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Protein conformational diseases are associated with the aberrant
accumulation of amyloid protein aggregates, but whether amyloid
formation is cytotoxic or protective is unclear. To address this issue,
we investigated a normally benign amyloid formed by the yeast
prion [RNQ™]. Surprisingly, modest overexpression of Rnq1 protein
was deadly, but only when preexisting Rnq1 was in the [RNQ*]
prion conformation. Molecular chaperones protect against protein
aggregation diseases and are generally believed to do so by
solubilizing their substrates. The Hsp40 chaperone, Sis1, sup-
pressed Rnq1 proteotoxicity, but instead of blocking Rnq1 protein
aggregation, it stimulated conversion of soluble Rnq1 to [RNQ*]
amyloid. Furthermore, interference with Sis1-mediated [RNQ*]
amyloid formation exacerbated Rnqg1 toxicity. These and other
data establish that even subtle changes in the folding homeostasis
of an amyloidogenic protein can create a severe proteotoxic
gain-of-function phenotype and that chaperone-mediated amyloid
assembly can be cytoprotective. The possible relevance of these
findings to other phenomena, including prion-driven neurodegen-
erative diseases and heterokaryon incompatibility in fungi, is
discussed.
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Izheimer’s disease, transmissible spongiform encephalopa-

thies, and polyglutamine diseases are representatives of a large
group of neurodegenerative disorders that are associated with the
misfolding and conversion of particular proteins into amyloids (1).
Amyloids form in response to many perturbations in protein
homeostasis, namely mutations in the amino acid sequence of a
disease-related protein, expansion of simple sequence elements in
disease genes, elevated protein levels, and age-associated cell stress
(2). Amyloid fibrils share a cross-f structural motif, in which
B-strands run perpendicular to the long fiber axis and accumulate
in intra- and extracellular inclusions (3, 4). Fibril formation requires
that a misfolded protein expose a pleated B-surface that is capable
of serving as a template and hydrogen-bonding partner with an
extra B-strand (1). Biochemical parameters for the classification of
protein aggregates as amyloids include resistance to solubilization
by the detergent SDS and the ability to bind indicator dyes such as
thioflavin-T (2).

Amyloid deposits in the brain are a hallmark of protein
conformational disease, but often there is only a poor correlation
between the detection of amyloid fibrils and other markers of
neurodegeneration (5). Thus, there is still intense debate about
whether amyloids are the causative toxic protein species in
neurodegenerative diseases. In fact, recent, still controversial
work suggests that amyloids might be benign or cytoprotective
and that difficult-to-characterize soluble oligomeric conformers
are the toxic species of disease-causing proteins (6-8).

Cells buffer proteotoxic events related to intracellular protein
misfolding via chaperone-mediated partitioning of nonnative
conformers between pathways for proper folding, inclusion body
formation, and degradation (9). Molecular chaperones also play
a critical role in the propagation of yeast prions (10), which are
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examples of intracellular amyloids that, in general, are not
inherently toxic (11, 12). However, the conversion of active
soluble Sup35 and Ure2 into their prion states [PSI"] and
[URE3], respectively, inactivates these proteins (11, 12). Yeast
prion formation occurs spontaneously at a low frequency, and
the prion state is then perpetuated through the templating of
newly synthesized prion proteins by preexisting amyloid-like
prions (13). Templated prion proteins then undergo stable
changes in structure and function to enter an amyloid-like state
that is propagated and passed from mother cells to their
daughters in a molecular chaperone-dependent manner (10).
Yeast prions thereby constitute cytoplasmically transmitted,
protein-based elements of inheritance that are dominant in
genetic crosses (prions are denoted by brackets, italics, and
capital letters to reflect these properties).

The yeast prion [RNQ*] is determined by the conformational
state of the Rnq1 protein, which contains a C-terminal asparagine-
and glutamine-rich prion domain and an N-terminal non-prion-
forming domain (14, 15). The native form of Rnq1 has no known
normal biological function and is nonessential. Yet the [RNQ™]
prion can have important effects on yeast cells because it
influences certain other proteins to convert to amyloid-like
states (16—18). For example, [RNQ ] prions are required for the
initial conversion of native Sup35 to the [PSI*] state. Indeed,
[RNQ™] constitutes the cytoplasmically inherited factor known
as [PIN"] and is the only known yeast prion that is commonly
found in wild strains (19, 20). [RNQ™*] prions also cause the exon
1 fragment of huntingtin protein, containing glutamine repeats,
to become toxic in yeast (16). Thus, [RNQ*] prions can interact
with other amyloid-forming proteins and thereby help drive their
conversion into benign or toxic amyloid-like species.

Results

Overexpression of Rnq1 Is Toxic in [RNQ*] Cells. We recently dis-
covered that moderate (i.e., =~5- to 10-fold) overexpression of
Rnql from the GAL1 promoter was severely toxic in cells that
harbored the [RNQ™] prion (Fig. la (Upper) Growth of serially
diluted liquid cultures on agar. (Lower) Protein levels detected
by Western blotting). This finding was surprising because Rnq1
overexpression was not toxic when endogenous Rnql was in the
[rng—] non-prion conformation, nor was it toxic in cells carrying
adeletion of the RNQ! gene, Arngl (Fig. 1a). Cell growth defects
observed were more extreme than any we have observed with
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Fig. 1. Overexpression of Rnq1 is toxic to [RNQ*] cells. (a) The effect of Rnq1
overexpression on yeast cell viability in the presence and absence of the
[RNQ*] prion. (b) Thioflavin-T staining of Rnq1 in [RNQ™*], [rng—], and ARnq1
cells. Fixed yeast were decorated with a-Rnq1 sera that was detected with a
fluorescent secondary antibody. The same cells were simultaneously stained
with the amyloid indicator dye, thioflavin-T. (c) Visualization of the aggrega-
tion state of Rnq1-YFP by fluorescence microscopy. (d) (Upper) Assembly
status of Rnq1-YFP as determined by SDD-AGE. (Lower) Western blots of cell
extracts.

other misfolded proteins in yeast (21, 22). At this modest level
of Rnql overexpression, ~25% of [RNQ™] cells were dead
within 4 h, as determined by the percentage of colony-forming
units and dye exclusion (data not shown). Toxicity was accom-
panied by the accumulation of Rnql aggregates that stained with
the common amyloid diagnostic dye thioflavin-T (Fig. 1b). Rnql
overexpression was found to be toxic in [RNQ*] laboratory
strains (W303, 74D-694, BY23, and BY4741), clinical strains
(YIM269, YIM421, YIM436, and YIM653), a fermentation
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strain (Y12), and wine strains (I14, T73, and WE372) (M.
Taipale and S.L., unpublished observations). Thus, Rnq1 toxicity
is pervasive and not strain-specific.

Although not quite as deadly, a C-terminal Rnql-YFP fusion
protein behaved similarly to untagged Rnql and exhibited the
same pattern of toxicity: toxic in [RNQ™] cells but not in [rng—]
or Arngl cells. This result allowed us to correlate changes in
toxicity with changes in protein distribution [Fig. 1¢ and sup-
porting information (SI) Fig. S1]. While aggregated in [RNQO™]
cells, Rnql-YFP was distributed throughout the cytosol in
[rng—] or Arngl cells. Using low- and high-copy plasmids that
express Rnql-YFP at different levels, we found that toxicity
positively correlated with the degree of overexpression (Fig.
Sla). Western blots of cell lysates separated by semidenaturing-
detergent-agarose gel electrophoresis (SDD-AGE) demon-
strated that, in [RNQ™"] but not [rng—] cells, Rnql-YFP assem-
bled into a SDS-resistant high-molecular-weight species typical
of amyloid assemblies of yeast prions (Fig. 1d and Fig. S1b) (23).
Yet a pool of soluble Rnq1-YFP, which ran at the position of a
monomer on SDD-AGE gels, also was present in [RNQ "] cells.

Growth of [RNQ*] cells overexpressing just the non-prion-
forming domain or just the prion-forming domain of Rnql, amino
acids 1-153 and 154-405, respectively, was not hindered (Fig. S1c).
When the prion-forming domain is expressed on its own, it assem-
bles into an SDS-resistant species that runs as an amyloid on
SDD-AGE gels (Fig. S1d). Therefore, the mechanism for Rnql
toxicity does not appear related to the accumulation of large
quantities of [RNQ*]-like amyloid per se.

The toxicity of Rnql overexpression in the presence of the
[RNQ*] prion might seem similar to the toxicity of overexpressed
Sup35 in the presence of its prion [PSI*]. Overexpression of
Sup35 is toxic in [PSI*] cells because it drives too much of the
essential Sup35 protein into an inactive amyloid conformation
(24). In contrast, Rnql toxicity cannot be due to an inhibition of
Rnq1 function because deletion of the gene-encoding Rnql has
no detectable effect on yeast growth under hundreds of condi-
tions tested (T.F. Outeiro and S.L., unpublished data). Further-
more, in contrast to Sup35, expression of Rnql’s non-prion-
forming domain does not rescue the toxicity caused by Rnql
overexpression (data not shown).

The Hsp40 Sis1 Can Suppress Rnq1 Toxicity. Sis1, an essential Hsp40
chaperone, is required for the propagation of the [RNQ™] prion
state (25). Sisl specifies Hsp70 function and is required for
protein synthesis, protein folding, and cell stress protection (26,
27). Overexpressing Sis1 by as little as 3-fold strongly suppressed
Rnql1 toxicity (Fig. 2a). To examine whether other chaperones
were capable of suppressing Rnq1 toxicity, an expression library
of 4,954 yeast genes was screened (21). Sisl was the only
chaperone in this library able to protect from Rnq1 toxicity (data
not shown). This library includes, among many other chaper-
ones, Ydjl, which is a member of the large Hsp40 family that is
closely related to Sisl. It also includes Hsp70 Ssal (Hsp70) and
Hsp104, which assist in shearing [RNQ™"] prions to form seeds
required for the propagation of the [RNQ™] state (28). There-
fore, the effect of Sisl on the toxicity of Rnql overexpression is
unique.

Sis1 not only promotes [RNQ™] prion formation, but it re-
mains stably bound to the prion in a 1:1 complex (29). This
finding could provide an explanation for the toxicity of overex-
pressed Rnql: Elevation of [RNQ*] prion levels could kill cells
by sequestering Sis1 away from its essential substrates. But this
explanation is unlikely because cells in which Sisl is depleted by
nearly 100-fold grow for extended time periods and exhibit
delayed lethality (30). In contrast, cells start to die within 4 h of
the induction of Rnql overexpression.

To directly eliminate the possibility that cell death is due to the
sequestration of Sisl, we deleted the domain of Sisl that is
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Fig. 2.  Sis1 overexpression protects against Rnq1 toxicity. (a) (Upper) The
effect of Sis1 or Sis1AG/F overexpression on Rnqg1 toxicity. Control indicates
strains grown under noninducing conditions. (Lower) Western blots of the
indicated proteins. (b) (Upper) Effect of Sis1 overexpression on the formation
of SDS-resistant [RNQ*] conformers as determined by SDD-AGE. (Lower)
Western blots of the indicated proteins. (c) Gel-filtration analysis of intracel-
lular pools of endogenous Rnq1 versus overexpressed Rnq1-YFP.

required for interaction with the prion, the glycine- and
phenylalanine-rich (G/F) region (29). A Sis1 AG/F variant fails
to promote the propagation of [RNQ™], but can carry out Sis1’s
essential functions. We overexpressed Sis1 AG/F and found that,
unlike Sis1, it could not suppress Rnql toxicity.

Sis1-Mediated Amyloid Formation Protects from Rnq1 Toxicity. The
toxicity produced by the overexpression of Rnql represents a
dominant gain of function that requires endogenous Rnql
protein to be in a [RNQ™"] prion conformation. It may be Sis1’s
ability to facilitate [RNQ™] prion propagation that ameliorates
Rnql toxicity. Indeed, the suppression of Rnql toxicity by Sisl
overexpression was accompanied by a substantial increase in the
formation of SDS-resistant [RNQ™] amyloids (Fig. 2b). This
seemed to be accompanied by a decrease in the pool of
unassembled SDS-sensitive Rnql. We have found, however, that
although SDD-AGE is a reliable method for quantitatively
detecting SDS-resistant species, it is not reliable for SDS-soluble
species. To examine SDS-soluble species, we used gel-filtration
chromatography. As shown in Fig. 2¢, a large pool of unas-
sembled Rnql-YFP accumulated on Rnql-YFP overexpression
(Fig. 2¢, compare Top and Middle). Suppression of Rnql toxicity
by Sisl correlated with a dramatic decrease in unassembled
Rnql-YFP pools and a corresponding increase in the pools of
assembled forms (Fig. 2c, compare Middle and Bottom). These
results suggest that cytotoxic Rnql conformers accumulate when
levels of Rnql protein exceed the cell’s capacity to efficiently
promote the template-driven formation of the SDS-resistant
[RNQ™] prion species. To test this hypothesis, we asked whether
Rnql toxicity would be exacerbated when the efficiency of
[RNQ™] amyloid assembly was reduced.

Identification of the Sis1-Binding Site in Rnq1. First, we identified
and mutated the chaperone-binding motif that Sisl uses to
interact with Rnql. A peptide array was created that contained
25 residue N-acetylated peptides spanning the entire Rnql
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Fig. 3. Sis1 binding to a conserved chaperone-binding motif in the non-
prion-forming domain of Rng1. (a) A schematic showing the domain structure
of Rng1. The underlined region in the nonprion domain of Rnq1 represents a
chaperone-binding motif identified via screening a cellulose peptide array
(see Fig. S2). (b) Sis1-dependent binding of Hsp70 Ssa1 to the peptide in the
Rnq1 peptide array that is bound most strongly by Sis1. (c) Mutation L94A in
the chaperone-binding motif reduces the ability of Sis1 to form coimmuno-
precipitable complexes with Rng1-GFP in [RNQ™*] cells. Rnq1-GFP was ex-
pressed by using the CUP1 promoter. Levels of the indicated proteinsin c were
visualized by Western blot (WB) analysis.

amino acid sequence. This array was incubated with purified Sis1
and washed, and Sisl-interacting peptides were identified by
Western blot after transfer of bound chaperone to nitrocellulose
(Fig. S2a). Tight binding of Sis1 was observed only with a few
neighboring Rnql peptides, and these peptides were located in
the non-prion-forming domain.

The amino acid sequence of this region is conserved in all
known Rnql homologues and contains a classic, hydrophobic,
chaperone-binding motif, LGKLALL (Fig. 3a and Fig. S2b) (31).
Hsp40 proteins stimulate the binding of their Hsp70 cochaper-
ones to specific substrates. Indeed, Sis1 stimulated binding of its
Hsp70 cochaperone, Ssal, to the peptides containing this motif
in an ATP-dependent manner (Fig. 3b). Thus, Sisl forms a
functional chaperone:substrate complex with peptides contain-
ing this chaperone-binding motif.

Next, to reduce the efficiency of Sisl’s interaction with
[RNQ*], we replaced hydrophobic leucine residues in the Rnql
chaperone-binding motif with alanines (L91A, L94A, and
L97A). As demonstrated by coimmunoprecipitation, the capac-
ity of Rnql-GFP to interact with Sisl was strongly, but not
completely, reduced by these mutations (Fig. 3c and data not
shown).

Mutations in the Sis1-Binding Site of Rnq1 Interfere with [RNQ*]
Amyloid Assembly. To determine whether the Rnql chaperone-
binding motif mutants were defective in the assembly of [RNO™]
amyloid, we expressed them as Rnql-GFP fusions from an
extrachromosomal plasmid in cells expressing WT Rnql in its
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dependent assembly of purified Rnq1-His and Rnqg1-His L94A into SDS-
resistant amyloid. (c) (Upper) Growth of 5-fold serial dilutions of [RNQ*]
strains in which WT or L94A Rnqg1 was overexpressed from the GAL1 promoter.
Where indicated, Sis1 was overexpressed from the GPD promoter. (Lower)
Relative expression level of the specified proteins as determined by Western
blot.

prion state. The L91A, L94A, and L97A mutations were ex-
pressed at levels similar to those of WT Rnq1 by using the CUP1
promoter, but they had a reduced capacity to form fluorescent
foci (Fig. S2¢). An L45A mutation, which also is located in the
non-prion-forming domain, but lies outside of the chaperone-
binding motif, had no detectable effect on the assembly of
[RNQ™*] prions (Fig. S2c¢). Further, a time-course analysis by
SDD-AGE (Fig. 4a) and pulse—chase (Fig. S2d) revealed that
the rate at which newly synthesized Rnql-GFP protein was
converted into SDS-resistant conformers in vivo was reduced
several fold by the L94A mutation in comparison with the WT
protein. In addition, in vitro-purified Rnql L94A could be
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templated by prion “seeds” present in [RNQ™] cell extracts to
form SDS-resistant species (Fig. 4b). However, it was templated
and converted to an SDS-resistant form with lower efficiency
than the WT Rnql protein.

Finally, we asked whether the impairment of Rnql amyloid
assembly increased the toxicity of Rnql overexpression. As we
hypothesized, Rnql L94A was more toxic than WT Rnql when
overexpressed in [RNQ™] cells (Fig. 4¢). A triple mutant, Rnql
L94A-1.96A-197A, was even more toxic than Rnql L94A (data
not shown). As expected from the fact that the Rnql L94A
mutation impaired, but did not eliminate, interaction with Sis1,
the overexpression of Sisl 3-fold was still able to suppress the
toxicity of the mutant protein (Fig. 4c).

Thus far, we have shown that interfering with the assembly of
Rnql into the [RNQ™] amyloid state is extremely toxic. Toxicity
occurs when Rnql expression is higher than normal (Figs. 1 and
2) or when mutations in Rnql interfere with the efficiency of
Sisl interaction (Figs. 3 and 4). In addition, depletion of Sisl
from the cytosol reduces the efficiency of [RNQ*] prion assem-
bly and exacerbates Rnq1 toxicity (Fig. S3). These collective data
indicate that the efficient conversion of native Rnql into its
SDS-resistant amyloid form prevents the accumulation of a toxic
Rnql conformer.

Suppression of Rnq1 Toxicity by Sis1 Requires [RNQ*] Prion Assembly.
Rnql L94A exhibits a higher propensity than WT Rnq1 to form
SDS-soluble aggregates when [RNQ™] assembly is impeded via
depletion of Sisl (Fig. S3). The inability of cells to maintain
Rnql L94A in a soluble state correlates with the enhanced
toxicity of the L94A mutant. In this sense, Rnql L94A is similar
to alleles of amyloidogenic proteins whose subtle defects in
folding kinetics cause devastating protein conformational dis-
eases (1). Thus, we wondered whether Rnql L94A would assume
a toxic conformation in the absence of templating by [RNQ™]
prion seeds. Indeed, the overexpression of Rnql L94A, but not
WT Rngql, was toxic in [rng—] strains (Fig. 5a). Hence, a small
amino acid substitution can cause Rnql to be toxic even in the
absence of [RNQ™"] amyloid formation.

Sis1-dependent [RNQ™] amyloid formation appears to protect
cells from toxicity caused by the overexpression of Rnql. If
amyloid formation is a critical aspect of Sis1’s ability to suppress
Rnql toxicity, then Sisl overexpression should not protect
[rng—] cells from Rnql L94A-mediated death because these
cells lack the [RNQ*] prion seeds required for amyloid assembly.
Indeed, overexpression of Sisl, which binds Rnql L94A with
reduced efficiency, protected [RNQ™], but not [rng—], strains
from Rnql L94A toxicity. This finding further confirms that
Rnql toxicity is not caused by the sequestration of Sisl into
[RNQ*] prion complexes. Furthermore, the presence of the
[RNQ™] prion assembly pathway and Sisl overexpression are
both required for the suppression of Rnql toxicity.

Rnq1 L94A Does Not Form Prion Amyloids in [rng—] Cells. To rule out
the possibility that Rnql L94A assembled into [RNQ™] prions
spontaneously in [rng—] cells, we compared its assembly status
to that of WT Rnql in [rng—] strains (Fig. 5 b—e). In [rng—] cells,
Rnql L94A exhibited a higher propensity than WT Rnql to
coalesce into foci (Fig. 5b). Gel-filtration chromatography
showed that Rnql L94A formed high-molecular-weight aggre-
gates in these cells (Fig. S4). Notably, these aggregates were not
SDS-resistant and (Fig. 5¢) were unable to bind the amyloid
indicator thioflavin-T (Fig. 5d). Thus, Rnql toxicity is not
related to the accumulation of excess pools of [RNQ*] amyloid
and may be caused by a SDS-soluble Rnql species.

Because small prion seeds in the form of detergent-soluble
prefibrillar species could have escaped detection by SDD-AGE
and thioflavin-T staining, we applied another test for the exis-
tence of such forms of Rnql L94A in [rng—] cell extracts (Fig.
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fluorescent secondary antibody. The same cells were simultaneously stained
with the amyloid indicator dye, thioflavin-T. (e) Cell extracts from [rnq—] cells
overexpressing either Rnq1 or Rnq1 L94A were incubated with purified Rnq1-
His or Rnq1-His L94A. The assembly status of purified Rnq1-His was deter-
mined by SDD-AGE. As a control, the assembly status of purified Rnq1-His
incubated with [RNQ™] cell extract also was determined.

Se). Prion seeds in cell extracts can be sensitively detected
through their ability to catalyze the conversion of exogenously
added native prion protein into SDS-resistant amyloids. Prion
seeds were readily detected in lysates of [RNQ™] cells overex-
pressing Rnql L94A (Fig. 4b). However, extracts of [rng—] cells
that contained toxic levels of Rnql L94A failed to seed assembly
of purified His-Rnql or His-Rnql-L94A into SDS-resistant
amyloids (Fig. Se).

The Rnql L94A assemblies in [rng—] cells fail to meet three
classification standards of [RNQ"] amyloid. They are SDS-
soluble, they do not stain with thioflavin-T, and they do not seed
polymerization of soluble Rnql protein. Rnql L94A is more
lethal than Rnql and can assume a toxic conformation in the
absence of [RNQ*] templates. Rescue from Rnql L94A toxicity
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requires Sisl overexpression and active propagation of the
[RNQ™] prion. Therefore, it appears that the conversion of Rnq1
L94A to [RNQ™] amyloid prevents the accumulation of toxic
Rnql conformer whose true nature remains obscure.

Discussion

Our data suggest a model in which efficient chaperone-
dependent conversion of soluble Rnql into SDS-resistant
[RNO*] amyloid is critical to prevent the formation of other
toxic Rnql conformers. We demonstrate that toxic Rnql con-
formers accumulate in a nonamyloid form when [RNQ*] assem-
bly is made inefficient by multiple means. We propose that
nonproductive templating of Rnql monomers by [RNQ™] seeds
predisposes Rnql to leave the amyloid pathway and accumulate
as a toxic species, whose exact nature is not yet clear. Templating
of native proteins to form amyloid is a basic feature of amyloi-
dogenesis, and we suggest that inefficiencies in this process
contribute to the proteotoxicity associated with certain protein
conformational diseases. This templating model explains how
amyloid formation can serve a protective function, whereas the
[RNQ™] prion state is a prerequisite for toxicity of the WT Rnq1
protein.

One of Sis1’s functions in [RNQ™] prion propagation appears
to be promoting the shearing of [RNQ*] amyloid fibers into
smaller pieces, thereby creating new surfaces to more efficiently
seed the assembly of the prion (28). This reaction also requires
Hsp104 and Hsp70. Hence, binding of Sisl to the non-prion-
forming domain of full-length Rnql may help facilitate this
shearing process. However, because overexpression of Hsp70
and Hspl04 does not suppress Rnql toxicity, Sisl may have
additional functions in [RNQ™] prion propagation that do not
overlap with those of other chaperones. Sisl stably associates
with assembled [RNQ™] conformers in a 1:1 molar ratio (29).
Therefore, Sisl’s binding to the non-prion-forming domain has
the potential to stabilize [RNQ™] prions in a conformation that
is optimal for efficient amyloid fibril growth.

Many neurodegenerative diseases involve the accumulation of
intracellular and/or extracellular amyloid protein aggregates. In
the past, these amyloid aggregates were thought to be the
cytotoxic, disease-causing protein conformer. However, recent
studies have begun to question this view. As one striking example
in mice, deletion of the GPI anchor of the prion protein PrP leads
to massive extracellular amyloid plaque formation in mice
injected with infective scrapie, but causes no overt clinical
manifestations of scrapie (32). Furthermore, it has been sug-
gested that neurodegenerative diseases are caused by the ability
of very different proteins to adopt common toxic nonamyloid
conformers such as protofibrils or soluble oligomers (3, 5).
Hence, amyloid formation may serve to convert oligomeric
amyloid precursors into a highly stable, nontoxic form (33).

Although amyloid is not toxic, its interaction with soluble
protein forms could give rise to pathogenic species via nonpro-
ductive templating. Case in point, when GPI-anchorless PrP was
expressed together with WT PrP, it accelerated scrapie disease
and resulted in increased deposits of both amyloid and nonamy-
loid proteinase K-resistant PrP (32). Similarly, in yeast, the
toxicity of Huntington exon 1 depends on the [RNQ™] prion state
(16, 22). This concept may even extend to the heterokaryon
incompatibility mediated by the [Het-s] prion in Podospora
anserina (34). HET-s in its prion form only leads to cell death
when coexpressed with the HET-S allele that cannot form
amyloid. Templating of the nonamyloidogenic HET-S protein by
[Het-s] prion seeds could lead to the formation of a toxic species,
whereas templating of HET-s protein would result in the non-
toxic prion amyloid species.

The aggregation state and the toxicity of aggregation-prone
proteins are strongly modulated by host factors such as Hsp70
and its associated cochaperones, but the mechanisms for chap-
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erone function in this process are just being defined (9). Mo-
lecular chaperones generally act to antagonize protein aggrega-
tion. Yet our observations that the chaperone-dependent
assembly of amyloid conformers can be cytoprotective provide
a different view of the effects of chaperones in conformational
disease. Thus, molecular chaperones can antagonize protein
toxicity in conformational disorders by two different mecha-
nisms: They can solubilize misfolded proteins or aid in seques-
tering them into benign, amyloid-like species. The most central
aspect of antagonizing toxicity of misfolded proteins appears
to be preventing accumulation of the detergent-soluble mis-
folded species, rather than preventing the formation of amyloid
conformers.

Methods

Strains. W303 and 74D-694 strains were used to take advantage of the
different genetic markers or gene deletions. Unless noted, yeast harbored
Rng1 in its [RNQ™"] prion form. The generation of isogenic [rng—] strains was
accomplished via sequential passage of cells on plates containing 3 mM
guanidinium-HCl (35).

Analysis of Rnq1 Cytotoxicity. Strains harboring pRS416-RNQ17 or pRS416-
RNQT1-YFP were grown overnight in synthetic dropout media containing 2%
raffinose before 5-fold serial dilutions were spotted on either glucose or
galactose plates. Alternatively, strains that harbored pRS316-RNQ7-GFP or
pRS315-RNQT-GFP were cultured overnight in synthetic media containing
glucose before dilutions were spotted on plates that contained 500 M CuSOa.
Plates were photographed after 3-5 days of incubation at 30°C.

Screening of an Rnq1 Peptide Array. A 25mer Rnq1 cellulose-bound peptide
array was prepared by automated spot synthesis and screened essentially as
described (31) (see also S/ Methods).

Pulse-Chase Analysis of [RNQ*] Prion Formation. Pulse labeling of yeast to
analyze the kinetics of Rnq1 assembly in 74D-694 cultures was performed
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essentially as described (30) (see also S/ Methods). Time points were taken
after the addition of 50 uM CuS04 to growing cells.

[RNQ™*] Prion Formation by Fluorescence Microscopy. Assembly of Rnq1-GFP
into fluorescent foci that represent prion amyloids was preformed essentially
as described (26) (see also S/ Methods).

SDD-AGE. Rnq1 assembly into SDS-resistant [RNQ™] prions was monitored by
SDD-AGE as described (23) (see also S/ Methods).

Rnq1 Coimmunoprecipitation with Sis1. Expression of Rnq1-GFP in log-phase
cells harboring the indicated form of pRS316-Rnq7-GFP was induced by sup-
plementation with 50 uM CuSO,. Native cell extracts were prepared 1 h later
under the conditions described (26), and «-Sis1 was added to cell lysates.
Rnqg1-GFP was coimmunoprecipitated with Sis1 and detected with a-GFP by
Western blot.

Seeded Polymerization of Purified Rnq1. Purified Rnq1-His was added to lysates
of the indicated strains. Assembly was monitored by SDD-AGE (see also S/
Methods).

Size-Exclusion Chromatography. [RNQ*] or [rng—] cells were grown overnight
in synthetic media at 30°C. Rnq1-YFP expression was induced by the addition
of 2% galactose for 4 h before the collection of 100 OD units of cells. Proteins
in extracts created with a nondenaturing lysis buffer were resolved on a
Superose 12S sizing column (Amersham Pharmacia). Indicated proteins in
column fractions were detected by Western blot.
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