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The discovery of antibiotics early in the past century marked the beginning of active control and
prevention of infectious microbial diseases. However, extensive use of antibiotics has also unavoidably
resulted in the emergence of ‘superbugs’ that resist conventional antibiotics. The finding that many
pathogens rely on cell-to-cell communication mechanisms, known as quorum sensing, to synchronize
microbial activities essential for infection and survival in the host suggests a promising disease control
strategy, i.e. quenching microbial quorum sensing or in short, quorum quenching. Work over the past
few years has demonstrated that quorum-quenching mechanisms are widely conserved in many
prokaryotic and eukaryotic organisms. These naturally occurring quorum-quenching mechanisms
appear to play important roles in microbe–microbe and pathogen–host interactions and have been used,
or served as lead compounds, in developing and formulating a new generation of antimicrobials.
Characterization of the crystal structures of several types of quorum-quenching enzymes has provided
valuable information to elucidate the catalytic mechanisms, as well as clues for future protein tailoring
and molecular improvement. The discovery of quorum-sensing signal degradation enzymes in
mammalian species represents a new milestone in quorum sensing and quorum quenching research.
The finding highlights the importance of investigating their roles in host innate defence against infectious
diseases and to determine the factors influencing their in vivo concentrations and catalytic activities.
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1. INTRODUCTION
Microbial pathogens, infecting humans, animals and

plants, cause tremendous economic and personal

losses. Until the establishment of germ theory and
identification of specific microbes as the causal agents

of a wide variety of infectious diseases, mankind

seemed helpless against these diseases. This landmark

finding ultimately led to the discovery and development

of vaccines and antibiotics (for a review, see Morens

et al. 2004). The invention of antibiotics in the 1920s

and subsequent developments have rewritten the

history of medicine, allowing treatment of infections
that were once widely fatal. However, the early

optimistic prediction of eradicating infectious diseases

has become non-sustainable, as many pathogens have

developed resistance to antibiotics. Infectious diseases

continue to be the leading causes of death and illness

worldwide (for reviews, see Livermore 2004; Morens

et al. 2004). The rapid emergence of ‘superbugs’ that

resist most commonly used antibiotics has emphasized
the need for the development of new antibiotics and

novel strategies against microbial pathogens (for reviews,

see Williams 2002; Livermore 2004).

Conventional antibiotics kill or stop bacterial growth

by interfering with essential housekeeping functions
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(e.g. DNA, RNA and protein synthesis), hence inevitably
imposing selection pressure that results in the emergence
of antibiotic-resistant microbial pathogens. The con-
cerns about resistance not only call for better use and
administration of conventional antibiotics, but also
prompt scientists to look for new disease control
strategies. At least in theory, any strategy that can
effectively stop pathogenic infection, but does not impose
a ‘life-or-death’ selection pressure, would be a promising
alternative to contain infectious diseases and may help to
prevent antibiotic resistance in microbial communities.
One such promising strategy is the recently demonstrated
quorum-quenching approach, also known as antipatho-
genic or signal interference, which abolishes bacterial
infection by interfering with microbial cell-to-cell
communication—also known as quorum sensing (for
reviews, see Hentzer & Givskov 2003; Zhang 2003;
Zhang & Dong 2004).

Why does quenching microbial quorum sensing hold
promises in infection control? This novel strategy results
from the realization that many single-celled microbial
organisms, including bacterial and fungal pathogens,
can communicate with each other and act collectively in
the regulation of infection-related traits, including
expression of virulence genes and production of biofilms.
The pathogens produce, detect and respond in a
population density-dependent manner to specific small
signal molecules, ranging from fatty acid derivatives to
oligopeptides and furanones (figure 1), thus synchroniz-
ing the expression of virulence genes among family
q 2007 The Royal Society
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Figure 1. Examples of microbial quorum-sensing signals. The information was summarized from the following references:
Hornby et al. (2001), Zhang & Dong (2004) and Waters & Bassler (2005). A range of AHL signals with variation in acyl chain
(nZ0, 1, 2, .; RZH, O or OH) have been identified in over 70 Gram-negative bacterial species.
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members (for reviews, see Whitehead et al. 2001;
Zhang & Dong 2004; Waters & Bassler 2005). Over a
short period of time, numerous quorum-quenching
phenomena have been observed, and the quorum-
quenching strategies have been tested with promising
results. This review focuses on the principle of quorum
quenching, molecular aspects of quorum quenching, the
potential implications of quorum quenching in microbe–
microbe and pathogen–host interactions and the intri-
guing possibility of using quorum quenching to control
and prevent infectious diseases.
Phil. Trans. R. Soc. B (2007)
2. THE GENERAL MECHANISMS AND KEY
COMPONENTS OF QUORUM SENSING
An understanding of the molecular mechanisms and
the key components of quorum sensing is important for
designing and developing effective quorum-quenching
strategies. Different bacterial species may produce
different types of quorum-sensing signals (figure 1),
but they appear to adopt only two general mechanisms
for detecting and responding to these signals. One
general mechanism is represented by acylhomoserine
lactone (AHL)-dependent quorum-sensing systems, in
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Figure 2. Two general mechanisms of microbial quorum sensing. (a) Signal detection by a cytosolic transcription factor,
represented by the AHL-type quorum-sensing system. The signals produced by a LuxI-type protein (I) accumulate in
intercellular environment, transport into cytosol, bind to LuxR-type transcription factors (R), and initiate expression of the
target genes (indicated by dashed lines). (b) Signal detection by a two-component sensor and response regulator pair,
represented by the AIP-type quorum-sensing system. Precursor peptides (PP) are modified and the resulting AIP signals
exported by an ABC transporter (T). The signals are detected by the sensor histidine kinase (S), transduced to the cognate
response regulator (RR) by phosphorylation relay (P), which modulates the target gene expression.

Table 1. General steps and key components of AHL-type quorum-sensing systems.

quorum-sensing
process key component

prospective quorum-quenching
strategy

low-population
density

(1) basal signal generation proteins and enzymes involved in
biosynthesis of acyl chain and
S-adenosylmethionine (SAM);
LuxI-type (I) protein

fatty acid biosynthesis inhibitor;
SAM biosynthesis inhibitor;
I protein inhibitor

(2) signal accumulation proteins involved in long-chain
signal active efflux

AHL signal degradation enzyme;
active efflux inhibitor

high-population
density

(3) signal reception LuxR-type (R) transcription
factor; putative influx system
for long-chain AHL signal?

R protein inhibitor; influx
inhibitor?

(4) autoinduction and activation
of quorum-sensing regulon

R and I proteins involved in
boosted AHL signal pro-
duction; quorum-sensing-
dependent transcription factors

AHL signal degradation enzyme;
inhibitors for I and R proteins

(5) signal decay AHL degradation enzyme and its
regulatory mechanisms

chemical inducing early
expression of AHL degradation
enzyme
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which the quorum-sensing signal is detected by a

cytosolic transcription factor (figure 2a). In the other

mechanism, the quorum-sensing signal such as the

autoinducing peptide (AIP) produced by Staphylococcus
aureus, is detected by a membrane-associated two-

component response regulatory system (figure 2b).
Most of the bacteria seem to use one or other of the

above quorum-sensing systems in modulating the target

gene expression, but there are also pathogens that recruit

the two quorum-sensing mechanisms for the same

purpose; for example, Vibrio harveyi (for a review, see

Waters & Bassler 2005).
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AHL-mediated quorum sensing is one of the best

characterized cell-to-cell communication mechanisms.

More than 70 bacterial species are known to produce

AHL-type quorum-sensing signals (Williams et al.
2007). Among them many are pathogens; for example,

the agriculturally important Agrobacterium tumefaciens
(Piper et al. 1993; Zhang et al. 1993) and Erwinia
carotovora (Pirhonen et al. 1993), and the medically

important Pseudomonas aeruginosa (Passador et al.
1993) and Burkholderia species (Ulrich 2004; Valade

et al. 2004). As illustrated in table 1, the AHL-type

quorum-sensing process can be arbitrarily divided into
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several key steps: (i) basal level signal generation, (ii)
signal accumulation, (iii) signal reception, (iv) signal
autoinduction and activation of the target genes, and
(v) signal decay. While steps (i)–(iv) seem to be the
more or less conserved features (for reviews, see
Whitehead et al. 2001; Zhang 2003), step (v) has so
far been reported only in A. tumefaciens (Zhang et al.
2002, 2004).

At step (i), bacterial population density is low and each
cell produces a basal level of AHL signal. The AHL
molecules are synthesized by AHL synthase (I-protein)
encoded by luxI homologue using corresponding acyl
chain derived from the common fatty acid biosynthesis
pathway and S-adensylmethionine (figure 3a; Moré et al.
1996; Schaefer et al. 1996). At this stage, LuxR-type
transcription factor (R-protein) may not be required, as
knocking out the luxR homologue does not affect the
basal production of AHL signals (Marketon et al. 2002).
At step (ii), the short-chain AHL signals are able to
diffuse passively across bacterial membranes (Pearson
et al. 1999; Dong et al. 2005),whereas efflux of long-chain
AHL signals appears to rely on active transportation
mechanisms (Pearson et al. 1999; Chan & Chua 2005;
Dong et al. 2005). The multidrug efflux pump MexAB–
OprM was reported to be involved in active transport
of 3-oxo-C12 homoserine lactone (HSL) signal in
P. aeruginosa (Pearson et al. 1999). Mutation of the
MexGHI–OpmD efflux pump inP. aeruginosa drastically
reduces the production of AHL signals and virulence
factors (Aendekerk et al. 2002). Similarly, null mutation
of the efflux pump BpeAB–OprB in Burkholderia
pseudomallei significantly decreases AHL signal accumu-
lation in the medium (Chan & Chua 2005). In step (iii),
the R-protein and the AHL signals are the key players.
Binding of the cognate AHL signal to TraR, the
R-protein of A. tumefaciens prolongs the half-life of the
receptor-like transcription factor from a few minutes to
over 30 min (Zhu & Winans 1999). It was shown recently
that LasR, the R-protein of P. aeruginosa, also requires
AHL signals for correct folding (Schuster et al. 2004).
In addition, given that efflux of long-chain AHL signals
requires active transportation, it seems logical that an
active influx system may also exist—but this awaits
further investigations. In step (iv), the critical com-
ponents are the R-AHL complex, I-protein and also
probably the downstream transcription factors that
contribute to the control of quorum-sensing regulons.
The R-AHL complex, which is a dimer, binds to
conserved palindromic sequences of the quorum-
controlled promoters, including the promoter of the
luxI-type gene, and boosts AHL production (autoinduc-
tion) and expression of other genes in the quorum-
sensing regulon (Zhu & Winans 1999; Qin et al. 2000;
Schuster et al. 2004). In step (v), the key components are
an AHL-degradation enzyme and the cognate regulatory
transcription factor(s). The AHL-degradation enzymes
have been identified in several bacterial pathogens that
produce AHL signals, such as A. tumefaciens and
P. aeruginosa (Zhang et al. 2002; Huang et al. 2003).
The expression of AHL-lactonase, encoded by attM of
A. tumefaciens, is suppressed by negative transcription
factor AttJ at early growth stages, but is induced
specifically at the stationary phase (Zhang et al. 2002,
2004), and in the process of pathogen–host interactions
Phil. Trans. R. Soc. B (2007)
(Rosen et al. 2003), which degrades AHL signals and
switches off the quorum-sensing-dependent gene
expression (Zhang et al. 2002, 2004). However, the role
of the AHL-acylase encoded by pvdQ of P. aeruginosa
in signal decay has not yet been established (Huang
et al. 2003).

The two-component system, mediated quorum
sensing has been documented in both Gram-positive
and Gram-negative bacteria, and these have been
extensively reviewed recently (e.g. Novick 2003;
Waters & Bassler 2005). Briefly, in this type of
quorum-sensing system, the quorum-sensing signal,
such as the AIP signal produced by S. aureus, is
transported to the intercellular environment by an ABC
transporter. The accumulated signals are then detected
by a two-component sensor, which transfers the sensory
information to its cognate response regulator (figure 2b).
The activated response regulator modulates the
expression of quorum-sensing regulon through
regulatory RNAs and intracellular transcription factors
(for a review, see Novick 2003). As with the AHL-type
quorum-sensing system (table 1), the AIP-type quorum-
sensing process can also be divided into steps (i)–(iv), i.e.
basal level signal generation, signal accumulation, signal
reception, and signal autoinduction and activation of
quorum-sensing regulon. However, it is not clear
whether the last step, signal decay, exists or not in the
AIP-type quorum-sensing system.
3. PROSPECTIVE AND DEMONSTRATED
QUORUM-QUENCHING STRATEGIES
In theory, any mechanism that can effectively interfere
with any one of the key processes in quorum sensing,
for example those listed in table 1, could be potentially
used for quenching quorum sensing and preventing
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microbial infections. In the past few years, several
groups of potent quorum-quenching chemicals and
enzymes have been identified, including the halogen-
ated furanone compounds produced by the seaweed
Delisea pulchra and the synthetic derivatives that target
R proteins (Givskov et al. 1996; Hentzer et al. 2003),
the synthetic AHL and the AIP analogues that may
compete with the corresponding quorum-sensing
signals (Lyon et al. 2000; Smith et al. 2003), and the
quorum-quenching enzymes, including AHL-lactonase,
AHL-acylase and paraoxonases (PONs), which degrade
AHL signals (figure 3b; Dong et al. 2000; Lin et al. 2003;
Draganov et al. 2005; Ozer et al. 2005; Yang et al. 2005).
Given that research in quorum sensing and quorum
quenching has been progressing so rapidly in recent
years, no one may doubt that more novel quorum-
quenching mechanisms will be unveiled in future.

(a) Mechanisms of small quorum-sensing

inhibitors

The known small chemicals that inhibit quorum sensing
can be roughly grouped into two categories according to
their structures and functions. One group is the
structural mimics of quorum-sensing signals, such as
the halogenated furanones and the synthetic AIPs that
are similar to AHL and AIP signals, respectively (Lyon
et al. 2000; Hentzer et al. 2003). Evidence shows that
these inhibitors act by interfering with the correspond-
ing signal binding to the receptor (Lyon et al. 2000) or
decreasing the receptor concentration (Manefield et al.
2002). The other group of small chemicals is the enzyme
inhibitors. For example, triclosan inhibits enoyl-ACP
reductase whose product is the essential intermediate in
AHL biosynthesis (figure 3a; Hoang & Schweizer 1999),
and closantel is a potent inhibitor of histidine kinase
sensor of the two-component system (Stephenson et al.
2000). Several recent reviews (e.g. Hentzer & Givskov
2003; Zhang & Dong 2004), as well as Bjarnsholt &
Givskov (2007), have provided detailed discussions on
the molecular mechanisms and potential impacts of these
small quorum-sensing inhibitors.

(b) Mechanisms of AHL-lactonase

AHL-lactonases, which hydrolyse the homoserine
lactone ring of AHL signals (figure 3b), have now
been identified from a range of bacterial species (for a
review, see Dong & Zhang 2005). The first AHL-
lactonase, encoded by the aiiA gene of a Bacillus sp.
isolate 240B1 (hereafter referred to as AiiA240B1), was
identified by functional cloning in Escherichia coli using
AHL signals as substrates. The enzyme was proposed
as a member of the metallo-hydrolase superfamily as it
contains a ‘His104-X-His106-X-Asp108-His109’ motif
that resembles the zinc-binding motif of several
metalloenzymes, including glyoxalase II, arylsulfatase
and b-lactamase (Dong et al. 2000). Site-directed
mutagenesis based on sequence alignment of the
AiiA homologues has established the motif ‘His106-
X-Asp108-His109K59X-His169-21X-Asp191’, which is
essential for the enzyme activity of AHL-lactonase
(Dong et al. 2000, 2002). The recent crystal structure
analysis of AHL-lactonase from Bacillus thuringiensis
subsp. kurstaki (hereafter referred to as AiiABTK) by
two independent research groups shows that the
Phil. Trans. R. Soc. B (2007)
enzyme contains two zinc ions in the active site (Kim
et al. 2005; Liu et al. 2005), which agrees with the
recent biochemical analysis that AHL-lactonase is a
metalloprotein (Thomas et al. 2005). The two zinc ions
are coordinated to a number of ligands, including
His104, His106, Asp108, His109, His169 and His235, as
well as a single oxygen of a bridging carboxylate from
Asp191 and a bridging water/hydroxide ion. All residues
directly involved in metal coordination are completely
conserved in all AHL-lactonases. The data of the
crystal structural analysis of AiiABTK are highly
consistent with the previous mutagenesis study on
AiiA240B1 (Dong et al. 2002). The only inconsistency is
that the substitution of His104 with serine was found to
be non-essential for the AiiA240B1 activity (Dong et al.
2000), but critical for AiiABTK based on structural
analysis and by substitution with alanine (Kim et al.
2005). We have confirmed recently that replacement of
His104 with alanine in AiiA240B1 basically abolished the
enzyme activity (L.-H. Wang & L.-H. Zhang 2006,
unpublished data). Therefore, it is unlike that, as
previously proposed, AiiA240B1 might not be a
metalloprotein (Wang et al. 2004), and the enzyme
could also contain zinc ions. It is also worth noting that
AiiA240B1 and AiiABTK share a high 90% amino acid
identity (Dong et al. 2000; Kim et al. 2005).

Crystal structure analysis of AHL-lactonase has
revealed a ab/ba sandwich-fold in overall structure with
two zinc ions in their active sites, located in a loop-rich
region on top of the ab/ba-fold (Kim et al. 2005; Liu
et al. 2005). Somewhat expectedly, these structural
features are remarkably similar to those of glyoxalase II
(Cameron et al. 1999) and RNase Z proteins (de la
Sierra-Gallay et al. 2005), members of the metallo-
b-lactamase superfamily, in despite of limited sequence
similarity. On the basis of the three-dimensional
structures of AHL-lactonase, with and without
L-homoserine lactone, and the suggested reaction
mechanism for binuclear metal-binding glyoxalase II
(Cameron et al. 1999) and RNase Z (de la Sierra-
Gallay et al. 2005), a catalytic mechanism of AHL-
lactonase has been proposed (Kim et al. 2005). A
nucleophilic water/hydroxide bridging the two Zn2C

ions attacks the substrate’s carbonyl carbon. The
lactone ring and carbonyl oxygen of AHL interact
with Zn1 and Zn2 ion, respectively, resulting in
enhanced polarization of the carbonyl bond, making
it more susceptible to a nucleophilic attack. The
nucleophilic attack on the substrate’s carbonyl carbon
results in formation of a negatively charged intermedi-
ate that may be stabilized primarily by the interactions
with Zn1 ion. The C–O bond of the lactone ring of
AHL then breaks toyield the ring-opened product; in this
process, Tyr194 may act as a general acid for protonation
of the leaving group.

In contrast to AHL-acylase and PON enzymes,
which have variable substrate spectra as discussed
below, AHL-lactonase is by far the most specific AHL-
degradation enzyme. It hydrolyses both short- and
long-chain AHL signals with similar efficiency, but
shows no or little residue activity to other chemicals,
including non-acyl lactones and aromatic carboxylic
acid esters (Wang et al. 2004). Further determination
of the crystal structure of AHL-lactonase/AHL
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complex would be essential to elucidate its intriguing
substrate specificity.

(c) Mechanisms of AHL-acylase

Several bacterial species, including Variovorax paradoxus,
aRalstonia isolate,P. aeruginosaPAO1, and aStreptomyces
sp. have been reported to encode AHL-acylase for
degradation of AHL signals by hydrolysing the amide
bond of AHLs and producing corresponding fatty
acids and homoserine lactone (figure 3b; Leadbetter &
Greenberg 2000; Huang et al. 2003; Lin et al. 2003; Park
et al. 2005). The three identified AHL-acylases, i.e. the
AiiD from Ralstonia sp. XJ12B (Lin et al. 2003), the
PvdQ from P. aeruginosa PAO1 (Huang et al. 2003) and
the AhlM from Streptomyces sp. (Park et al. 2005), share
many of the known characteristics of Ntn hydrolases,
including a signal peptide followed by an a subunit,
spacer sequence and b subunit (Hewitt et al. 2000).
However, there are also notable differences in the
substrate specificities among AHL-acylases. AiiD effec-
tively degrades long-chain AHLs and also short-chain
AHLs, albeit with less efficiency (Lin et al. 2003). PvdQ is
unable to degrade AHLs with acyl chains shorter than
eight carbons (Huang et al. 2003).Similarly, AhlM shows
only residue activity in degrading AHLs shorter than
eight carbons (Park et al. 2005). Furthermore, AiiD fails
to degrade penicillin G and ampicillin (Lin et al. 2003),
while AhlM is able to catalyse the hydrolysis of penicillin
G, suggesting a broader substrate specificity. These three
AHL-acylases are structurally similar to the cephalo-
sporin acylase (abbreviated hereafter as CAD) from
Pseudomonas diminuta (Lin et al. 2003; Park et al. 2005).
Crystal structure analysis of CAD reveals a side-chain
binding pocket, in which the residues Gln50 and Arg57

have been proposed as the key components determining
the substrate specificity (Kim et al. 2000). Even if the
catalytic activity of CAD on AHL signals has not been
demonstrated, sequence similarity between the CADand
the three AHL-acylases suggests that they may share a
similar three-dimensional structure. Interestingly,
sequence alignment of the three AHL-acylases with
CAD shows that these four acylases have different
residues in the two corresponding positions (Ile50 and
Ser57 in AiiD, Leu50 and Asp57 in PvdQ, and Leu50 and
Ser57 in AhlM). Further mutagenesis and crystal
structure analysis of these AHL-acylaseswould be critical
for elucidating the molecular mechanisms implicated in
substrate specificity and catalysis.

(d) Mechanisms of paraoxonase enzymes

Strong AHL inactivation activity was first observed in
human epithelial cells (Chun et al. 2004). Later, it was
found to be widely conserved in the sera of all six of the
tested mammalian species—human, rabbit, mouse,
horse, sheep and bovine (Yang et al. 2005). The
characteristics of these AHL inactivation enzyme(s),
such as dependence on Ca2C ion and lactonase-like
activity, are reminiscent of those of PONs (Ozer et al.
2005; Yang et al. 2005). PONs, including PON1, PON2
and PON3, exhibit a wide range of physiologically
important hydrolytic activities, including drug meta-
bolism and organophosphate detoxification (for reviews,
see Draganov & La Du 2004; Ng et al. 2005). The
quorum-quenching enzyme activity of PONs has been
Phil. Trans. R. Soc. B (2007)
demonstrated recently by three independent labora-
tories. The purified recombinant human PON2 effi-
ciently hydrolyses several tested AHL compounds
(Draganov et al. 2005). The recombinant animal CHO
cells expressing mouse PON1, PON2 and PON3,
respectively, display strong AHL degradation activity
(Yang et al. 2005). Hydrolytic activity of the PON1
purified from human serum against P. aeruginosa 3-oxo-
C12 HSL signal has also been demonstrated (Ozer et al.
2005). These PON enzymes seem to be most active with
long-chain AHL signals, such as 3-oxo-C12 HSL, but
less efficient with short-chain AHL signals (Chun et al.
2004; Yang et al. 2005). As is the case with AHL-
lactonase, PON enzymes also hydrolyse the homoserine
lactone ring of AHL signals (figure 3b).

Interestingly, although PON enzymes, particularly
PON1, are known to catalyse the hydrolysis of many
synthetic chemicals including organophosphate insecti-
cides,nerve agents, aromatic carboxylic acid esters, cyclic
carbonate esters, aromatic lactones and alkyl lactones
(Billecke et al. 2000; Draganov et al. 2005), the
physiological substrates for these proteins have not
been identified previously. Given that host–pathogen
interactions are ubiquitous, and that certain AHL signal
such as N-(3-oxodecanoyl)-L-homoserine lactone
(3-oxo-C12-HSL) produced by the human pathogen
P. aeruginosa have a demonstrated physiological role in
interference with host immune systems (Telford et al.
1998; Ritchie et al. 2003, 2005), the AHL quorum-
sensing signals can now be cited as the first index of
natural substrates of these fascinating PON enzymes.

The first crystal structure of a PON family member, a
variant of PON1 (designated as rePON1) obtained by
directed evolution, has been solved recently (Harel et al.
2004). PON1 is a six-bladed b-propeller with two Ca2C

ions in its central tunnel. One calcium atom lies at the
bottom of the active site and is postulated to play a role in
catalysis, while the inner calcium is largely buried and
appears to have a structural function. The catalytically
important Ca2C ion seems to interact with five amino
acid residues, i.e. Asn224, Asn270, Asn168, Asp269 and
Glu53, and one water molecule and one oxygen of a
phosphate ion. Based on the structural similarity to
secreted phospholipase A2 (Sekar et al. 1997), and the
pH-rate profiles of rePON1 using 2-naphthyl acetate and
paraoxon as substrates, a catalytic pathway has been
proposed (Harel et al. 2004). The reaction first step
involves deprotonation of a water molecule by the
His115–His134 dyad to generate a hydroxide anion,
followed by a nucleophilic attack at the ester carbonyl
centre of the substrates that results in production of an
oxyanionic intermediate. The negative charge of the
resulting intermediates is probably stabilized by the
catalytic calcium. In the reaction last step, the C–O bond
of the ester intermediate breaks down.

Amazingly, PON1 is able to hydrolyse a wide range
of substrates and shows at least three types of enzyme
activity, i.e. organophosphatase, arylesterase and
lactonase (Billecke et al. 2000; Draganov et al. 2005).
The chemical structures of these substrates are so
different that one may question whether the enzyme
uses the same mechanism for catalysis. The crystal
structure analysis has, however, revealed only one
active site. Moreover, the essential role of the newly



Table 2. Examples of quorum-quenching molecules against microbial infections.

quorum-quenching molecules host effect reference

AHL-lactonase aiiA Erwinia carotovora decreases extracellular pectolytic enzyme
activities, and attenuates soft rot symptom on
the plants inoculated

Dong et al. (2000)

tobacco, potato transgenic plants are resistant to E. carotovora
infection

Dong et al. (2001)

Pseudomonas
aeruginosa

decreases production of elastase, rhamnolipids,
hydrogen cyanide and pyocyanin, and
inhibits bacterial swarming

Reimmann et al. (2002)

Escherichia coli attenuates the pathogenicity of E. carotovora
when co-inoculated

Lee et al. (2002)

Bacillus thuringiensis the efficiency of biocontrol against E. carotovora
infection is dependent on AHL-lactonase

Dong et al. (2004)

Burkholderia
thailandensis

reduces the bacterial swarming and twitching
motility, prevents the b-haemolysis of sheep
erythrocytes

Ulrich (2004)

Erwinia amylovora impairs extracellular polysaccharide production
and tolerance to hydrogen peroxide, and
reduces the fire blight symptom on apple
leaves

Molina et al. (2005)

attM, aiiB Erwinia carotovora
subsp. Atroseptica

decreases maceration in potato tubers Carlier et al. (2003)

paraoxonase PON1 P. aeruginosa the serum containing PON1 prevents bacterial
biofilm formation in vitro

Ozer et al. (2005)

AHL-acylase aiiD P. aeruginosa decreases swarming ability, elastase and pyo-
cyanin production, and attenuates nematode
paralysation

Lin et al. (2003)

synthetic AIP-II mouse treated mice show resistance to S. aureus
infection

Mayville et al. (1999)

3-oxo-C12-(2-
aminocyclohexanone)

P. aeruginosa reduces the production of virulence factors and
biofilm formation

Smith et al. (2003)

furanone mouse attenuates the virulence of P. aeruginosa in
mouse models

Hentzer et al. (2003)

DSF Candida albicans inhibits the fungal dimorphic transition that is
associated with virulence

Wang et al. (2004)
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identified His115–His134 dyad in enzyme activity has

been confirmed by site-directed mutagenesis and assay

using two classes of substrates, phenyl acetate and

paraoxon (Harel et al. 2004). These structural features

and the findings from the mutagenesis study described

above suggest that PON1 may also rely on the same

catalytic mechanisms in hydrolysis of AHL signals.

PON1 and the other two members, PON2 and

PON3, share about 60% homology at the peptide level.

By sequence alignment, we found that all the important

residues, including Glu53, His115, His134, Asn168,

Asn224, Asp269 and Asn270, are perfectly conserved in

the three PONs, indicating that these enzymes most

probably share the same catalytic mechanism. These

three enzymes share overlapping substrates, but also

display distinct substrate specificities (Draganov et al.
2005). Future investigations may reveal the intriguing

mechanisms of these enzymes that determine substrate

specificity. More importantly, several polymorphisms

have been detected in the coding region of PON1 and

some of the amino acid variations showed significant

influence on the enzyme activity on synthetic substrates

(for reviews, see Deakin & James 2004; Ng et al. 2005).

It remains to be determined whether these variations

could also affect the catalytic activity of PONs against

AHL signals.
Phil. Trans. R. Soc. B (2007)
4. QUORUM QUENCHING IN BASIC RESEARCH
AND BIOTECHNOLOGICAL APPLICATIONS

Quorum-quenching molecules have proved to be

valuable tools in addressing both the basic and the

conceptional questions (table 2). Skin lesions on

inoculated mice were reduced when AIP-II, the

group-specific cell-to-cell communication signal pro-

duced by group-II S. aureus, was included in the

inoculum mixture of group-I S. aureus bacterial cells

(Mayville et al. 1999). The experiment identified the

key structural features of the signals involved in

activation and antagonism, and led to the design of a

global inhibitor of the virulence response in S. aureus
(Lyon et al. 2000). Since the discovery of the first

quorum-quenching enzyme encoded by aiiA (Dong

et al. 2000), the prokaryotic-origin AHL-lactonases

and AHL-acylases have been frequently used in

investigations of the role of AHL signals owing to the

convenience in cloning and expression (table 2). More

recently, the importance of AHL quorum-sensing

signalling in the regulation of virulence and other

physiological functions in Burkholderia thailandensis
and Erwinia amylovora has been demonstrated by

expression of the AHL-lactonases encoded by the

aiiA homologues in these two pathogens, respectively

(table 2; Ulrich 2004; Molina et al. 2005).
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The quorum-quenching enzymes, along with other
small naturally quorum-sensing inhibitors and synthetic
derivatives, have been explored and evaluated as novel
antimicrobial agents against different pathogens with
promising results (table 2). Expression of AiiA in
transgenic potato and tobacco plants conferred strong
resistance to the bacterial pathogen E. carotovora, which
required AHL quorum-sensing signals to activate the
expression of virulence genes (Dong et al. 2001).
Similarly, natural or recombinant AHL-lactonase-
producing bacterial strains, including B. thuringiensis,
Arthrobacter sp. and Pseudomonas fluorescens, protected
potato from E. carotovora infection when co-inoculated
with the pathogen (Molina et al. 2003; Park et al. 2003;
Dong et al. 2004). Treatment of mice with synthetic
furanones, the derivatives of the natural furanones
produced by the seaweed D. pulchra, significantly
decreased the cell number of P. aeruginosa in the infected
lung tissues and the disease symptoms (Hentzer et al.
2003; Wu et al. 2004).
5. IMPLICATIONS OF QUORUM QUENCHING
IN HOST DEFENCE
The intriguing findings that the PONs from human and
other mammalian species have high catalytic activities
against long-chain AHL signals suggest that these
quorum-quenching enzymes could be active com-
ponents of mammalian innate immune systems (Chun
et al. 2004; Draganov et al. 2005; Ozer et al. 2005; Yang
et al. 2005). However, somewhat unexpectedly, Pon1-
knockout mice are protected from infection by quorum-
sensing-dependent P. aeruginosa pathogen cells that
were introduced intraperitoneally; in sharp contrast,
wild-type mice show a high percentage of mortality
(Ozer et al. 2005). Subsequent analysis showed that the
transcriptional expressions of PON2 and PON3 are
significantly enhanced in the PON1-deficient mice
(Ozer et al. 2005). This compensation-like phenomenon
may explain the enhanced resistance to P. aeruginosa
infection in PON1-deficient mice. Moreover, it may be
worthy to note that in humans, PON1 expression is
limited to the liver and PON3 primarily to liver and
kidney, whereas PON2 is found in most tissues
including the heart, kidney, liver, lung, placenta, small
intestine, spleen, stomach and testis (for a review, see
Ng et al. 2005). Thus, if the expression pattern of PONs
in mouse is similar to that in humans, one may speculate
that PON2 may be more important in defence against
intraperitoneally injected pathogens than the two tissue-
specific members. This is the case even though PON2
and PON3 can circulate and reach different tissues
through blood vessels (for a review, see Ng et al. 2005).
Among the three members of the PON family, PON1 is
the best characterized, but very little is known about
PON2 and PON3. The overlapping lactonase activity
and the potential compensation mechanisms of these
PONs suggest that coordinated investigation is essential
to unveil the role and implications of these endogenous
quorum-quenching enzymes in the host innate defence
against microbial pathogens.

Pseudomonas aeruginosa is an opportunistic pathogen.
Patients with cystic fibrosis, severe burns, or immuno-
suppression are at particularly high risk of P. aeruginosa
Phil. Trans. R. Soc. B (2007)
infection. In addition, the pathogen also frequently
causes nosocomial bloodstream infections, which cause
significant patient mortality and increased health care
costs (Wisplinghoff et al. 2003; Osmon et al. 2004; Micek
et al. 2005). The finding that quorum-quenching enzyme
activity is abundant in the sera of mammalian species is
highly intriguing (Yang et al. 2005). It has been known
that many factors, including genetic variation, environ-
mental changes, aging and even pharmaceutical drugs,
can cause significant changes in the serum concen-
trations and activities of the PON1 enzyme, which is also
known as serum PON enzyme (for a review, see Deakin &
James 2004). Future investigation on whether and to
what extent these PON1-modulating factors are impli-
cated in the P. aeruginosa associated bloodstream
infections may aid the development and formulation of
new health and clinical practices to prevent and control
these costly and dangerous infections.

Enzyme-related inactivation of the AIP quorum-
sensing signals produced by the Gram-positive
pathogen S. aureus has also been documented recently
(Rothfork et al. 2004). AIP signals are group-specific
thiolactone peptides (table 1). Staphylococcus aureus
strains can be classified into four groups based on the
sequence variations of the AIP peptides produced
(Novick 2003). The mice-lacking phagocyte nicotin-
amide adenine dinucleotide phosphate (NADPH)
oxidase, which produces reactive oxygens, are more
susceptible to S. aureus infection than the wild-type
control (Pollock et al. 1995; Guide et al. 2003; Rothfork
et al. 2004). In vitro analysis showed that HOCl and
ONOOK, the end products of phagocyte NADPH
oxidase, inactivate AIP signals by oxidation of the
C-terminal methionine of the peptides (Rothfork et al.
2004). However, this type of phagocyte NADPH
oxidase-mediated resistance may not be effective
against all S. aureus strains, as not all AIP signals
contain a methionine residue (figure 1).
6. CONCLUSION
The emergence of antibiotic resistance in microbial
pathogens highlights why it is important to explore new
ways to prevent and control infectious diseases. Previous
work, in particular the research progress over the past
decade or so, has outlined how single-celled bacterial
pathogens use quorum sensing, a community genetic
regulatory mechanism, to synchronize microbial activi-
ties among family members so as to gain an upper hand in
microbe–microbe and pathogen–host interactions. In
addition to this rapid progress in understanding quorum-
sensing, novel quorum-quenching mechanisms have
been discovered that interfere effectively with microbial
quorum sensing; these have been consecutively found in
a wide range of organisms, including both prokaryotes
and eukaryotes. These naturally occurring quorum-
quenching mechanisms act by blocking the key steps of
quorum sensing, such as signal generation, signal
accumulation or signal reception. They have promising
potential in both basic research and biotechnological
applications. More recently, crystal structure analysis has
provided valuable clues on the catalytic mechanisms of
several types of quorum-quenching enzymes. Such
information is important for understanding substrate
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specificity and future tailoring of these intriguing
enzymes. The findings that PON enzymes, which are
widely conserved in eukaryotic species, are potent
quorum-quenching enzymes suggest that quorum
quenching could also be a host innate defence
mechanism. However, these exciting findings are merely
the beginning of understanding of quorum quenching in
microbe–microbe and host–pathogen interactions; much
remains to be investigated in future studies.
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