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Why do humans survive so long past reproductive age, and why
does juvenile mortality decline after birth, both contrary to the
classic theory of aging? Previous work has shown formally that
intergenerational transfers can explain both these patterns. Here,
simulations confirm those results under weaker assumptions and
explore how different social arrangements shape life-history evo-
lution. Simulated single-sex hunter-gatherers survive, forage, re-
produce, and share food with kin and nonkin in ways guided by the
ethnographic literature. Natural selection acts on probabilistically
occurring deleterious mutations. Neither stable population age
distributions nor homogeneous genetic lineages are assumed.
When food is shared only within kin groups, an infant death
permits reallocation of its unneeded food to the infant's kin,
offsetting the fitness cost of the death and weakening the force of
selection against infant mortality. Thus, evolved infant mortality is
relatively high, more so in larger kin groups. Food sharing with
nonkin reduces the costs to kin of child rearing, but also reduces the
resources recaptured by kin after an infant death, so evolved infant
mortality is lower. Postreproductive adults transfer food to de-
scendants, enhancing their growth and survival, so postreproduc-
tive survival is selected. The force of selection for old-age survival
depends in complicated ways on the food-sharing arrangements.
Population-level food sharing with nonkin leads to the classic
pattern of constant low mortality up to sexual maturity and no
postreproductive survival.
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H uman hunter—gatherers lived, foraged, and reared children
in small, genetically diverse groups that shared food and
many tasks (1-5). These social arrangements must have shaped
the evolution of various aspects of human life including senes-
cence and mortality (6-9), but the classic evolutionary theories
of senescence based on mutation accumulation (10-12) or
antagonistic pleiotropy (10, 11) largely ignore parental invest-
ment and other social arrangements, focusing instead on selec-
tion pressures shaped by individual fertility and mortality.

In the antagonistic pleiotropy theory, genes that have dele-
terious effects at older ages may nonetheless be selected because
they also have beneficial effects at younger ages, which matter
more for reproductive fitness (10, 11), leading to population
aging. Such pleiotropic effects can arise by the chance associa-
tion of age-related traits on genes or, alternatively, through
biological tradeoffs between investing in early reproduction
versus maintenance and survival. In optimal life-history theory,
such tradeoffs are modeled explicitly (13).

The other leading approach, taken here, is mutation accumu-
lation theory. Deleterious mutations have age-specific effects,
and the force of selection against each is proportional to the
share of lifetime reproduction remaining after the age affected,
as shown by Hamilton (12, 14). This share declines from 1.0 at
sexual maturity to zero when fertility ceases (approximately
age 50 in humans). Consequently, in Hamilton’s classic theory,
mortality is predicted to be low and constant until sexual
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maturity and then to rise with age until menopause, when it
increases explosively—precluding postreproductive survival (12).

Contrary to this theory, human female hunter—gatherers lived,
on average, 15 or 20 years after reproduction, and their infant
mortality declined strongly from initially high levels (15-17). Lee
(18) formalized earlier ideas (11, 12, 19, 20) by incorporating
intergenerational transfers into the classic theory, which then
explains both postreproductive survival and declining juvenile
mortality. Lee showed that, with intergenerational transfers,
including parental investment in offspring after birth, the force
of selection against a mutation that raises mortality at any age is
a weighted average of the Hamilton effect [remaining repro-
duction after age a, F(a)] and a new intergenerational transfer
effect [remaining net transfers after age a, T(a)]. If a species
makes no transfers after birth, then the weight on F(a) is 1.0 and
on T(a) is 0, and the classic theory holds. If a species has evolved
to the optimal quantity—quality tradeoff for offspring, then the
weight on F(a) is 0 and on T(a) is 1.0.

Lee’s (18) analysis compared steady states for genetically
homogeneous single-sex lineages. The ethnographically in-
formed microsimulations of human hunter—gatherer evolution
in this article are a concrete application of the theory, modeling
the evolution of human mortality for a single-sex population
living in small food-sharing groups within which intergenera-
tional transfers take place. The simulations do not require
genetic lineages or stable population age distributions, and
explicitly include mutation and genetic heterogeneity [support-
ing information (SI) Table S1].

The formal details of the simulation setup are described in
Methods. Additional details and annotated computer code writ-
ten in the software language R (21) are in S7 Text. The following
paragraphs summarize the setup.

The simulation proceeds in 5-year cycles of age and time for
at least 15,000 cycles (75,000 years). Births, deaths, and muta-
tions are stochastic: A probability for each event and individual
is calculated from available information, and the actual outcome
depends on random draws. Production and consumption are
deterministic, although they depend on prior demographic out-
comes that are themselves stochastic. There are 16 age groups,
each spanning 5 years.

Daughters inherit their mother’s genes, subject to probabilistic
mutations in each generation. Rules, parameters, and initial age
schedules are based on historical and ethnographic studies.
Initial age patterns of fertility, production, and consumption are
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Fig.1. Percapita production and consumption by age (weighted average for
three Amazon Basin hunter—gatherer groups, sexes combined) Modified from
Kaplan (20) as in Lee (19). Note the long duration of juvenile dependence and
the continuing production of surplus in old age.

set at observed hunter—gatherer levels (16, 22, 23) and imply
transfers from adults to children. Transfers, food sharing, and
living arrangements are taken as given, and the focus is on
simulated mortality.

By a “matriarchy,” I mean all individuals descended from a
single living female, for example a grandmother, her two daugh-
ters, and their children. When the grandmother dies, this ma-
triarchy becomes two new ones. Matriarchies may belong to
larger kin groups defined by a specified maximum number of
generations back to a common ancestor. K5 groups comprise
related individuals up to third cousins (common great-great-
grandmother), K4 up to second cousins, and K3 up to first
cousins.

Food sharing is assumed to take place within these kin groups
but in some specifications also within larger sharing groups that
contain a number of different kin groups. Based on Binford’s (1)
analysis of ethnographic studies of 339 hunter—gatherer popu-
lations, I assume that a sharing group fissions if it grows beyond
25 members and fuses with another if it falls below 8 members.
Ethnographic studies (2, 3) guide a variety of experimental
assumptions about food-sharing behavior (SI Text), in which
each kin group puts a specified share of its output into a common
pool for the larger sharing group.

Empirical age profiles of consumption and production averaged
across the sexes for three Amazon Basin hunter—gatherer/
horticulturalist groups (22, 23) are plotted in Fig. 1. The simulation
modifies these age profiles to reflect varying circumstances in ways
I will now describe.

I assume that competition for resources takes place among the
total population of all sharing groups. Accordingly, in the
simulation, an individual’s baseline production as shown in Fig.
1 varies inversely with population size. I assume that higher
consumption in childhood (age 0-4) raises an individual’s adult
productivity, perhaps by increasing body size or cognitive func-
tion, with 10% more childhood consumption causing 5% higher
adult production. Higher consumption in the previous period
also raises an individual’s current productivity by providing more
energy for foraging, again with 10% higher previous cycle
consumption raising current productivity by 5% (Eq. 2 shows
these three adjustments).

At the start of a simulation cycle, we know for each individual
both the level of her consumption in the preceding cycle and the
level when she was age 0-4 as well as the size of the total
population summed across all groups and individuals. Based on
this information, we can calculate the level of production for
each individual in the current cycle as described in the previous
paragraph. By summing across individuals in a group, we can also
find the total level of production in that group. This must exactly
equal total consumption in each closed group, because I assume
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that no output is saved or wasted. This total consumption is
allocated to individuals at each age in proportion to the baseline
consumption schedule shown in Fig. 1. The parameter v; for
groupj is the multiplier that makes the balance identity hold (Eq.
3), corresponding to the y parameter in Lee (18). In this way,
consumption for every individual is determined for this cycle,
and it influences production by this individual in subsequent
cycles. Under a 50% sharing assumption, an individual’s con-
sumption is governed by the average of these +ys for her kin group
and her sharing group as detailed in ST Text).

In a given simulation cycle, the net transfer an individual
makes or receives is her production minus her consumption. The
average value in the population of these net transfers for
individuals of each age, together with demographic variables,
can be used to calculate T(a) (Eq. 4), the expected net transfers
remaining after age a (18).

Baseline fertility follows an empirical age schedule for a
contemporary hunter—gatherer group (16). Consumption of
food is assumed to affect fertility and mortality and therefore
influences reproductive fitness and natural selection. Lacking
good estimates for contemporary hunter—gatherers, I turn to
historical studies of the effect of grain price variations on fertility
and mortality for landless laborers in Europe and Asia (24, 25).
I assume that a 10% increase in consumption raises fertility at
each age by 10% in the next cycle (Eq. 5) and similarly reduces
mortality by 10% (Eq. 6), consistent with the range of historical
estimates (SI Text).

Individuals can have zero, one, or more mutant genes affecting
mortality for each 5-year age group. All mutations raise the force
of mortality at the relevant age by 0.02 deaths per year (0.1 per
5 years) from a baseline of .005 (an assumed 0 baseline makes
little difference). This level is adjusted by individual consump-
tion in the previous cycle, as described above. A daughter
inherits her mother’s genotype, described by the number of
mutant genes affecting mortality at each age. However, for each
5-year age span, there is a 0.01 probability at birth that one
additional mutation affecting that age span will occur, raising by
one the corresponding number of mutations affecting that age
span that were inherited from the mother. The probabilities of
mutations for each age span are assumed to be equal and
independent, and each birth can experience, at most, one
mutation for each of the 16 5-year age intervals. Consequently,
in the simulations, approximately one-seventh of births experi-
ence at least one deleterious mutation (0.149 = 1 — (1 — 0.99)19),
below current estimated rates for humans (26, 27).

Before turning to the results, it will be useful to discuss the
forces at work in the simulation and how, through natural
selection, they generate an age schedule of mortality. In a given
group, if the dependency ratio is favorable, then consumption
will be high, raising fertility for adults and survival for all, thus
raising reproductive fitness. A mutant gene raising postrepro-
ductive mortality raises the dependency ratio, thereby reducing
consumption and fitness for each individual, including the carrier
of the mutation and her relatives, so the mutation will tend to be
deselected. The death of a child raises consumption for all in the
group including her relatives, and thereby raises their fertility
and reduces their mortality, partially offsetting the relatives’
direct loss of fitness due to the death. Selection pressure against
mortality for older children in whom more has been invested is
greater than for newborns, who can be cheaply replaced. Such
forces lead to a mutation—selection balance in the simulation at
each age in the population (subject to qualifications discussed
below), shaping age-specific mortality.

The presence of unrelated individuals in the sharing group
dilutes the effect of a mutant gene on its carrier’s inclusive
fitness, because, through food sharing, all group members bear
the cost of a high dependency ratio. However, individuals live in
groups with kin, who have a higher probability of carrying this
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Fig. 2. The time path of average number of mutations per simulated
individual by year of simulation by age affected by mutation (501 point-
centered moving average, natural log scale) for matriarchy specification with
a population of 100,000. Shown are the first 15,000 cycles or 75,000 years of
this simulation. Average frequencies for ages up to 55-59 stabilize by 15,000
years, but above age 60, frequencies keep rising. The ages corresponding to
the lowest 10 lines at the far right in ascending order are 15-19, 20-24, 10-14,
25-29, 5-9, 30-34, 35-39, 40-44, 45-49, and 0-4. The other lines are labeled
on the figure.

mutation than do nonkin. Other carriers in the same group will
include the individual’s daughters, granddaughters, and siblings,
for example, because related families tend to live together.
Individuals who carry this mutation will, on average, have lower
fitness than individuals who do not carry it, and the mutation will
tend to be selected out of the population, more or less rapidly
depending on the age affected.

Results

Eventually, the frequency distribution of mutations affecting
each age group becomes approximately stochastically stationary,
fluctuating about constant values at other than high ages (Fig. 2).
At high ages, selection against mutations is weak and Muller’s
Ratchet (28) eventually leads all individuals to have at least one
mutation, then at least two, and so on. This process actually
occurs at every age, but at younger ages it occurs so slowly that
we can speak of equilibrium. The Ratchet operates in single-sex
(haploid) simulations with no back mutation and is therefore not
relevant for real humans.

Fig. 3 plots the evolved age-specific mortality for the case of
matriarchies that consume all of their own output. Forty-five
percent of the simulated matriarchies have only one member,
and their average size is 1.9, so their population-age distributions
are highly unstable. Because maternal death often entails the
death of dependent children, child mortality is elevated, as seen
particularly at ages 5-19. The mother of a child age 0—4 is very
likely still alive. Nonetheless, the evolved pattern of mortality is
close to the prediction of the transfer theory (18) until the oldest
ages, with declining juvenile mortality and substantial postrepro-
ductive survival, unlike the Hamilton prediction that is also
shown. We would not expect an exact fit, because the transfer
theory assumes stable populations and genetic homogeneity. SI
Text discusses confidence intervals for the simulation.

Different social arrangements for living and for sharing food
lead to different age patterns of evolved mortality as shown in
Fig. 4. Line a repeats the matriarchy case of Fig. 3 for comparison
purposes. Line b shows the outcome when individuals live in K5
groups, which consume 100% of the K5 output. These groups
have a mean size of 4.6, and only 11% are singleton, so their age
distributions are closer to stable. Infant mortality is higher in b
than in a because of weaker selection against mutations at earlier
ages. It is more likely that an infant who dies in a K5, as opposed
to a Matriarchy, has surviving relatives, particularly children, in
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Fig. 3. The matriarchal case. The age pattern of evolved mortality after

150,000 years (30,000 simulation cycles) compared with theoretical predic-
tions based on Hamilton (remaining lifetime net fertility) and transfers (re-
maining lifetime net transfers). The shapes but not levels of theoretical
benchmarks are calculated from the simulated fertility, mortality, and trans-
fers: proportional to In[1/F(a)] for the classic or Hamilton theory and to
In[1/T(a)] for the transfer theory. The simulation line plots the natural log of
age-specific death rates over the last 500 cycles of a 30,000-cycle simulation.
The simulation line is qualitatively similar to the transfer theory except at the
highest ages and different from the Hamilton theory.

whom the food that would have been consumed by the dead
infant can be invested, partially offsetting the loss. This more
common offset in the K5 groups reduces the force of selection
against infant mortality relative to the Matriarchies, and hence,
mortality at ages 0—4 is higher. If the mother dies in a K5 group,
itis more likely that another adult can feed the dependent young,
so mortality is lower at ages 5-19. Women after 50 are more
likely to have younger relatives in whom to invest, hence
selection is stronger against their death, and mortality is lower
in b than in a.

In ¢, K5 kin groups live in sharing groups of 8-25 members,
and each shares 50% of its output with the sharing group,

0
(e) Population
4 level sharing
% _
" (b) K5 kin groups (d) K5 kin
a keep 100% group
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= 50% with
= (a) Matriarchies reshuffling
4 keep 100%
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Fig. 4. Evolved mortality depends on food-sharing arrangements. All lines
show the natural log of average age-specific death rates (ASDR) over the last
500 cycles of a 15,000-cycle simulation. Each simulation is done under a
different assumption about food sharing as discussed and as labeled. “’Keeps
100%" means that the kin group does not share at all with a broader sharing
group. "“Shares 50%"’ means that the indicated kin group keeps 50% of their
food production for consumption within the kin group and puts 50% in the
common pool. “Population level sharing’” means that all production is put in
acommon pool for the whole population. “Reshuffling’” means the K5 groups
are recombined into new sharing groups after each cycle.
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Table 1. Baseline assumptions

Item Specification

Fertility Ache, normalized to GRR = 1 (16); Elasts,,, = +1.0

Mortality Initially 0 until 80, then 1.0; Elastasar,, = —1.0; € = 0.005; 5 = 0.1

Production Average of three hunter-gatherer groups (22, 23); Elast,,, in childhood = 0.5, in previous period (t — 1) = 0.5

Density dependence
Consumption
Mutation frequency
Environment, E
Group formation
Food sharing
Age and time
Sequencing

Deaths occur at end of interval

Multiply production age schedule by (E/N)'9, Elast,,en) = 1.0

Base = average of three hunter-gatherer groups (22, 23); Elast ., = 1.0

For each of 16 ages affected, 0.01 risk per birth.

Set for equilibrium population size near 100,000 or sometimes 10,000

Fusion if falls below 8, fission if rises above 25, keep kin together at fission, families fuse randomly.
Families consume a specified share of their output e.g. 50% and share 50%; this share differs by simulation
S5-year age groups, 5-year time steps per cycle

v Measured at end of age-time interval

Births occur after death at end of interval

Length of simulation

At least 15,000 cycles or 75,000 years; some up to 45,000 cycles

keeping 50% for its own K5 kin. Child mortality is substantially
lower than in a and b. This is not because the larger group size
avoids randomly high dependency ratios but is due rather to
lower evolved mortality: The number of mutations affecting 0-4
under c is less than 1/10 the number under b. Why? Under c, a
child is half supported by the sharing group, which makes child
rearing cheaper to its kin group. However, the flip side is that if
the child dies, then only half the resources freed by its death are
recaptured by its kin group, whereas in a and b all of them can
be. This makes its death more costly in ¢ and leads to stronger
selection and lower child mortality.

Case d is like ¢, except now the particular K5 groups combined
into the sharing groups are reshuffled after each simulation
cycle. This reshuffling would not matter if relatedness within the
sharing groups were fully described by the K5 kin structures. Fig.
4 shows that reshuffling does matter, which indicates that the
unshuffled groups in ¢ have additional relatedness more distant
than the K5 groups but nonetheless important for selection.
Opportunities for investment in more distant relatives also
explain why mortality at 50-54 is lower in ¢ than in d. In d child
mortality is completely flat, whereas postreproductive mortality
is similar to a and b. Evidently, reshuffling of groups reduces
relatedness enough so that the death of a child is uniformly costly
across age, whereas the kin selection benefits of postreproduc-
tive survival remain strong.

Finally, in e, all sharing is at the level of the largely unrelated
total population, so mortality collapses to the Hamilton case.
The fitness effect of an individual’s adult survival and released
resources after infant death are diluted by 10,000 and are
negligible. Large-scale sharing would occur in nature only among
closely related populations, so this simulation is presented purely
for purposes of contrast and not as a realistic possibility.

More than 100 alternative specifications were investigated.
The results are summarized in SI Text. For example, equilibrium
mortality should be proportional to the rate at which mutations
occur divided by the force of selection against them and inde-
pendent of the incremental effect of the mutations (14). Exper-
iments confirm these predictions.

It is an important limitation that the model is single-sex with
no recombination, but there is nonetheless considerable genetic
heterogeneity within kin groups and sharing groups. A daughter
has an 85% probability of being genetically identical to her
mother [1 — (1 — 0.01)!%], because there are 16 age groups, and
there is a 0.01 chance for each of these 16 age groups that a new
mutation affecting it will occur at birth. Similarly, each birth has
a73% chance of being identical to a sister. First, second and third
cousins have probabilities of 53%, 39% , and 28% chance of
being genetically identical. On average, a single Matriarchy
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accounts for only ~12% of a sharing group’s population, and a
K5 forms ~29% of a typical sharing group. “Migration” into
sharing groups occurs when one falls below eight members and
fuses with another small group, which happens to 3% of groups
each cycle, or every 5.5 generations on average. In some
simulations, the kin units are reshuffled into new sharing groups
every cycle as in d of Fig. 4. Such increased genetic heterogeneity
reduces the downward slope of juvenile mortality but has little
effect on adult and postreproductive mortality.

Discussion

This analysis provides a framework for applying mutation-
accumulation theory to humans and other species that have
parental care or are social. However, positively selected bene-
ficial mutations that move the organism toward its optimal life
history (29-31) are also important and were not considered here.
Elsewhere, Chu, Chien, and Lee (13) formally analyze the role
of intergenerational transfers in life-history optimization and
reach conclusions that are closely related to those of Lee (18),
but the more complex social arrangements considered here
would be difficult or impossible to consider through formal
analysis of this sort.

The stability assumption has been used in formal analyses of
intergenerational transfers not only in Lee (18) but in other
treatments as well (13, 29-31). Indeed, it is hard to see how
formal analysis of intergenerational energy flows within a social
group could proceed without it. Fortunately, we have seen that,
for the most part, the nonstable simulations confirm the results
based on the stable assumption. However, there are interesting
deviations. Age-specific mortality depends on both the cumu-
lated mutations affecting this age and the average value of -y for
individuals at this age. The birth of infants testifies to the living
presence of their mother in the recent past, but, as children age,
the probability that their mother has died also rises. In Fig. 2, we
saw that the age affected by the lowest number of mutations was
15-19, but in Fig. 3, we saw that mortality is not particularly low
at this age; five age groups have lower. The reason is that, when
the mother dies, these children have low consumption and are
likely to die as well, despite the low number of mutations
affecting this age. In a stable population, this would not happen,
because transfers from other ages would make up for the loss of
the mother’s support. In Fig. 4, the age profile of mortality at
these older child ages for the K5 grouping was very low because
the K5 age distribution is closer to the stable one.

It is striking that the simulations produce a very human age
pattern of mortality, with postreproductive survival and declin-
ing mortality after birth, as in Lee (18). But we have been able
to go well beyond this important consequence of intergenera-
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tional transfers to explore the nuanced effects of variations in
social arrangements as described above. These effects depend
crucially on the size and depth of the kin group within which
sharing occurs, on the degree of interrelatedness within it, and
on the extent of sharing with nonkin. The approach could be
used to explore many other issues at the interface of culture and
evolution.

Methods

The annotated computer code is in S/ Text.

For simplicity, equations are given below for the case of 100% food sharing
within each group. Differing shares are used in the actual simulations. A y9 is
calculated for each sharing group as described, and a v/ is calculated for each
kin group in exactly the same way. The v for an individual is then gy + (1 —
B)y9, where B is the fraction of food retained in the family (see S/ Text).

i,j indexes individual i in group j; x = age. m;j(x) = fertility of individual; «
is its elasticity with respect to v; u;;(x) = force of mortality, assumed constant
between x and x + 1 = —In(1 — g;(x)), where q is the proportion dying
between age x and x + 1, also called asdr (age specific death rate); ¢ is the
elasticity of mortality with respect to y; N = total population, summed over all
groups j; E = environment; t — 1 = one period ago, otherwise t is suppressed;
superscript ““child” is average for age 0-4; c;{(x), y;/(x) = consumption and
production; ¢(x), y(x) = standard (baseline) consumption and production
plotted in Fig. 1; m(x) = standard (baseline) fertility for Ache (16); v; =
consumption multiplier for group j; 7;j(x) = net transfers = yji(x) — cji(x); T(a) =
survival weighted lifetime net transfers after age a; § = increase in mortality
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