test.
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deficient for CD59 compared to their WT counterpart
(data not shown).

Total numbers of lung-infiltrating lymphocytes were
analysed by flow cytometry at day 3, 8 and 12 post-
infection. Both Cd59a”~ and WT B6 mice showed a peak
of T cell infiltration at day 8 post-infection that
decreased significantly by day 12 (Fig. 2B, C). No
significant difference was observed in numbers of
lung-infiltrating CD8" T cells between the groups of
mice (Fig. 2B). The number of CD4™" T cells recovered
from the lungs at day 3 post-infection was strikingly
higher in Cd59a”~ compared to WT mice (Fig. 2C).
Similar results were observed at day 8 post-infection
and by day 12, numbers of CD4" T cells in lungs were
similar for both groups of mice. Similar results were
obtained using Balb/c.Cd59a™~ mice when compared to
the relevant controls (data not shown). The total
numbers of infiltrating cells in Balb/c.Cd59a™~ mice
were greater than in B6.Cd59a~~ mice, correlating with
the more pronounced clinical symptoms observed in this
strain.

CD4/CD8 double-positive cells in the lungs of
infected mice

Phenotypic analyses of the cells infiltrating the lungs of
influenza-infected mice revealed a large population of
CD4/CD8 DP lymphocytes (Fig. 3A). These cells were
analysed by two-colour flow cytometry at day 3 and 8
post-infection. At 3 days post-infection (Fig. 3B), CD4/
CD8 DP cells were observed in the lungs of both WT and
Cd59a~~ B6 mice but significantly higher percentages
were observed in Cd59a”~ mice. No DP cells were
observed in either group by day 8 post-infection (data
not shown). The percentages of the DP cells varied
between 1% and almost 80% in Cd59a~~ mice but did
not exceed 40% in WT mice. CD4/CD8 DP cells were
also found in the draining lymph nodes of Cd59a~~ mice
but not in the draining lymph nodes of WT mice
(Fig. 30).

CD4/CD8 DP cells are present in the thymus where
they differentiate into either CD4 or CD8 single-positive
cells before emigrating into the periphery. By staining
with a panel of antibodies, we found that the DP cells in
the lungs and lymph nodes of influenza-infected mice
resembled those found in the thymus (TCR™™
CD4intermediate cpghigh cp25'°Y CD62L'") (data not
shown).

To explore the possibility that the DP cells were
immature thymocytes that had emigrated prematurely
from the thymus in response to virus infection, mice
were thymectomized, infected 2 wk later with influenza
virus and lungs harvested 3 days post-infection. The
experiment was performed in Cd59a™ ™ mice due to the
higher number of CD4/CD8 DP cells recruited in lungs
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Figure 3. Increased frequency of CD4/CD8 DP cells in Cd59a~~ mice. Mice were infected with influenza virus and the number of
infiltrating CD4/CD8 DP cells analysed. A representative dot plot of CD4/CD8 expression is shown in (A). Three days post-infection,

lungs (B) and LN (C) were harvested and analysed for the presence of CD4/CD8 DP cells enumerated by flow cytometry. Cd59a

/-

mice were thymectomized and, after 2 wk, mice were infected with influenza virus. Presence of CD4/CD8 DP cells was analysed in
lungs 3 days after infection (B). Non-thymectomized mice were used as controls. Each symbol represents an individual mouse
(n=6/group). Means are indicated in all graphs. Statistical significance was evaluated by Student's t-test.

after influenza infection. Whilst CD4/CD8 DP cells were
found in 70% of control Cd59a~~ mice, none were found
in any of the thymectomized mice, confirming a thymic
origin for the DP cells (Fig. 3B). The functional
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Figure 4. Cd59a~~ mice exhibited increased CD4* T cell activity
following influenza infection. (A) Cd59a™~ and WT mice (n=6/
group) were infected i.n. with influenza virus. Lungs were
harvested and homogenates were stimulated with PMA/
ionomycin for 4 h. CD4" IFN-y-producing T cells were en-
umerated by flow cytometry. Each symbol represents an
individual mouse. Means are represented in all graphs. (B)
After 8, 12 and 42 days, CD4" T cells were purified from
splenocytes and stimulated with APC loaded with UV-inacti-
vated virus. Influenza-specific proliferation was detected by
[*H]thymidine incorporation at day 6. Stimulation index (SI)
was calculated by dividing specific cpm by the background.
Mice were analysed individually and values shown are the
mean + SEM (n=3/group). The results are representative of two
independent experiments. Statistical significance was evalu-
ated using Student's t-test.
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significance of these DP cells remains unclear since
we found that the cells were unable to produce IL-4 or
IFN-y after stimulation with PMA and ionomycin (data
not shown). The DP cells may not participate in the anti-
influenza immune response and their presence in the
lung may simply be a consequence of an inflammatory
process occurring in the vicinity of the thymus.

Enhanced influenza-specific CD4" T cell activity
in Cd59a™" mice

As shown in Fig. 2C, an increased frequency of single-
positive CD4" T cells was observed in the lungs of
influenza-infected Cd59a~~ compared to WT B6 mice.
In order to study the function of these cells, intracellular
cytokine staining was performed to assess IFN-y
production by the lung-infiltrating CD4" T cells in
Cd59a”~ and WT mice. IFN-y-producing cells were
mainly detected at day 8 post-infection and the number
was significantly higher in Cd59a™~ compared to WT
mice (Fig. 4A). To determine whether the increase in the
number of CD4" T cells in the lungs of Cd59a”~ mice
was due to an increase in the activity of antigen-specific
T cells, influenza-specific CD4™ T cell proliferation was
examined. Cd59a~~ and WT mice were infected with
influenza virus, and CD4 " T cells purified from spleens
at day 8, 12 and 42 after infection. Influenza-specific
proliferation of CD4™ T cells was significantly increased
in Cd59a~~ compared to WT mice at all time points
tested (Fig. 4).

Role of complement in enhanced lung infiltration
in Cd59a™" mice

CD59a expression was previously described in the
alveoli and the bronchial epithelium in mouse lungs
[20]. The absence of CD59a in the Cd59a™~ mice has
been associated with increased complement activation

www.eji-journal.eu
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and MAC deposition in several diseases [21, 22].
Staining for MAC in B6 mice infected with influenza
virus revealed a more extensive deposition of MAC along
the respiratory airways of CD59a~~ compared to WT
mice (Fig. 5A). In order to assess the effect of
complement activation on cellular infiltration into the
lungs of WT and Cd59a~~ mice, complement was
inhibited by daily injection of sCR1 (i.v.) for the first
3 days of influenza infection as previously described
[23]. After 3 days, lungs were harvested and total
numbers of infiltrating cells analysed by flow cytometry.
No change in numbers of CD8" T cells, NK cells,
macrophages or eosinophils was observed in Cd59a™~
mice after sCR1 administration, whereas the number of
neutrophils infiltrating in the lungs of these mice was
significantly reduced and was not different from levels
found in infected WT mice after complement inhibition
(Fig. 5B). In contrast, numbers of infiltrating CD4™"
T cells remained unchanged after sCR1 administration,
indicating that modulation of the CD4™ T cell response
by CD59a in experimental influenza infection is
complement-independent (Fig. 5C).

Discussion

The immune response to influenza virus represents a
double-edged sword; mounting an adequate response is
crucial for virus clearance, but over-exuberant recruit-
ment of immune cells into the lung can result in tissue
damage [6, 24]. Indeed, the extent of the innate and
adaptive immune response to influenza virus infection
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Figure 5. Enhanced influenza-induced lung inflammation in Cd59a™~
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in experimental mouse models correlates with the
extent of lung injury, weight loss and mortality.
Complement bridges both the innate and adaptive
immune systems, is known to cause activation and
migration of leukocytes, and has been implicated in
defence against influenza [14]. Roles of complement
regulators in modulating the response to influenza have
not previously been explored.

Here we analysed whether the complement regulator
CD59a influences the immune response to influenza
virus. Histological studies of lung sections revealed
increased lung injury in influenza-infected mice lacking
CD59a. This was accompanied by an enhanced infiltra-
tion of neutrophils and lymphocytes into the lungs of
infected mice that may contribute to lung injury through
direct cytotoxicity and/or the release of immune
mediators that further amplify the inflammatory
infiltrate [12, 25, 26]. A parallel study in Balb/c mice
indicated that Balb/c mice lacking CD59a showed
increased disease, monitored by cellular infiltration of
the lungs and weight loss following infection, when
compared with WT Balb/c controls.

In order to establish the role of complement, we
treated Cd59a”~ and WT mice with the soluble
complement inhibitor sCR1 over the course of infection.
Treatment with sCR1 did not significantly alter influ-
enza-induced neutrophil infiltration in WT mice but
markedly reduced neutrophil influx in Cd59a~ mice,
reaching levels similar to those found in WT mice. These
findings show that the augmented neutrophil response
in Cd59a”~ mice was due to enhanced complement
activation. Absence of CD59a, by rendering cells more
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mice is mediated by complement-dependent and

-independent mechanisms. (A) MAC deposition was analysed by C9 staining on lung sections. Representative views of mouse
lungs (x40 original magnification) from WT (top) or Cd59a~" (bottom) mice infected with influenza are shown. Arrowheads
indicate lung airway epithelium staining. (B, C) Complement was inhibited in vivo by administration of sCR1 (i.v.) daily and mice
were infected with influenza virus. After 3 days, lungs were harvested and total numbers of lung-infiltrating neutrophils (B) and
CD4" T cells (C) were determined by flow cytometry. Each symbol represents an individual mouse (n=5/group). Means are
represented in all graphs. Statistical significance was evaluated using Student's t-test.
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susceptible to MAC-mediated damage or killing, might
indirectly cause enhanced local complement activation
and generation of complement activation products such
as the anaphylatoxins C3a and C5a. Both C3a and C5a
have been shown previously to act as chemoattractants
for neutrophils and may be responsible for directing the
migration of neutrophils into influenza-infected lungs
([27], reviewed in [28]). In addition, it has been
demonstrated that MAC formation can indirectly
influence the recruitment of inflammatory cells. For
example, deposition of sub-lytic amounts of MAC on
human endothelial cells in vitro promotes production of
IL-8 and MCP-1, chemokines for neutrophils and
monocytes, respectively [29, 30]. Inhibition of comple-
ment had no effect on neutrophil numbers in WT mice,
probably due to the efficient natural regulation of
complement activation in these mice.

Higher numbers of lung-infiltrating CD4" T cells
were observed in influenza virus-infected Cd59a™~ mice
compared to WT mice on days 3 and 8 post-infection,
but by day 12 this difference no longer existed. CD4™"
T cells from both groups of mice produced equal
amounts of IFN-y on a per cell basis, but the greatly
increased numbers of lung-infiltrating CD4" T cells in
Cd59a~~ mice resulted in higher total levels of the
cytokine, which is known to have direct anti-viral effects,
at the site of virus replication. Mice were infected with
low doses of the H17 virus and virus levels were
undetectable in Cd59a~~ and WT mice at day 8, a time
point described as the peak of infection [31, 32],
indicating that both groups of mice efficiently controlled
the virus.

Since it has previously been reported that comple-
ment activation promotes the activity of influenza-
specific T cells in the lungs, it was possible that the effect
of CD5%9a on T cell activity was an indirect effect
attributable to increased complement activation [14, 33,
34]. However, inhibition of complement activity using
sCR1 did not alter the enhancement of CD4" T cell
responses observed in the Cd59a™~ mice, indicating that
the effect of CD59a deficiency on CD4™ T cell activity
was complement-independent. These data support our
previous finding from studies of vaccinia virus infection
that CD59a expression down-modulates the activity of
anti-viral CD4" T cells in a complement-independent
manner [23, 35]. The precise mechanism through which
CD59a down-modulates T cell activity is not yet known
but evidence suggests that a negative signal is delivered
to the T cell as a result of CD59a binding to an as yet
unidentified ligand on APC [23, 35].

Analysis of cells infiltrating the lungs of influenza-
infected WT and Cd59a~~ mice revealed a population of
CD4/CD8 DP cells appearing early in the course of
infection. Higher numbers were observed in the lungs of
Cd59a™" mice compared to WT mice, and DP cells were

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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found in the draining lymph nodes only in Cd59a™~
mice. Phenotypic examination indicated that these cells
resembled immature DP T cells isolated from thymus.
Thymic origin was confirmed by showing that DP cells
were not found in mice thymectomised prior to
influenza infection. CD4/CD8 DP cells have been found
previously in mice infected with influenza virus in the
NIH/S mouse strain. These cells were found in the lung
within days of infection, and were CD4ntermediate
CD8M8M DP cells that did not express TCR and did not
produce IFN-y upon stimulation [36]. These findings
correlate with our findings and suggest that these cells
play no role in anti-viral immunity and do not impinge
upon the course of infection or pathology. The increased
incidence of DP cells in influenza-infected Cd59a™~
mice compared to WT mice is most likely a consequence
of the more profound inflammatory response to
influenza virus observed in these mice.

Overall, the results of experiments described in this
study indicate that influenza-induced immunopathol-
ogy is exacerbated in mice lacking CD59a. Increased
pathology correlated with higher numbers of lung-
infiltrating neutrophils and CD4* T cells. Whilst a robust
immune response is clearly critical for virus clearance
and survival of the host, it is also important that the
immune system is kept in check since over-exuberant
immune responses can result in deleterious effects on
the host leading to increased morbidity and mortality.
Our findings identify the complement regulator CD59a
as a regulator of the host response to influenza infection
both by impinging on complement-driven responses and
by directly down-modulating antiviral T cells. If human
CD59 is shown to have a similar role in modulating
human CD4" T cells it is possible that targeted use of
recombinant CD59 may be useful for limiting immuno-
pathology at sites of inflammation.

Materials and methods
Mice

B6 (H-2P) mice (WT) were obtained from Harlan (Oxford, UK).
B6.129-Cd59a™'BP™ (Cd59a~~) mice were generated as
previously described [37] and back-crossed onto the B6
background for eight generations. Cd59a™~ mice back-crossed
eight generations onto the Balb/c background were kindly
provided by Professor Marina Botto (Imperial College, London,
UK). Mice used in the experiments were approximately 6 wk
old and bred in isolators. During experimental procedures
mice were housed in Scantainers. All experiments were
performed in compliance with UK Home Office regulations.
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Antibodies and fluorescence staining

Anti-CD4-PerCPCy5.5, anti-CD8-Cy5 and anti-F4/80-Cy5 mAb
were purchased from Caltag Laboratories (Burlingame, CA).
Anti-IFN-y-FITC, anti-CD25-PE, anti-Grl-PerCPCy5.5, anti-
CD11c-APC, anti-CD11b-FITC, anti-NK1.1-PE and anti-B220-
FITC mAb were purchased from BD PharMingen (San Diego,
CA). Directly conjugated antibodies were utilized for cell
surface staining. Cells were incubated with 0.5 pg/mL of
antibody for 30 min before washing and re-suspension in FACS
buffer (PBS + 2% FCS + 2 mM EDTA). Intracellular cytokine
staining was performed by incubating lung-derived lympho-
cytes for 4 h at 37°C in the presence of ionomycin (1 pg/mL),
PMA (20 ng/mlL) and monensin (3 uM) (Sigma-Aldrich, St.
Louis, MO). Staining was performed according to the
manufacturer's instructions (BD PharMingen). In all cases,
cells were re-suspended in FACS buffer and analysed by flow
cytometry (FACSCalibur®; Beckton Dickinson, Mountain View,
CA).

Infection with influenza virus and determination of
anti-virus response

Recombinant influenza A virus strain E61-13-H17 (H17,
H3N2) amplified in embryonated chicken eggs, was obtained
from the National Institute for Medical Research (London,
UK). The virus was titrated from allontoic fluid by performing a
haemagglutination assay as previously described [38]. Mice
were infected in. with 20 haemagglutination units of
Influenza virus H17 in 20 uL of PBS. Seroconversion was
confirmed by ELISA as described previously [38]. At day 3
and 8 after infection, mice were sacrificed and lungs perfused
with PBS. Lungs were harvested for virus titres, histology and
immunostaining, and spleens harvested for CTL and CD4"
T cell proliferation assays (day 8 post-infection). For cell
staining purposes, single-cell suspensions were prepared from
the lung tissue by mechanical disaggregation. In order to
measure memory anti-virus responses, spleens were harvested
approximately 6 wk after infection; then CTL and CD4 " T cell
proliferation assays were performed. In vivo complement
inhibition (>90% inhibition compared to control mice during
the experiment) was achieved by daily i.v. injections of mice
with 20 mg/kg of sCR1 (gift of T Cell Sciences) as previously
described [23]. Cell infiltration in lungs was analysed 3 days
post-infection.

Influenza virus-specific CD4" T cell proliferation

CD4™ T cells from single-cell suspensions of splenocytes were
purified by positive MACS MicroBead selection (Miltenyi
Biotec, Bergisch Gladbach, Germany) according to the
manufacturer's instructions. Influenza-specific CD4* T cell
proliferation assays were performed 8 and 42 days after
infection by incubating 10°> CD4 " Tcells with 6x10” irradiated
irradiated splenocytes previously incubated with UV-inacti-
vated virus. Cell proliferation was assessed by thymidine
incorporation or CFSE FACS analysis at day 6.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Immunity to infection

Histology

Lungs were perfused with PBS and fixed in Zinc fixative (0.1 M
Tris-HCI pH 7.4 with 0.05% Ca-acetate, 0.5% Zn-acetate and
0.5% Zn-chloride) [39]. The lungs were then embedded in
paraffin wax, sections (5 uM) were cut and stained with
hematoxylin and then counterstained with eosin (H&E). The
sections were graded subjectively using various parameters
indicative of pulmonary inflammation, namely evidence of
haemorrhage (0-3), the degree of interstitial leukocyte
infiltration (0-5), the extent of perivascular lymphoid
aggregate formation (0—4) and the presence of fibrotic lesions
(0-1). The sum of the scores for each parameter comprised the
histological score (0-13) for each animal. Two investigators,
who were blinded to the identity of each histological specimen,
scored each section.

For MAC deposition, lung paraffin sections were first
treated with H,0, to eliminate endogenous peroxidase
activity. Sections were subsequently treated with 10% normal
swine serum to reduce non-specific staining. Sections were
then incubated with rabbit anti-rat C9 IgG (manufactured in
our laboratory and cross-reactive with mouse C9 [40]) or
control rabbit IgG followed by biotinylated swine anti-rabbit
Ig. Antibody labelling was detected using a high-sensitivity
streptavidin-horseradish peroxidase conjugate and diamino-
benzidine as chromogen (Vector Laboratories, Burlingame,
CA).
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