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Heme oxygenase-1 (HO-1) has been viewed as a cyto-
protective protein, ameliorating the effects of in-
flammatory cellular damage, and as beneficial in
allograft protection from acute and chronic rejec-
tion, suggesting important functions in both innate
and adaptive immune responses. Mice deficient in
HO-1 exhibit defective immune regulation character-
ized by a proinflammatory phenotype. We examined if
impaired regulatory T cell (Treg) function contributes to
the immunoregulatory defects observed in HO-1�/�

mice. HO-1�/� mice exhibited a significantly higher
proportion of Foxp3-expressing cells among total CD4�

and CD4�CD25� cells in comparison to HO-1�/� mice,
and HO-1�/� Treg cells were at least as effective as
HO-1�/� Treg cells in suppressing proliferation of effec-
tor T cells in vitro from either HO-1�/� or HO-1�/�

mice. However, the absence of HO-1 in antigen-present-
ing cells abolished the suppressive activity of Treg cells
on effector T cells. These findings demonstrate that
HO-1 activity in antigen-presenting cells is important
for Treg-mediated suppression, providing an explana-
tion for the apparent defect in immune regulation in
HO-1�/� mice. (Am J Pathol 2008, 173:154–160; DOI:
10.2353/ajpath.2008.070963)

Historically, heme oxygenase-1 (HO-1) has been viewed
as a cytoprotective protein, ameliorating the effects of
inflammatory cellular damage. The demonstration, how-
ever, of a beneficial role for HO-1 in allograft protection
from acute and chronic rejection,1–3 strongly suggests an
important function of this enzyme in both innate and

adaptive immune responses. In the original description of
a mouse model of HO-1 deficiency, Poss and Tonegawa4

noted an age-related overgrowth of the CD4� T-cell pop-
ulation, suggesting impaired regulation of T-cell prolifer-
ation. Our previous work assessing immune function in
HO-1�/� mice supported this notion because it showed a
predominance of Th1-type cytokine secretion [eg, inter-
leukin (IL)-1, interferon-�, tumor necrosis factor-�, IL-6]
from splenocytes after polyclonal stimulation of T cells,
implying that HO-1 activity is important in modulation of
lymphocyte activation.5 This is of particular interest given
reports that HO-1 is constitutively expressed in the
CD4�CD25� subset of Treg cells,6 and that HO-1 levels
increase even further after T-cell stimulation.7 Further-
more, the report by Song and colleagues8 demonstrated
that carbon monoxide (CO), a byproduct of HO activity,
has a very strong inhibitory effect on CD3-activated T-cell
proliferation. Previously, we proposed a hypothetical
model for the immunomodulatory effects of HO-1 in the
maintenance of peripheral tolerance based on then avail-
able evidence that CO produced in regulatory T (Treg)
cells may be an integral component of the suppression of
T-cell activation by Treg cells in the presence of effector
T (Teff) cells and antigen-presenting cells (APCs).9

The purpose of the present study was to analyze the
role of HO-1 in Treg-mediated suppression. As a first
step, we performed a phenotypic analysis of lympho-
cytes obtained from the peripheral lymphoid organs of
HO-1�/� mice for potential abnormalities. In the second
step, we explored the functional significance of these
findings in a series of T-cell proliferation/suppression as-
says. Finally, we examined the possibility that HO-1 ex-
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pression in the APCs may modulate the suppressive
capacity of Treg cells. We found that Treg cells from
HO-1-deficient mice functioned normally in the presence
of wild-type APCs and Teff cells, but suppression by both
HO-1-deficient and HO-1�/� Treg cells was abolished in
the presence of HO-1-deficient APCs.

Materials and Methods

Animals

Male and female HO-1�/� mice (8 to 12 weeks of age,
C57BL/6 � FVB) carrying a targeted deletion of a large
portion of the HO-1 gene, were selected by genotyping
using tail DNA as previously described from offspring of
heterozygous/homozygous mating.10 Age-matched wild-
type (HO-1�/�) littermates were used as controls. The
study protocol was approved by the Institutional Animal
Care and Use Committee at the University of Alabama at
Birmingham.

Immunofluorescence Staining and Flow
Cytometry

Spleens were harvested and single cell suspensions pre-
pared according to standard protocols. The suspended
cells were stained with monoclonal antibodies against B
cells (CD45R/B-220), T cells (CD3, CD4, CD8), and sev-
eral markers of Treg cells (CD25, Foxp3, CTLA-4, GITR,
LAG-3), coupled with biotin (CD25) or various chromo-
gens (fluorescein isothiocyanate, phycoerythrin, PerCP,
APC, and Alexa 647) and immediately analyzed. Cells
were pretreated with antibodies specific for CD16/32 to
inhibit nonspecific binding of phycoerythrin to FC� recep-
tors. For the detection of intracellular antigens, the cells
were first surface stained with antibodies, then fixed,
permeabilized, and stained with antibodies against
Foxp3 and CTLA-4. Isotype-matched antibodies were
used as negative controls. Data were acquired using a
FACSCalibur flow cytometer (BD Biosciences, San Jose,
CA) and analyzed with Winlist analysis software (Verity
Software House, Topsham, MA).

Suppression Assays

CD4�CD25� (Treg) and CD4�CD25� (Teff) were iso-
lated from total splenocytes using magnetic bead sepa-
ration kits according to the manufacturer’s instructions
(Miltenyi, Auburn, CA). This methodology yields a popu-
lation of CD4�-depleted cells (APCs), CD4�CD25� cells
(Treg), and CD4�CD25� cells (Teff). APCs were irradi-
ated (3300 rad) and plated onto 96-well plates (105 cells/
well). Teff cells at a constant number (104 cells/well) were
then added with a varying number of Treg cells to provide
Teff/Treg ratios of 1:0, 1:2, 1:1, 2:1, 4:1, and 8:1. A com-
bination of 1 �g/ml of soluble anti-CD3 and 1 �g/ml of
soluble anti-CD28 (eBioscience, San Diego, CA) pro-
vided the polyclonal stimulus for proliferation. In exper-
iments in which purified dendritic cells (DCs) were
used, stimulation was provided by incubation with solu-
ble anti-CD3 at 250 ng/ml. Cells were incubated in RPMI

with 10% fetal bovine serum in a total volume of 200 �l. At
5 days of culture, 1 �Ci of 3H-thymidine (Amersham
Biosciences, Piscataway, NJ) was added for the final 16
hours to assess proliferation. Suppression was deter-
mined by 3H-thymidine incorporation, with the percent
suppression � [1 � (mean cpm Treg � Teff)/(mean cpm
Teff) � 100%]. In some experiments, incorporation was
measured by BrdU incorporation using a commercial cell
proliferation enzyme-linked immunosorbent assay kit
(Roche Diagnostics, Indianapolis, IN).

Isolation of Bone Marrow-Derived Dendritic
Cells (BMDCs)

BMDCs were isolated using a modification of the method
described by Lutz and colleagues.11 Nonadherent bone
marrow cells were cultured in complete Dulbecco’s mod-
ified Eagle’s medium containing 400 U/ml GM-CSF (Pep-
rotech, Rocky Hill, NJ). The medium was changed every
third day, and the nonadherent cells were removed on
day 9 and used in suppression assays as noted.

HO Enzyme Activity Assay

HO activity assays were performed in spleen microsomes
as previously described.12,13 Briefly, spleen microsomes
from HO-1�/� and HO-1�/� mice were incubated with rat
liver cytosol (3 mg), a source of biliverdin reductase,
hemin (20 �mol/L), glucose-6-phosphate (2 mmol/L), glu-
cose-6-phosphate dehydrogenase (0.2 U), and NADPH
(0.8 mmol/L) for 1 hour at 37°C in the dark. The formed
bilirubin was extracted with chloroform, change in optical
density from 464 to 530 nm was measured and enzyme
activity expressed as nmol of bilirubin formed per 60
minutes per mg protein.

Western Blots

Samples were prepared in Laemmli buffer and separated
on a 10% sodium dodecyl sulfate-polyacrylamide gel.
The gels were subsequently transferred to a Hybond-P
polyvinylidene difluoride membrane. The membrane was
blocked in a 5% nonfat dry milk and 1% bovine serum
albumin solution for 1 hour at room temperature before
addition of antibodies specific for HO-1 and HO-2 (SPA-
896 and SPA-897, respectively; Stressgen Biotechnolo-
gies, Victoria, Canada). The membranes were then incu-
bated with peroxidase-conjugated goat anti-rabbit IgG
antibody for 1 hour (Jackson ImmunoResearch, West
Grove, PA). Peroxidase antibodies on the membranes
were detected using the ECL chemiluminescent detec-
tion system (Amersham Biosciences).

Statistical Analysis

The statistical analysis was performed using the two-tailed
unpaired t-test, and a P value less than 0.05 was consid-
ered significant. Data are presented as mean � SEM.
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Results

HO-1 Deficiency Is Associated with
Abnormalities in Treg Phenotype

Previous work from our laboratory and others clearly
demonstrated that proinflammatory tendencies are asso-
ciated with HO-1 deficiency.5 Based on these observa-
tions, we characterized the phenotype of Treg cells in the
spleens of HO-1-deficient mice, and examined the fre-
quency of cells bearing a variety of putative Treg mark-
ers. We found that the overall frequency of splenic
CD4�CD25� cells was the same in both HO-1�/� and
HO-1�/� mice (2.12 � 0.12, n � 3, and 2.27 � 0.32%,
n � 4, of gated lymphoid cells, respectively; P � 0.497,
Student’s t-test). However, among these cells, the pro-
portion of FoxP3� cells was significantly higher in HO-
1�/� animals (Figure 1A, P � 0.005). The proportion of
cells expressing glucocorticoid-induced tumor necrosis
factor receptor family-related gene (GITR) or cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) among
FoxP3� cells was not significantly different in HO-1�/�

animals in comparison to HO-1�/� animals (Figure 1, B
and C, respectively). Both GITR and CTLA-4 are involved
in inhibition of the suppressive activity of Treg cells. In-
terestingly, however, the expression of LAG-3 (Figure
1D), a marker previously associated with Treg-suppres-

sive function,14,15 was significantly lower in HO-1�/�

mice (P � 0.010) suggesting that, in fact, HO-1�/� Treg
function might be impaired.

The Absence of HO-1 Expression in Treg Cells
Does Not Impair Their in Vitro Suppressive
Function

Based on the aforementioned findings, we examined the
suppressive capacity of Treg cells obtained from either
HO-1�/� or HO-1�/� mice on polyclonal CD4� T-cell
proliferation in response to crosslinking of CD3 and CD28
in the presence of HO-1�/� APCs. As depicted in Figure
2A, HO-1�/� Treg cells suppressed the proliferation of
Teff cells in a dose-dependent manner, at least as effi-
ciently as those from HO-1�/� mice. Of note, the origin of
Teff cells from either HO-1�/� or HO-1�/� animals had no
bearing on the degree of suppression (Figure 2B). These
findings imply that the presence or absence of HO-1
within Treg cells does not influence their suppressive
capacity.

Figure 1. Flow cytometric analysis of gated CD4�CD25� mouse splenocytes
expressing FoxP3 (A), GITR (B), CTLA-4 (C), and LAG-3 (D) (n � 4 for
HO-1�/� and n � 3 for HO-1�/�; all analyses were gated on live cells). P
values were calculated using the Student’s t-test. *P � 0.05 versus HO-1�/�.

Figure 2. Results of in vitro suppression assays as a function of the presence
or absence of HO-1 expression by Treg in the presence of HO-1�/� Teff cells
and APCs (A); the presence or absence of HO-1 expression by Teff cells in
the presence of HO-1�/� Treg cells and APCs (B). In both panels, solid bars
designate wild-type cells, and open bars designate HO-1-deficient cells (Treg
cells in A and Teff cells in B). At least three separate experiments were
performed for each set of conditions.
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The Absence of HO-1 Expression in APCs
Impairs Suppressive Function of Treg Cells

Next we evaluated the potential importance of HO-1 in
APCs on the modulation of Treg function. In experiments
similar to those described above, polyclonally stimulated
Teff cells were co-cultured with various quantities of Treg
cells in the presence of APCs obtained from either HO-
1�/� or HO-1�/� mice. As demonstrated in Figure 3A, the
absence of HO-1 in APCs abolished the suppressive
influence of Treg cells on Teff cell proliferation. Here also,
the HO-1 genotype of Teff and Treg cells played no role

(data not shown). Western blots of microsomal fractions
of splenocytes confirmed that the mice were deficient in
expression of HO-1 (Figure 3B). Splenic HO enzyme
activity in HO-1�/� mice also showed that HO activity
was undetectable (Figure 3C). In these initial experi-
ments, the APC population was heterogeneous, consist-
ing of monocytes, B cells, and DCs. To determine
whether HO-1 expression in DCs could be important,
Teff cells were co-cultured with Treg cells in the pres-
ence of BMDCs grown in culture from HO-1�/� or HO-
1�/� mice. The surface phenotype of the BMDCs isolated
from HO-1�/� mouse bone marrow was the same as
immature HO-1�/� DCs, with positive CD11c expression
and low levels of expression of CD86 (Figure 4, A and B)
and MHC class II (data not shown). Low levels of HO-1
expression were observed in DCs from HO-1�/� mice,
but not from HO-1�/� mice. HO-2 levels were low and
unchanged (Figure 4C). The absence of HO-1 expres-
sion in the dendritic cells resulted in a loss of suppression
by the Treg cells (Figure 4D), consistent with the results
seen with APCs isolated from the spleen (Figure 3A).
Treg cells proliferated readily when incubated without
Teff cells in the presence of HO-1�/� APCs, whereas they
did not proliferate in the presence of HO-1�/� APCs
(Figure 5). Collectively, these data suggest that the pres-
ence of HO-1 in APCs is essential for maintaining the
suppressive function of Treg cells.

Figure 3. A: Suppression of T-cell proliferation as a function of the presence
or absence of HO-1 in APCs. Solid bars designate HO-1�/� APCs, and open
bars designate HO-1-deficient APCs. At least three separate experiments
were performed for each set of conditions. *P � 0.05 versus HO-1�/�. B:
HO-1 protein expression in splenic microsomes isolated from HO-1�/� (n �
3) and HO-1�/� (n � 3) mice. C: HO enzyme activity in splenic microsomes
from HO-1�/� and HO-1�/� mice (n � 3 for each genotype). HO activity
was measured by bilirubin generation (nmol/hour/mg protein).

Figure 4. Surface phenotype of HO-1�/� (A) and HO-1�/� (B) BMDCs at 5
days of culture just before addition to suppression assays. The phenotype
was defined by staining with anti-CD11c-phycoerythrin and anti-CD86-flu-
oresecin isothiocyanate. C: Western blot of HO-1 and HO-2 expression in
BMDCs on day �9 of culture. The HO-1 genotype is indicated above each
lane. Actin served as a loading control. D: CD4�CD25� Treg function is
contingent on expression of HO-1 in dendritic cells. This plot depicts BrdU
incorporation after 5 days of stimulation under conditions specified in the
Materials and Methods. Results are derived from pooled BMDCs generated
from two to three mice from each genotype.
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Discussion

The results of this study provide insights into the nature of
the immune abnormalities associated with HO-1 defi-
ciency. We demonstrate that HO-1�/� mice exhibit sig-
nificantly higher frequencies of FoxP3� cells among
CD4�CD25� T-cell populations. The expression of lym-
phocyte activation gene-3 (LAG-3), a protein sugges-
ted to correlate with increased suppression by Treg
cells15–17 was significantly lower in HO-1�/� animals.
These differences suggest that Treg function could be
impaired in HO-1�/� mice, which would provide an ex-
planation for the immunoregulatory defects observed in
these mice. However, our in vitro studies demonstrate that
the suppressive function of Treg cells was normal in the
presence of wild-type Teff cells and APCs, indicating that
the immune dysregulation in HO-1�/� mice was not at-
tributable to an intrinsic defect in Treg function. Given
that Treg function is known to depend on the activity of
APCs, we examined the role of HO-1 in these cells to
influence Treg function as determined by in vitro suppres-
sion assays. Our results clearly demonstrate that a lack of
HO-1 in APCs significantly impairs the suppressive func-
tion of Treg cells under conditions of APC excess.

Previous characterizations of HO-1�/� mice indicate
that they develop chronic inflammatory changes with
time, with a relative overgrowth of the CD4� T-cell sub-
set.4 Studies by Pae and colleagues7 have suggested
that up-regulation of HO-1 in Treg cells may be related to
the suppressive function of these cells. On the other
hand, others have demonstrated that CD4�CD25� cells
from HO-1-deficient BALB/c mice retain their suppressive
capacity both in vitro and in vivo.18 DCs actively partici-
pate in modulation of regulatory T-cell activity.19,20 As
shown here and by others, immature DCs express HO-1,
but apparently reduce or lose this expression as they
mature.21 Furthermore, the protective effects of HO-1
induction against the development of diabetes coincides
with reduced DC infiltration into islets.22,23 Therefore, it is
possible that induction of HO-1 or its products can inhibit
DC maturation. Our current study supports this concept
in that we did not observe any defect in the in vitro
suppressive activity by Treg cells from HO-1�/� mice in

the presence of wild-type APCs and Teff cells. However,
the absence of HO-1 in APCs resulted in a substantial
loss of suppressive function by the Treg cells, indicating
that the regulatory abnormality in HO-1�/� mice could be
related to the induction and maintenance of Treg function
by APCs rather than to an intrinsic defect of the Treg cells
alone. Recent observations suggest that the up-regula-
tion of HO-1 in APCs is essential for abolishing patholog-
ical findings in models of neuroinflammation. The protec-
tive effect of HO-1 was associated with down-regulation
of MHC class II molecules, but not with changes in the
infiltration of Treg cells into the lesions.24,25 HO-1 medi-
ated alteration of the expression of either MHC molecules
or co-stimulatory molecules and subsequent changes
in APC/Treg interactions may be the underlying expla-
nation for the differences in Treg suppressive activity
and could explain findings reported in other experi-
mental systems.26 –28

It is well established that the expression of MHC and
co-stimulatory molecules, as well as the cytokine milieu
affect lymphocyte stimulation.29 We have previously
demonstrated that HO-1 deficiency favors Th1 polariza-
tion of the profile of cytokines released by activated
splenocytes.5 This effect was observed when lympho-
cytic populations were stimulated with anti-CD3/CD28
antibodies or when APCs were also activated by expo-
sure to the Toll ligand, bacterial lipopolysaccharide. In
addition, large amounts of IL-6 were released from stim-
ulated HO-1�/� splenocytes in comparison to wild-type
controls. IL-6 released by fully activated mature DCs is
capable of reversing Treg-mediated suppression, likely
by decreasing the susceptibility of CD4�CD25� cells to
Treg influence.30 Moreover, such activated DCs can re-
verse the anergy of Treg,30,31 a phenomenon seen in our
study in the presence of HO-1-deficient APCs. Thus, the
functional status of APCs, particularly DCs, can affect
both the proliferation of Teff cells as well as the function of
Treg cells.32 It is conceivable that the crucial role of HO-1
activity is to modulate antigen presentation and other
ancillary functions of APCs. Furthermore, these findings
highlight a more general role for tolerogenic APCs in
reinforcing the function of Treg. A prime example is the
existence of DCs with a so-called tolerogenic phenotype
that can be achieved by interference with the process of
maturation.33,34 These tolerogenic DCs both suppress
the activation of Teff cells and promote T-cell regulatory
mechanisms. It would therefore be informative if the ob-
servations in this experimental system were dependent
on cell to cell contact, soluble factors, or both. Experi-
ments are currently underway to determine how HO-1
affects DC and T-cell interactions.

Interference with NF-�B activation in the presence of
antigen is one of the described means by which DCs can
acquire the tolerogenic phenotype.35,36 Interestingly,
both HO-1 as well as the product of its activity, CO, have
been shown to inhibit activation of the NF-�B path-
way,37–39 and CO has been shown to inhibit polyclonal
T-cell proliferation in response to anti-CD3 and anti-
CD28.40 It is therefore possible that the induction of HO-1
during the early steps of DC activation may aid in the
acquisition of a tolerogenic phenotype. Moreover, tolero-

Figure 5. The lack of HO-1 in APCs is associated with proliferation of
CD4�CD25� Treg cells under stimulation with anti-CD3 and anti-CD28
antibodies. The plot depicts [H3]thymidine uptake results after 5 days of
incubation under stated conditions. Measurements were compiled from at
least three separate experiments.
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genic DCs, unlike mature DCs, secrete large amounts of
Th2 cytokines, such as IL-10. Interestingly, there is a very
close correlation between HO-1 activity and IL-10 secre-
tion. HO-1 activity can result in increased IL-10 produc-
tion.41 On the other hand, the anti-inflammatory proper-
ties of IL-10 require the expression of HO-1 in immune
cells.42 The latter was demonstrated in our recent work
showing that IL-10 prevented the immune processes as-
sociated with chronic allograft rejection, an effect depen-
dent on systemic expression of HO-1.3

We conclude that the activity of HO-1 is an important
regulatory mechanism affecting multiple levels of the im-
mune response. The elucidation of its effects on specific
immune cell populations will aid the development of ther-
apeutic strategies for a variety of inflammatory disorders,
including autoimmune diseases and transplant rejection.
Conversely, inhibition of HO activity may serve an adju-
vant effect to increase Teff responses in cases of cancer
or infection by persistent pathogens.
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