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Abstract

Psychophysical studies suggest that humans preferentially use a narrow band of low spatial frequencies for face
recognition. Here we asked whether artificial face recognition systems have an improved recognition performance at the
same spatial frequencies as humans. To this end, we estimated recognition performance over a large database of face
images by computing three discriminability measures: Fisher Linear Discriminant Analysis, Non-Parametric Discriminant
Analysis, and Mutual Information. In order to address frequency dependence, discriminabilities were measured as a function
of (filtered) image size. All three measures revealed a maximum at the same image sizes, where the spatial frequency
content corresponds to the psychophysical found frequencies. Our results therefore support the notion that the critical
band of spatial frequencies for face recognition in humans and machines follows from inherent properties of face images,
and that the use of these frequencies is associated with optimal face recognition performance.
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Introduction

Accumulating evidence supports the view that the processing of

sensory information in the brain has adapted to statistical

properties of sensory stimuli e.g., [15,22–24,26]. In this way, in

principle the highest possible amount of information about the

signal is encoded in the neuronal response [2,21]. In reality,

however, signal coding is subject to constraints, that include, for

example, minimizing energy expenditure [3,17,19,20], minimizing

wiring costs between processing units [18], or reducing spatial and

temporal redundancies in the input signal [1,2,4,14,29].

In a recent study, Keil [16] examined the statistical properties of

a large number of face images by analyzing their amplitude

spectra. The spectra were transformed such that the distribution of

amplitudes versus spatial frequencies had maximum entropy

(‘‘whitening’’). Whitened spectra revealed amplitude maxima at

around 10 cycles per face, but only for the spectra of face images

without external face features (i.e., hair, shoulder). This result

compares well with corresponding psychophysical data, which

suggest that humans process face identity preferentially in a

narrow band of spatial frequency band (about 2 octaves) from 8 to

16 cycles per face [5–7,12,25,27,28,30]. The study of Keil [16]

thus suggests that the processing of face identity in humans

adapted to the statistical properties of face stimuli. The

psychophysical results, on the other hand, suggest that face

identification is best at spatial frequencies around 10 cycles per

face. Given this link between stimulus statistics and psychophysics,

we reasoned that also artificial face recognition systems should

show an optimal recognition performance at spatial frequencies

situated around 8 to 16 cycles per face.

In this work we compare the quality of the different spatial

frequencies to perform subject recognition task in the machine.

The problem of subject recognition in computer vision consists on

automatically assigning to a face image a label corresponding to

the identity of the person that appears in the image. For this aim

we usually have a set of training data from where we learn this

task. Thus, the training face images are labelled according to the

subject, belonging to the same class all the images obtained from

the same person. This study aims to satisfy three goals: (i) To

analyze the data distribution of the different spatial frequencies

representations and find out if there exists a relationship between

the most suitable representation in the machine and the results

obtained by the psychophysical studies; (ii) to give a statistical

interpretation of the human visual system procedure for

recognizing faces (iii) to study which is the minimal resolution

that preserves the relevant information of a face to perform

computational subject recognition.

In section ‘‘Materials and Methods’’ we justify that the best

option to evaluate features quality is using discriminability

measures, which will return large values when the data is

appropriately distributed to perform subject recognition and low

values otherwise. Thus, to perform this study we evaluated three

class discriminability measures as a function of the spatial

frequency content of face images to find out if there is a maximum

in the same representation found with the psychophysical studies.

The obtained results suggest that artificial face recognition systems

PLoS ONE | www.plosone.org 1 July 2008 | Volume 3 | Issue 7 | e2590



should have an optimal performance when the original face

images contain spatial frequencies at around 16 cycles per degree,

coinciding with the stimulus statistics and psychophysics.

Results

In the experiments, extrinsic face features (e.g., hair) were

suppressed by centering a Blackman-Harris (B.H.) window at the

nose (Fig. 1A and methods). To make computations feasible,

spatial frequency content of face images was selected by decreasing

the size of face images and applying high-pass filtering,

respectively, rather than performing naive low-pass and band-

pass filtering, respectively (see methods). The mentioned class

discriminability measures were then computed for the down-sized

images (corresponding to low-pass filtered original images), and

their high-pass filtered versions (corresponding to band-pass

filtered original images).

The dependency of FLD, NDA, and MI, respectively (see

Methods), on spatial frequencies (or image size) is shown in Fig. 2.

Each of the three measures reveals a distinct maximum at

approximately the same image size (around 37637 pixels), what

corresponds to approximately 16 cycles per face width, as

illustrated by Fig. 1C. The discriminability measures have very

similar dependencies on image size irrespective of applying high-

pass filtering. Thus, our results suggest that class discriminability is

band-pass, meaning that the lower spatial frequencies do not

contribute to a good separation of classes (which can be conceived

as clouds of points produced from one individual). Adopting a

different viewpoint, one can also argue that decreasing image size

is equivalent to reducing dimensionality, and class separation

collapses beyond a certain dimension.

Discussion

Psychophysical studies suggest that for face recognition, human

observers make use of a narrow band at low spatial frequencies (8

to 16 cycles per face, bandwidth two octaves). Here we measured

class discriminability, using Fisher Linear Discriminant Analysis

and Non-Parametric-Discriminant-Analysis, and computing Mu-

tual Information as a function of image size (and thus spatial

frequency). These measures are used to quantify the efficiency of

the different face representations to perform subject recognition in

general, without depending on a specific implementation of a

classifier. All three measures gave similar results for the high-pass

filtered and the unfiltered face images, and revealed an unimodal

distribution with a maximum at about 16 cycles per face width,

which is close to the psychophysically found frequency optimum.

Our results therefore support the conclusion that face represen-

tation to perform subject recognition task is optimal within a

narrow band of spatial frequencies. Moreover, the presence of low

spatial frequencies does not seem to compromise recognition

performance.

Specifically, FLD and NDA reveal narrow peaks, which is

compatible with the fact that human face discriminability of

different subjects performance is best within a small band of spatial

frequencies (bandwidth around two octaves, e.g., [25]). Neverthe-

less, MI shows a broad maximum, what may be interpreted as that

recognition would still work if critical frequencies were not

available. Similar observations were made in psychophysical

studies [27], where it has been reported that face recognition is

suboptimal in the absence of the critical frequencies. In this

context, ‘‘suboptimal’’ means that it takes more time for subjects to

recognize face identity, presumably due to a decreased signal-to-

noise ratio [27].

The present study lends further support to the findings of Keil

[16] in that the stimuli (i.e., face images) provide the explanation of

the preference of a narrow spatial frequency band for both human

and artificial face recognition. As a consequence, it is reasonable

that artificial face recognition systems focus on these frequencies to

achieve an optimal recognition performance, given that they are

the most effective in terms of class discriminability. Because these

critical spatial frequencies correspond to small image patches, a

further advantage emerges through an economic use of resources

for both processing and storing faces.

Blackman-Harris (BH)
window centered at nose 64x64 pixel

optimal size = 37x37 pixels
(18.5 cycles/face width)

A B C

Figure 1. Illustration of processing steps. (A) External features are suppressed by centering a Blackman-Harris window at the face center (xno,
yno) (indicated by a cross-hair; see methods). In this way the windowed image is obtained as shown. (B) The central region of each windowed face
image (dark-shaded) is maintained for further processing (note that the original face image is shown here only for illustration). In this way an image
with an initial size (or equivalently dimensionality) of 64664 pixels is obtained. (C) Class discriminability measures are evaluated at each image size
from the initial size down to 10610 pixels. Optimal recognition performance (i.e., highest class discriminability, see Fig. 3) is obtained for images of
about 37637 pixels (here shown magnified), what corresponds to ca. 16 cycles per face width.
doi:10.1371/journal.pone.0002590.g001
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Materials and Methods

Face Images
We used 868 female face images, and 868 male face images

from the Face Recognition Grand Challenge database (FRGC, www.

frvt.org/FRGC or www.bee-biometrics.org, Fig. 3) belonging to

55 different persons. We have selected all the subjects that have

more than 20 images to obtain more accurate estimators of the

discriminability measures. Original images (170462272 pixels, 24-

bit true color) were adjusted for horizontal alignment of eyes,

before they were down-sampled to 2566256 pixels and converted

into 8-bit gray-scale. The positions of left eye (xle, yle), right eye (xre,

yre), and mouth (xmo, ymo), respectively, were used to approximate

the position of each face center (<nose) as

xno~rnd xlezxreð Þ=4zxmo=2

yno~0:95 � rnd ylez ymo{ yle{yreð Þ=2ð Þ=2ð Þ

where rnd(x) denotes rounding to the nearest integer value.

Windowing of face images
Let the features which are not part of the actual face be denoted

by external features (e.g.,shoulder region or hair). On the other hand,

internal features refer to the eyes, the mouth, and the nose. The

presence of external features in our face images may distort

recognition performance. It is thus desirable to compare results

without the presence of external features. We found that a good

suppression of external features could be achieved by centering a

minimum 4-term Blackman-Harris window [11] at (xno, yno). The

procedure is illustrated with Fig. 1A.

Varying spatial frequency content
We adopted the following procedure to assess the frequency-

dependence of face recognition. Each image was resized to

continuously smaller sizes, starting with an initial size of 64664

pixels (see Fig. 1B). We used a bilinear interpolation scheme with

the Matlab function ‘‘resize’’ to this end (Matlab version 7.1.0.183

R14 SP3 Image Processing Toolbox, see www.mathworks.com). A

down-sized image is equivalent to its low- pass filtered original

image, with a cut-off frequency equivalently to the Nyquist

frequency (half of pixel width or height in cycles per image). This

means that the smaller image contains all spatial frequencies of the

original image which are smaller or equal than the Nyquist

frequency. We subsequently performed high-pass filtering of the

smaller images. The latter procedure is equivalent to band-pass

filtering or the original image with a narrow filter bandwidth.

Notice that down-sizing reduces the dimensionality of the feature

space, and saves computational time when compared to naive low-

pass and high-pass filtering, respectively.

Evaluation of Recognition Performance
The best criterion to evaluate the effectiveness of a features set

to perform a concrete classification task is the Bayes error [38].

The Bayes error corresponds to the minimal probability of
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Figure 2. Class discriminability measures. The graphics shows normalized class discriminability measures as a function of image size (or spatial
frequency). Different measures are distinguished by their color, as indicated in the figure legend: FLD = Fisher Linear Discriminant Analysis,
NDA = Non-Parametric-Discriminant-Analysis,and MI = Mutual Information. All three measures consistently peak at around the same image size of
about 37637 pixels, corresponding to ca. 16 cycles per face width (see Fig. 2C). See text for further details.
doi:10.1371/journal.pone.0002590.g002
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classification error for any given distributions [33,34], that is, the

probability that a sample is assigned to a wrong class [10]. This is

the best option to evaluate features quality given that it does not

depend on any specific classifier. In fact, the estimation of the

Bayes error is used pattern recognition as a reference to evaluate

the performance of a classification method [35].

Unfortunately, Bayes error is a theoretical definition that can

not be computed if the probability densities of the data are

unknown. However, upper bounds of this value can be estimated

from a set of samples and these measures can be used to compare

different feature sets in order to determine which is the most

competitive to perform a concrete classification task. In concrete,

the more effective feature set will be the one that gives a lower

upper bound of the Bayes error, interpreting this value as a

measure of class separability.

Different upper bounds expressions of the Bayes error can be

found in the literature [13,35,36]. In some cases, these expressions

have been used to construct discriminability measures, that is,

measures that are inversely proportional to the upper bound of the

error [13,31,35]. In this context, to find the most effective feature

set among different proposals we can estimate these discrimina-

bility measures from the data and select the features with highest

score.

In this work we evaluate three of the discriminablitiy measures

obtained from two different upper bounds of the Bayes error. The

first is the Battacharyya bound [35], which is based on scatter

matrices. This upper bound yields to a class separability criteria

that depends on (i) the within-class-scatter-matrix that shows the

scatter of samples around the same class, and (ii) the between class

scatter matrix. These measures belong to Discriminant Analysis

field and depending on the computation of these scatter matrices

we get a discriminability measure that assumes each class to be

Gaussian distributed, or a non-parametric approach. Both

computations are considered in this work and described in section

‘‘Discriminant Analysis’’. On the other hand, we consider an

upper bound that is based on Mutual Information between the

samples and its corresponding class [13]. In this case, the upper

bound is inversely proportional to this statistic. We describe in

section ‘‘Mutual Information’’ how we estimate this measure

from the samples.

Discriminant Analysis
Classic discriminant analysis techniques were often applied to

linear feature extraction in order to find the projection matrix that

preserves the class discriminability of data points. In this context,

the class discriminability of the projected data is estimated from

the data scatter in the projected space. We describe two of these

measures, which are the ones we use in our work.

In Discriminant Analysis, two kind of statistics have been used

for this purpose: (i) the within-class-scatter-matrix that shows the

scatter of samples around the same class SW, and (ii) the between

class scatter matrix SB.

The discriminability measure should be high when the between

class scatter is high and the within class variation is low (samples

from the same class are close among them and far from the other

classes). Different analytic criteria have been proposed in the

literature for this purpose, among we have chosen:

J~trace S{1
w SB

� �
ð1Þ

On the one hand, the first measure we consider is the

discriminability criterion used in Fisher Linear Discriminant

Analysis [8], that computes SB as

SB~
1

K

XK

k~1

mk{m0ð Þ mk{m0ð ÞT ð2Þ

where mK is the class-conditional sample mean and m0 is the

unconditional (global) sample mean. Furthermore it estimates SW by

SW ~
1

K

XK

k~1

Sk ð3Þ

where Sk is the class-conditional covariance matrix for Ck estimated

from the data. We will denote this first measure by FLD.

On the other hand, Fukunaga and Mantock [10] proposed a

non-parametric approach to compute the between class scatter

matrix SB. In this case, the non-parametric between class scatter

matrix is estimated as we describe following.

Let be x a data point in X with class label Cj, and by xclass class

the subset of the k nearest neighbours of x among the data points in

X with class labels different from Cj. We calculate a local between-

class matrix for x as:

Dx
B~

1

k{1

X
z[xclass

z{xð Þ z{xð ÞT ð4Þ

Figure 3. Samples from the FRGC database. The FRGC database contains male and female face images of adults from different races, with
multiple photographs for each subject, different facial expressions, and different hairstyles. The faces are displayed in a fronto-parallel fashion,
although some did moderately vary in posture. All faces were displayed against a uniform grey background, and illumination conditions were
homogeneous and without cast shadows.
doi:10.1371/journal.pone.0002590.g003
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The estimate of the between-class scatter matrix SB is found as

the average of the local matrices

SB~
1

N

X
z[X

Dz
B ð5Þ

The resulting SB is used in the criterion [1], while SW remains as

in the first case. We will denote this second discriminability

measure by NDA.

Mutual Information
The Mutual Information between two random variables X and

Y is defined as:

I X ,Yð Þ~
ð ð

p X ,Yð Þlog
p X ,Yð Þ

p Xð Þp Yð Þ

� �
dXdY ð6Þ

where p(X) and p(Y) are their respective probability density

functions. In this paper we compute mutual information between

data points X and classes C. A large value of mutual information in

this case means that we have much information about the class C

given the observation X. On the other hand, if the mutual

information is zero, then both variables are independent.

Notice that the computation of mutual information also

necessitates the estimation of corresponding probability distribu-

tions. However, Torkkola [31] recently proposed a method which

makes the computation of mutual information feasible by using a

quadratic divergence measure that allows an efficient non-

parametric implementation, without prior assumptions about class

densities. In concrete, the Mutual Information from the data can

be computed by

I X ,Cð Þ~VINzVALL{2VBTW

where

VIN~ 1
N2

PNT

c~1

PNc

j~1

PNc

k~1

G xcj{xck,2s2I
� �

VALL~ 1
N2

PNT

c~1

Nc

N

� �2
� � PN

j~1

PN
k~1

G xj{xk,2s2I
� �

VBTW ~ 1
N2

PNT

c~1

Nc

N

PNc

j~1

PN
k~1

G xcj{xk,2s2I
� �

denoting a sample by one index, xi, if the class is irrelevant and by

two indexes, xcj, when its class is relevant. The function G is a

multi-dimensional Gaussian Kernel with covariance matrix S,

G x,Sð Þ~ 1

2pð Þd=2
det Sð Þ1=2

exp {
1

2
xTS{1x

� �

being d the corresponding dimensionality.
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