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ABSTRACT A hierarchical simulation framework that integrates information from molecular dynamics (MD) simulations into a
continuum model is established to study the mechanical response of mechanosensitive channel of large-conductance (MscL)
using the finite element method (FEM). The proposed MD-decorated FEM (MDeFEM) approach is used to explore the detailed
gating mechanisms of the MscL in Escherichia coli embedded in a palmitoyloleoylphosphatidylethanolamine lipid bilayer. In Part I
of this study, the framework of MDeFEM is established. The transmembrane and cytoplasmic helices are taken to be elastic rods,
the loops are modeled as springs, and the lipid bilayer is approximated by a three-layer sheet. The mechanical properties of the
continuum components, as well as their interactions, are derived from molecular simulations based on atomic force fields. In
addition, analytical closed-form continuum model and elastic network model are established to complement the MDeFEM ap-
proach and to capture the most essential features of gating. In Part II of this study, the detailed gating mechanisms of E. coli-MscL
under various types of loading are presented and compared with experiments, structural model, and all-atom simulations, as well
as the analytical models established in Part I. It is envisioned that such a hierarchical multiscale framework will find great value in
the study of a variety of biological processes involving complex mechanical deformations such as muscle contraction and
mechanotransduction.

INTRODUCTION

Overview and motivation

Many fundamentally important biological processes rely on

the mechanical response of biomolecules and their assem-

blies to external stimuli (1). An important example is the

gating of mechanosensitive (MS) channels, which are im-

portant in the transduction of signals related to touch, hearing,

etc (2–6). Although the identities of MS channels responsible

for specific physiological functions have been revealed at a

rapid pace in recent years (7,8), the molecular mechanisms

that dictate the gating properties of these channels are not

well understood.

The most exciting aspect of mechanotransduction lies in

the length scales that it spans: the mechanical stimuli can be

introduced through macroscopic-scale contacts, which is

transduced up to mesoscopic-scale (micron) distances and

eventually leads to microscopic-scale (nanometer) confor-

mational changes in membrane-bound protein or protein

complexes (3,4,6,9,10). It is envisioned that under the guid-

ance of an effective theoretical framework, a computational

analysis of the gating mechanism of MS channels is a valu-

able supplement to experimental investigations, both in terms

of better interpreting experimental data and stimulating new

mechanistic hypotheses that can be tested experimentally.

A productive computational analysis of MS channels,

however, requires the development of a novel simulation

framework that cannot only treat the large length- and

timescales implicated in the gating process, but also includes

sufficient molecular details to faithfully capture the most

important characteristics of a specific system. This is par-

ticularly important in biological systems where atomistic

features are crucial to structure and function. In other words,

the key challenge is to develop a flexible and reliable com-

putational framework that complements the traditional bot-

tom-up all-atom/coarse-grained simulations (which are most

appropriate for studying nanoscale biological processes

(11,12)), with a hierarchical approach that can efficiently

treat large deformation at the macro/mesoscopic scale, while

retaining key features and insights from the atomic scale.

Motivated by these considerations, we establish what to

our knowledge is a new, top-down, continuum mechanics-

based hierarchical framework to explore the working mech-

anisms of MS channels at multiple length and temporal

scales. Molecular mechanics-based simulations such as mo-

lecular dynamics (MD) at the nanoscale are used to obtain

critical insights into the physical properties of and interac-

tions among proteins and lipid molecules. Effective contin-

uum models are established to incorporate these atomistic

features, which are then used to study the conformational

responses of MS channel(s) upon various external mechan-

ical perturbations with the finite element method (FEM). The

proposed MD-decorated FEM (MDeFEM) approach is more

versatile than those based on highly idealized geometries and

properties (13,14), and sufficiently detailed for the purpose of

probing the underlying gating mechanism without suffering

from the limitations in the length- and timescales associated

with all-atom simulations. From the key insights obtained
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from detailed MDeFEM simulations, the most important

structural components that affect the gating process are

identified, based on which simplified analytical theoretical

models can be developed to further elucidate the essential

gating mechanisms and conformational response of mem-

brane proteins. Although we focus on the MS channels of

large conductance (MscL), the frameworks established in this

study are versatile and can be readily extended to other bio-

molecule systems, especially those with complex geometry

and loads that are not accessible to conventional all-atom

simulations.

The mechanosensitive channel of
large conductance

Most cellular responses to force are due to MS channels

(3,4,9). In bacteria, the gating of MS channels acts as a valve

and facilitates the permeation of small ions and water mol-

ecules. In mammalian cells, MS channels play an important

role in fundamental physiological functions such as touch

and hearing. MS channels have been identified in more than

30 cell types and abnormality in their functions may con-

tribute to serious health problems such as neuronal degen-

eration, hypertension, and glaucoma.

A considerable amount of research effort has been focused

on the MscL, which are ubiquitous, diverse, and essential to

the survival of bacteria. Compared with other types of MS

channels, the structures of MscL are relatively simple and

thus taken as the model system in this work to illustrate the

effectiveness of the numerical and theoretical frameworks we

develop.

Although Escherichia coli-MscL (E. coli-MscL) is one of

the most studied MS channels, the only available x-ray

crystal structure in the literature is for the MscL from

Myobacterium tuberculosis (Tb), which was captured in its

closed state by the Rees lab (15). The Tb-MscL is a homo-

pentamer with each monomer containing two types of

transmembrane helices (TM1 and TM2), cytoplasmic S1 and

S3 helices, and loops, Fig. 1, a and b. By retaining the main

features of the crystal structure of Tb-MscL and based on

experimental evidences, the atomic structure of E. coli-MscL

was developed based on homology modeling (16), which is

shown in Fig. 2, a and b, in its closed state.

As shown in Figs. 1 and 2, the structure of MscL is of

fivefold symmetry, and the residues on top of the trans-

membrane helices are connected by periplasmic loops,

whereas those at the bottom of the transmembrane helices are

linked to cytoplasmic helices via cytoplasmic loops. The

TM1 bundle consists of five longer subunits that form an

inner gate (i.e., the MS channel), and the five TM2 subunits

form the outer bundle. In E. coli-MscL (Fig. 2), for example,

TM1 and TM2 helices correspond to residues Asn15-Gly50

and Val77-Glu107, respectively. There is a break in TM1 due

to Pro43 near the top of the TM1 helix, and in the literature,

the segment above Pro43 is sometimes referred to as the S2

helices (16). The cytoplasmic domain is composed of gates

formed by S1 helices and S3 helices, which correspond to

residues Ile3-Met12 and Lys117-Arg135, respectively (16).

The size of the channel pore is a critical parameter, which

determines the ion flux that passes through and can be esti-

mated by measuring the electric current experimentally (17).

In principle, three valves can be formed by the TM1 helix

bundle, S1 helix bundle, and S3 helix bundle, respectively

(Fig. 2 b). However, the transmembrane pore enclosed by the

TM1 helix bundle is most important, and once its radius

reaches a critical value, the conductive state is changed into

one that allows ion entry (17). The transmembrane channel is

of a pentagon shape when projected onto the membrane

plane, and an effective radius of the MscL is defined as the

radius of a circle with the same area as the pentagon-shaped

TM1 pore enclosed by its principal axes, a ¼ 6.5 Å for

E. coli-MscL in the closed state.

Despite the availability of an atomistic structure of MscL

and extensive biophysical studies over the last few decades

(3,4,6,9,10,18), much remains unknown regarding the de-

tailed molecular mechanisms by which MscL senses the

mechanical deformation. The challenge lies in the diverse

forms of mechanical stimuli (1,3), which can include steady-

state contacts, high-frequency vibrations, fluid shear stresses,

osmotic and hemodynamic pressure, etc. All these external

stimuli are present in the background of internally generated

forces such as those that arise from hydrostatic pressure and

cytoskeletal polymerization. Mechanotransduction pathways

must therefore filter out irrelevant stimuli while at the same

time responding efficiently to the relevant stimulus. In such a

FIGURE 1 Tb-MscL: (a) top view and (b) side view of the closed crystal

structure (15). (c) Top view and (d) side view of the continuum model used

in the preliminary study (36) where only the transmembrane helices are

taken into account.
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context, it has been established that the membrane, once

considered only a passive cellular component, may play an

important role (2,4,10,19,20). Nevertheless, several funda-

mental issues remain: What is the conformational transition

pathway for MscL and what are the roles of various protein

structural motifs in sensing and transducing the mechanical

perturbation in the membrane? What are the special features

of MscL that distinguish it from other transmembrane pro-

teins as a mechanosensing system? Do different basic modes

of membrane deformation (Fig. 3) impact the structure of

MscL to a similar degree or is MscL sensitive to a specific

type of perturbation? Is there significant cooperativity among

MscL channels in the membrane? These questions are chal-

lenging from both experimental and theoretical perspectives,

due to the highly heterogeneous features of protein structure

and protein-lipid interactions as well as the multiscale nature

of protein-membrane deformation. (Certain modes of the

mechanical stimuli, such as bending and twisting of mem-

brane (Fig. 3) and interaction among MscLs, involves sub-

stantially larger length scales than that accessible to the

current all-atom simulations.) The continuum-based numer-

ical and theoretical framework we develop is aimed to ef-

fectively fill the important technical gap and address these

questions.

Previous experimental and modeling studies of
MscL and their limitations

The relationship between channel opening probability and

membrane tension force has been extensively studied using

patch clamp methodology on a lipid vesicle containing

E. coli-MscL (2,17). Since the cytoplasm and other membrane

proteins were removed before patch clamp experiments, the

measured channel opening indicated that the mechanical

deformation of lipid membrane is essential for gating of

MscL. A five-subconductance states model was established,

which showed that the tension-dependent conformational

transition is primarily attributed to the pore area variation that

occurred between the closed state and the first subcon-

ductance state. A plausible gating mechanism of MscL at the

molecular level was first developed by Sukharev and co-

workers based on a homology model for E. coli-MscL and

tested by cysteine cross-linking experiments (21). Later, the

structural rearrangements in the large prokaryotic MscL has

been determined by Perozo and co-workers (5,6,22) using

electron paramagnetic resonance spectroscopy and site-

directed spin labeling.

The importance of residues in different structural motifs

has been probed with mutation studies followed by patch

clamp measurements (16,23). Based on the experimental

constraints and known structural features of membrane pro-

teins, structural models for the gating transition of Tb-MscL

and E. coli-MscL upon equibiaxial tension have been es-

tablished (23). These models include 13 conformational

states ranging from the fully closed state (when the effective

pore radius a is ;6.5 Å) to an opened conformation (when

maximal conductance can be measured experimentally) with

a ¼ 19 Å. Although highly valuable, these structural models

need to be evaluated for validity in a systematic and physical

manner. For example, in the initial set of structural models

(23), the S3 helices are intimately involved in the gating

transition and eventually submerged into the membrane in

the fully open state. In a revised model by the same authors

(16), the cytoplasmic S3 helices are essentially static and

FIGURE 2 E. coli-MscL: (a) top view and (b) side view of the closed

structure of the homology model (16). (c) Top view and (d) side view of the

full protein model in the refined MDeFEM approach in this article, where the

cytoplasmic helices and loops are taken into account; the continuum model

is developed based on the closed structure of the homology model (23).

FIGURE 3 Six basic deformation modes of a membrane (a) biaxial

tension, (b) in-plane shear, (c) out of plane twisting, (d) bending, (e) torsion,

and (f ) membrane shear.
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remain closed during the gating transition, since the cyto-

plasmic helices are assembled as a stable bundle and the re-

moval of S3 helices does not prevent opening (24,25). Which

behavior is closer to reality can be studied using advanced

simulation techniques.

There have also been theoretical efforts postulating the

principles behind the gating transition of MscL. By consid-

ering possible deformation mechanisms (e.g., membrane

tension and torque), a thermodynamics formulation was pre-

sented (26). Turner and Sens (27) proposed a gating-by-

tilting model based on thermodynamics as an alternative

mechanism to the dilatational gating. In a pioneering lipid-

centric analytical work, Wiggins and Phillips (28) calculated

the free-energy of the lipid bilayer deformation and found

that it was on the same order as the energy barrier required for

channel gating, thus confirming the critical role of lipid

mechanics. Besides including the hydrophobic mismatch and

tension, this model was further improved by incorporating

other triggers, such as the membrane curvature change and

midplane deformation and interactions between interfaces, in

the transition from closed to opened states (20). The model

was further expanded by Ursell et al. (29) to study coopera-

tivity gating. Although these models provide useful insight

into the common features of MS channels, their validity for a

specific system is difficult to evaluate because these models

do not contain sufficient structural details; for example, in

Wiggins and Phillips (28) and Ursell et al. (29), the proteins

were treated as simple objects with cylindrical symmetry,

therefore the deformation energies of the protein were not

considered. Moreover, key parameters in these models are usu-

ally not obtained from detailed simulations or experiments.

Current status of numerical simulation of MscL
and their limitations

An effective numerical approach is a powerful alternative for

exploring the fundamental principles of mechanobiology.

Compared with lab experiments, the numerical experiments

are easier to ‘‘control’’ where the biomolecules and their

subunits may be manipulated in a precise way. Although all-

atom MD simulations (e.g., Fig. 4 a) are generic and versatile

(30), they are limited to phenomena at short timescales

(,100 ns) and length scales (,100 nm), and are computa-

tionally intensive if the entire protein plus the surrounding

solvent and lipid membrane are considered. All-atom MD

simulations have been applied to study the gating of

Tb-MscL (31). Not surprisingly, during a 3 ns simulation, the

lipid membrane maintained a constant volume well before

the conformation of MscL could be affected, and the incre-

ment of the pore radius was merely 4 Å. Even in the presence

of an external steering force, which was estimated based on

an analysis of the lateral and normal pressure profiles exerted

by the deformed bilayer to the protein (32), the channel

opened to a pore radius of only 9.4 Å after 12 ns of simula-

tion, which is far from a fully opened pore and highlights the

limit of atomistic MD simulations in the context of probing

the channel-gating process. Moreover, due to the limit of

pressure profiles accessible to all-atom simulations, the steered

MD approach is restricted to the simplest loading mode of

equibiaxial tension and a fairly high computational cost.

As an alternative approach to artificially accelerate the

speed of the conformational transition, targeted MD was used

(33). The lipid bilayer membrane was completely ignored

FIGURE 4 Assembled protein/lipid system. (a) The ‘‘cartoon’’ represen-

tation of E. coli-MscL and all-atom representation of the lipid. (b) The

preliminary ‘‘minimalist’’ model for Tb-MscL (36) where the simulation is

divided into two stages. (c) The refined MDeFEM approach and continuum

model for E. coli-MscL where concurrent coupling is realized between lipid

and protein.
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and a holonomic constraint was used to drive MscL from

the closed to the open state. Despite the guarantee of reaching

the final target, the constraining force on the protein atoms

can be extremely large compared to the realistic gating force

exerted by the deformed membrane (34). This makes targeted

MD simulations useful as a qualitative structural biology

tool but inappropriate for the purpose of analyzing the

membrane-mediated gating mechanism (33). Very recently,

a coarse-grained model (35) was developed based on a ther-

modynamics parameterization, and the gating of MscL was

simulated. However, the computational cost of such a parti-

cle-based model is still rather high and the model is difficult

to be used for studying deformations involving large length

scales, such as membrane bending/twisting that occur during

cell-cell interactions. Moreover, further validation of the

coarse-grained force field is still needed.

The limitations of those atomistic simulations motivated us

to develop a continuum mechanics-based simulation model

for MscL gating (36), which was essentially a phenomeno-

logical framework that incorporates certain key features from

atomistic simulations. In the preliminary ‘‘minimalist’’

model, only the transmembrane helices of MscL were in-

cluded since they are in direct ‘‘contact’’ with the membrane

and therefore expected to be most crucial for gating (17); the

cytoplasmic helices and the loops that connect helices were

ignored. Since this preliminary ‘‘minimalist’’ model was

only meant to illustrate the concept of a continuum mechanics-

based framework, the helices were modeled by a cluster of

homogeneous and isotropic elastic rods resembling the

geometry of TM1/TM2 helices (Fig. 1, c and d, for the ex-

ample of Tb-MscL). The effective Young’s modulus of the

helices was taken to be 100 GPa, which is the average value

for several a-helices computed with atomistic MD simula-

tions (37). The lipid membrane was modeled as a homoge-

neous and isotropic elastic sheet, for which the modulus was

taken to be 100 MPa and thickness was taken to be 35 Å

based on typical values in the literature (38,39). The trans-

membrane helix cluster is assembled in a cavity in the lipid

with the equilibrium distance determined by the nonbonded

interactions (Fig. 4 b for Tb-MscL). The nonbonded inter-

actions among the protein helices (rods) as well as those

between helices and the lipid were fitted based on atomistic

simulations using a molecular mechanics force field.

The integrated system was discretized and its structural

response to an external mechanical load was solved using the

quasi-static FEM (Fig. 4 b). Under the assumption that the

protein conformational transition is dominated by the mem-

brane deformation (i.e., ‘‘one-way’’ coupling, which is

consistent with that in steered MD (32)), the preliminary

simulation was separated into two stages. During the first

stage, the protein was not included, and an external load was

applied on the outer boundary of the lipid. The nodal dis-

placements of the cavity surface were recorded after each

time step and transferred to the second stage as boundary

conditions, where only the protein deformation was followed

explicitly; through the nonbonded interactions between the

lipid and the helix bundles, the MscL was gradually pulled

open.

Despite the simplicity of this preliminary ‘‘minimalist’’

model, realistic gating behaviors were found during the

subsequent quasi-static FEM simulations. The model channel

opened up in an iris fashion, as proposed experimentally,

upon equibiaxial tension in the membrane, and the interme-

diate structures along the gating pathway were qualitatively

very similar to the structural models (23). The tension re-

quired to open the channel pore to reach the expected size

was also quite similar to the experimental value. These results

are significant, because the model was developed largely

based on features of the closed x-ray structure. Moreover, it

was found that pure bending of the membrane did not sig-

nificantly open the channel, which not only emphasized the

importance of specific mechanical perturbation in MscL

gating but also nicely illustrated the unique power of the

continuum-based simulation framework.

Although the proof-of-concept model (36) effectively

captures the major physical properties and revealed some

fundamental gating characteristics of MscL, a number of critical

limitations need to be alleviated for more quantitative studies:

i. Only the transmembrane helices (TM1 and TM2) were

included in the model; the S1 helices and the loops that

connect TM1 and TM2 were ignored, although it is

known that they contribute to the quantitative gating

behavior of MscL (21,40,41); in addition, the major

kink in the TM1 of the E. coli-MscL due to Pro43 was

not accounted for.

ii. Although the effect of curvature was incorporated, the

lipid membrane was assumed to be isotropic and ho-

mogeneous, which ignored the distinct chemical nature

of the headgroups and tail regions that are likely es-

sential for gating (2,18,20,26).

iii. The deformation of lipid and protein were decoupled in

the two-stage approach, which is a reasonable approx-

imation only if the strain energy of protein is much

smaller than that of the membrane. As the membrane

protein undergoes conformational changes, it tends to

perturb the surrounding bilayer and the energy associ-

ated with such perturbation must be taken into account

(19).

iv. The preliminary numerical study in Tang et al. (36) only

focused on membrane tension and bending, and it is

important to explore the effects of other basic deforma-

tion modes of the membrane (Fig. 3) as well as other

perturbations in the membrane such as that due to struc-

tural changes in nearby MS channels or suction pressure

in patch-clamp experiments.

v. The mechanical properties of helices and lipid were

obtained from averaged values in literature (on similar

systems), which may not be sufficiently accurate and

transferable. The protein was modeled as homogeneous

Gating Mechanisms of MscL 567
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and isotropic, and it may be useful to distinguish hydro-

philic from hydrophobic groups and to include solvation

contribution to the system free energy.

Organization of the article

We carry out a comprehensive and systematic numerical

analysis on the detailed gating mechanisms of MscL under

different forms of mechanical perturbations in the sur-

rounding membrane. Based on insights from such numerical

simulations (e.g., the more important factors governing the

mechanochemical behaviors of biomolecules), simplified

analytical models are developed so that qualitative insights

can be gained toward the effect of different membrane de-

formations on membrane proteins in general. The article al-

leviates most limitations in our previous proof-of-concept

study (36), except for the effects of heterogeneity in the

protein materials properties and solvation, which require

further developments and are left for future work. We focus

on the conformation transitions of the MscL, and the sur-

rounding lipid bilayer is simplified as a solid material in the

current framework, which is an important approximation (see

below and Part II for detailed discussions) that also requires

revision in future studies.

In Part I, we describe the basic formulation of the contin-

uum mechanics-based model, how it is connected to atom-

istic calculations, and the simulation framework that allows

one to study the gating transition under external perturbation.

Going beyond the proof-of-concept study (36) where only

the transmembrane helices were taken into account, the full

MDeFEM model also includes the cytoplasmic helices and

loops so as to explore their contributions to the gating tran-

sition. In addition, a more sophisticated three-layer model is

established for the lipid bilayer in which the lipid headgroup

and tail regions are treated separately with different materials

properties. Moreover, concurrent coupling between struc-

tural components are realized in the simulation instead of the

two-stage protocol used in Tang et al. (36), so that lipid-

protein interactions are treated in a more realistic manner. To

help better define the limiting values and key components for

the various mechanical perturbations that might induce the

gating transition of MscL, an analytical effective coaxial

continuum medium model and a linear response model are

established; such a predictive, closed-form theoretical ap-

proach complements the numerical simulations.

In Part II, we analyze the detailed conformational transi-

tions of E. coli-MscL under various basic deformation modes

(see Fig. 3) and probe the contributions of various structural

motifs to the gating characteristics. As illustrations of the

unique value of the continuum mechanics framework, co-

operativity among MscL channels as a function of their

separation as well as the gating behaviors of MscL when the

surrounding membrane is subjected to patch clamp and

nanoindentation are also simulated; these phenomena are

very difficult to study with current atomistic simulations. The

results of these simulations are compared with previous all-

atom simulations and experiments, wherever appropriate; in

addition, the MDeFEM results are useful for evaluating the

validity of the simplified analytical models, which are also

developed in Part I.

ELEMENTS OF THE MDeFEM FRAMEWORK

As an illustrative example, we discuss in detail the con-

struction and parameterization of a refined continuum me-

chanics model for E. coli-MscL as well as the finite element

simulation protocol that probes the conformational response

of the channel to external perturbation. We emphasize that

the parameterization can, in principle, be very sophisticated,

using state-of-the-art atomistic simulations. In this study,

however, we limit ourselves to order-of-magnitude type of

estimates based on potential energy scans and normal mode

analysis. Keeping the parameterization simple helps high-

light the fundamental physical principles that govern the

gating process. Once the qualitative relative importance of

different factors is understood, more sophisticated simula-

tions can be used to establish more quantitative models.

Structural components

Protein components: helices and loops

To explore the effects of protein structural motifs, especially

the S1 helices and the loops connecting TM1 and TM2 helices

that may play an important role during gating (16,21,40,41),

the preliminary continuum model of protein (36) is signifi-

cantly expanded to become a complete model. The cytoplas-

mic helices are also taken into account as three-dimensional

elastic cylinders and the loops as quasi-one dimensional

springs (Fig. 2, c and d). Same as the previous model, the ge-

ometries of all continuum components are measured from the

closed state structure (23); note that there is a small difference

between the length of the S3 helix in the homology models in

refs Sukharev et al. (23) and Sukharev and Anishkin (16);

nevertheless as shown in Part II, the S3 helices play a minor

role during the process of gating and thus such a difference is

expected to be unimportant.

Each helix (TM1/TM2 helices or S1/S2/S3 helices) is

modeled as an elastic cylinder with a diameter of 5 Å, a

typical value for the dimension of the main chain of an

a-helix (36). Spherical caps are imposed on both ends of the

helices for numerical convergence purposes (36). The helix is

taken to be homogeneous and isotropic, thus assuming that

the mechanical properties of a helix vary little with respect to

sequence and the elastic properties remain constant during

the gating transition. (We note that in general, the properties

of a-helices are inhomogeneous and environment-dependent.

In this article, we take the simple approximation by ne-

glecting these differences, and the materials properties of
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helices and other continuum elements should be considered

as typical values. Further refinement of the MDeFEM model

will be pursued in future studies as discussed in Part II.). The

only exception is for the break between S2 and TM1 helices

(Pro43, illustrated by the dark segment in Fig. 2, b and d),

whose property is determined separately and is less stiff than

the rest of the helix.

Instead of obtaining the properties from literature, the

materials properties of the helices are calibrated by matching

results of normal mode analysis (NMA) at the atomistic and

continuum levels. The atomistic NMA is carried out using the

CHARMM19 force field (42,43), which is more appropriate

here because the calculations are done in the vacuum; the

effect of solvation is approximated by adopting a distance-

dependent dielectric constant in the electrostatic calculations,

and no solvent damping effect is considered so as to be

consistent with the continuum calculations. The Young’s

modulus is then varied such that the eigenvalues and ei-

genvectors for the three lowest-frequency modes computed

at the continuum level best fit the results from the atomistic

normal mode calculation. For example, the lowest eigen-

mode of a transmembrane helix is essentially flexural bend-

ing, whose continuum and atomistic configurations are

shown in Fig. 5. For TM1 and TM2 helices, the lowest fre-

quencies are 105.7 and 96.4 GHz, respectively, which lead to

the fitting of their effective Young’s moduli as 80 GPa and

117 GPa, respectively.

The loops (gray strings in Fig. 2) between the helical pairs

TM1 and TM2, TM1 and S1, and TM2 and S3, are also in-

corporated in the continuum model to test hypotheses re-

garding their roles during the gating transition (23). For

simplicity, the loops are modeled as elastic springs with key

geometrical parameters directly measured from the homol-

ogy model for the closed state (16). Their mechanical prop-

erties are also assumed to be homogeneous and obtained by

the similar normal mode fitting at the atomistic and contin-

uum levels as discussed for the helices. Selected examples are

also given in Fig. 5.

The key geometrical and mechanical properties for the

helices and loops are summarized in Table 1. The Young’s

moduli of helices fitted in this article are within the range for

the a-helices (60–180 GPa) computed from atomistic MD

simulations (37); the spring constants for the loops are rather

stiff and also consistent with previous studies (31,32), sup-

porting their possible importance during gating (see the dis-

cussions in Part II).

Lipid membrane

In our previous study (36), the lipid membrane was modeled

as a homogenous isotropic sheet (see Fig. 4 b). In the current

study, a more sophisticated (refined) model that reflects the

different materials properties for the lipid head and lipid tail

regions is established, considering the importance of the

membrane in transducing the mechanical stress to the chan-

nel (2,20,21). Specifically, a three-layer model is developed

in which the lipid headgroup and tail regions are treated

separately with different properties (Fig. 4 c for E. coli-
MscL). This is motivated by the natural difference between

the chemical and physical properties in these regions; e.g., it

has been well established that the lateral pressure profile of

lipid bilayers has distinct peaks at the interface (neck) be-

tween the head and tail regions (44), and that modifying the

pressure profile can lead to different gating characteristics for

the MS channels (2,18,20,26).

In the three-layer phenomenological continuum model for

the lipid bilayer (Fig. 6 a), the effective elastic properties and

effective thicknesses of headgroup layer and tail layer are

derived from a previous MD simulation (44), where the

density map of water and lipids (Fig. 6 b) and the lipid

pressure profile (Fig. 6 c) elucidate the typical palmitoylo-

leoylphosphatidylethanolamine (POPE) lipid bilayer structure.

In Fig. 6 c, one curve is the pressure profile of the undeformed

lipid, whereas the other curve is the calculated pressure pro-

files of the deformed lipid with an area expansion of 10.8%,

which corresponds to an equibiaxial strain of 5.4%; in addi-

tion, the overall thickness reduction of the membrane is 3.8 Å.

FIGURE 5 Examples of several low-

est eigenmodes and frequencies of hel-

ices and loops: comparisons between

molecular mechanics and finite element

simulations. Here the TM1 helix only

corresponds to the segment below Pro43.

Gating Mechanisms of MscL 569

Biophysical Journal 95(2) 563–580



With reference to Fig. 6 c, the small positive pressure peak

corresponds to the interface between headgroup and tails;

inside the hydrocarbon tail region, the water density is zero

(Fig. 6 b) from which the thickness of the undeformed tail

layer (ttail) is ;25 Å. The difference between the locations of

the positive pressure peaks of the undeformed and deformed

curves in Fig. 6 c indicates half of the thickness reduction of

the tail layer after deformation, Dttail=ttail ¼ �10:8%:Denote

the effective Young’s modulus and Poisson’s ratio of the

hydrocarbon tail layer as Etail and ntail; respectively. Upon

equibiaxial tensile stress s, Dttail=ttail ¼ �2vtails=Etail; the

area expansion is DA=A ¼ 2ð1� ntailÞs=Etail: Finally, vtail ¼
0.5.

Half of the surface tension in the hydrocarbon tail can be

estimated by integrating the pressure profiles in Fig. 6 c (from

the center of the lipid to the small positive pressure peak).

Between the undeformed and deformed configurations, the

difference of their surface tension is Dgtail ¼ 17.4 dyne/cm.

Thus, the effective area expansion modulus of the tail layer is

Ktail ¼ Dgtail=ðDA=AÞ ¼ 160 dyne=cm; and from Tang et al.

(36), Etail ¼ 2ð1� vtailÞKtail=ttail ¼ 64 MPa:
The properties of the headgroup layer can be derived

through the same procedure. From the density map in Fig. 6 b,

the region containing phosphate atoms and ester oxygen

atoms is identified as the effective headgroup layer (which

should also carry the majority of membrane load), with

an undeformed thickness of thead ¼ 5 Å (on either side of

the tail layer). Thus, the total membrane thickness is, t ¼
2thead1ttail ¼ 35 Å: For each headgroup layer, the thickness

reduction after area expansion is 0.55 Å. Similar to the

derivation for the tail layer, the effective Poisson’s ratio of

the headgroup layer is then vhead¼ 0.5, same as the tail layer.

For the headgroups, the surface tension difference upon de-

formation is Dghead ¼ 6:75 dyne=cm; the area expansion

modulus Khead ¼ Dghead=ðDA=AÞ ¼ 62:5 dyne=cm; and

the effective Young’s modulus Ehead ¼ 2ð1� vheadÞKhead=
thead ¼ 124 MPa:

The effective mechanical properties and thickness of the

continuum lipid layers are listed in Table 1. Note that the real

lipid structure has a nonsmooth ‘‘surface’’ (Fig. 6 a), and thus

the effective properties derived herein only serve to illustrate

some of the most essential features from the continuum tri-

layer model. It is known that the lipid boundary adjusts for

the channel (29) and the lipid property is different near the

MscL; incorporating such features (e.g., inhomogeneity, lo-

cal curvature, residual stress) will be carried out in future

studies. It is expected that some of these features (e.g., local

curvature) can help to reduce the membrane strain needed for

full gating and thus are important for gating mechanisms.

In the middle of the membrane, a cavity with a 10-petal

flower shape is created to host the MscL (the assembled

MDeFEM system for E. coli-MscL-lipid bilayer is shown in

Fig. 4 c, which is similar to the atomic structure in Fig. 4 a);

the initial shape and size of the cavity surface conform to

those of MscL transmembrane helices in the closed state with

a distance of 5.5 Å (32). The nonbonded interactions between

lipid and helices are discussed in the next subsection. In the

absence of external forces, the system maintains equilibrium.

Interactions between continuum components

With a continuum-mechanics based representation, the in-

teractions among atoms within each continuum component

FIGURE 6 POPE lipid membrane (44): (a) the atomistic structure, (b) the

density map of a monolayer, and (c) the lateral pressure profiles of a

monolayer for undeformed and deformed lipid.

570 Chen et al.

Biophysical Journal 95(2) 563–580



are not computed explicitly because the corresponding en-

ergy is implicitly represented via the phenomenological

mechanical properties described in the last subsection; this is

one reason that the computational cost associated with the

continuum framework is substantially lower than all-atom

simulations. The interactions among continuum components

are calculated using pairwise terms following the standard

cutoff schemes commonly used in atomistic simulations.

Specifically, the nonbonded interactions between helices and

those between helix and lipid are represented by a pairwise

effective potential of the Lennard-Jones form (36),

EintðaiÞ ¼ C
n

m

d0

ai

� �m

� d0

ai

� �n� �
; (1)

where EintðaiÞ is the nonbonded interaction energy (per area)

between a pair of surface elements on two continuum

components, which include contributions from both electro-

static forces and van der Waals interactions; computing the

total interaction energy between two continuum components

requires summing over all nearest pairs of surface elements

between the two components. For any given pair of interac-

tion, d0 is the (shortest) initial equilibrium distance between

the two surfaces, and ai is the surface distance between two

deformed surfaces (for the ith element). Both m and n are

positive integers and account for repulsive and attractive

terms, respectively, with n , m in general. The value of d0

depends on the different types of continuum components

involved. For example, among the 10 interaction pairs

between TM1 helices, d0 is uniquely determined as the

shortest distance between TM1 helices measured in the

closed-state structure of E. coli-MscL. For other types of

pairwise combinations, e.g., lipid-TM1, TM1-TM2, d0 takes

on different values (see Table 2).

The parameters including the ‘‘well-depth’’, C, and the

exponents (n, m), are calculated based on fitting to energy

calculations using an atomistic force field; more elaborate

free energy (or potential of mean force) simulations are left

for future studies, as emphasized in the beginning of this

section. For each pair of helices, the interaction energy in the

vacuum is calculated using the polar-hydrogen set of the

CHARMM19 force field. Calculations are done for different

combinations of helical pairs, which effectively sample many

relative orientations; those between TM2-TM2 and between

S3 and other helices have not been considered, since these

structural components are very far apart. To estimate the

helix-lipid interactions, the insertion energy profiles are

computed when a single helix (TM1 or TM2) is gradually

transferred in and out of an implicit membrane with varying

orientations; an implicit dielectric model that includes both

electrostatic and hydrophobic interactions (45) is used for the

membrane to avoid the need of sampling a large set of lipid

configurations. The fitted parameters are summarized in

Table 2, where c ¼ 6Cn=d0:
To illustrate the fitting procedure, Fig. 7 a shows the total

nonbonded interaction energies of the primary helical inter-

actions for E. coli-MscL as functions of the normalized dis-

tance between the helix-helix center of mass, where the initial

configurations of the helices are taken from the closed

structure. By inspecting results for different angles between

the helical pairs, it seems that the fitted parameters (C, m, n)

are fairly transferable to the close, intermediate, and open

states; results are given in Fig. 7 b. (These parameters are

meant to be order-of-magnitude estimates, and the relative

importance of different parameters can be evaluated by

systematically repeating the simulations with specific pa-

rameters modified (e.g., see the section ‘‘Comparison of

continuum models of different sophistication’’ of Part II).

Such studies suggest that, as expected, the most important

parameter is the strength of protein-lipid interaction. For

example, with a 50% reduction of the corresponding C value,

gating of E. coli-MscL becomes more difficult. This implies

that a quantitative parameterization of protein-lipid interac-

tions should be an essential aspect for the refinement of the

model in the future.)

Taking the first derivative of EintðaiÞ with respect to

ai, the pressure-distance relationship between two surface

elements is (by convention, the repulsive pressure is posi-

tive),

pðaiÞ ¼
Cn

d0

d0

ai

� �m11

� d0

ai

� �n11
" #

: (2)

Such stress, which is fully coupled with the deformation

within each continuum component and the relative move-

ment between the components, ‘‘integrates’’ the system such

that upon external load, conformational transition of various

structural motifs can be triggered together.

TABLE 1 Geometry and fitted phenomenological material properties of the continuum components (helices, loops, membrane) used

in the MDeFEM simulation

Helices Loops Lipid membrane

Properties (E. coli-MscL) TM1 TM2 Pro43 S1 S2 S3 TM1-TM2 TM1-S1 TM2-S3 Headgroups Tails

Length (Å) 40.75 45.61 5.36 14.83 9.51 21.52 103 17.0 35.0 Large Large

Thickness or diameter (Å) 5.0 5.0 5.0 5.0 5.0 5.0 — — — 5.0 25.0

Young’s modulus E (GPa) 80 117 15 40 80 30 — — — 0.124 0.064

or spring constant Sl (N/m) 1.42 8.40 4.10

Poisson’s ratio n 0.3 0.3 0.3 0.3 0.3 0.3 — — — 0.50 0.50
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Estimation of load

Previous experimental (2,17), theoretical (28), and numerical

(32) studies have speculated the importance of lipid mem-

brane deformation, which will be validated by the MDeFEM

approach in this study (see Part II for details). In this sub-

section, we use a simple linear elastic membrane model to

estimate the load needed to achieve gating of MscL. The

lipid-protein interaction is neglected (i.e., MscL is absent),

and the lipid cavity is simplified as a circular hole of radius c
(;22 Å for the averaged radius of the lipid hole of E. coli-
MscL in the closed state (Fig. 4 a). The expansion of the lipid

hole radius (which is correlated with the effective MscL ra-

dius) is explored when a three-layer lipid membrane of outer

radius l (c� l) is subjected to several basic types of defor-

mation, sketched in Fig. 8 a for nonequibiaxial in-plane tension.

In-plane tension

For a three-layer ‘‘sandwich composite material’’ upon

displacement-controlled loading, the in-plane strain compo-

nents (with normal strains e1 and e2; and shear strain g12) are

related with the averaged stress components across the

thickness (normal stresses �s1 and �s2; and shear stress �t12),

through the equivalent elastic constants of the whole lipid

membrane, �Et; �vt; and �Gt; and the constitutive relationships

are

�s1¼
�Etðe1 1�vte2Þ

1��vt
2 ; �s2¼

�Etðe2 1�vte1Þ
1��vt

2 ; �t12¼ �Gtg12: (3)

The averaged stress conforms to the rule of mixture, e.g.,

�s1 ¼ s1 tailðttail=tÞ1s1 headð1� ttail=tÞ; by compatibility of

in-plane deformation of the headgroup and tail layers:

�Et

1� �v
2

t

¼ Etail

1� v
2

tail

ttail

t

� �
1

Ehead

1� v
2

head

1� ttail

t

� �
(4)

�vt ¼
Etailvtail

1� v2

tail

ttail

t

� �
1

Eheadvhead

1� v2

head

1� ttail

t

� �� �. �Et

1� �v2

t

� �
(5)

�Gt ¼
Etail

2ð1 1 vtailÞ
ttail

t

� �
1

Ehead

2ð1 1 vheadÞ
1� ttail

t

� �
¼

�Et

2ð1 1 �vtÞ
:

(6)

When a membrane contains a hole of radius c, and under

nonequibiaxial tension (Fig. 8 a), the radial displacement

field is

ur ¼
1
�Et

ð1� �vtÞr 1 ð1 1 �vtÞ
c

2

r

� �
�s1 1 �s2

2

� �

1
2cosð2uÞ

�Et

�s1 � �s2

4

� �
ð1 1 �vtÞr

h

1 ð�s1 � �s2Þ
c

2

r
� �s1 � �s2

4

� �
ð1 1 �vtÞ

c
4

r3

�
: (7)

TABLE 2 Fitted parameters for the nonbonded interactions between helices and between helix and lipid for E. coli-MscL used in

MDeFEM simulations

Interaction pair Lipid -TM1 Lipid -TM2 Lipid -S1 TM1 -TM1 TM1 -TM2 S1 -TM1 S1 -TM2 S1 -S1 S3 -S3

d0 (Å) 5.5 5.5 7.0 1.5 5.0 4.0 5.5 4.0 7.0

c (GPa) 3.2 3.2 0.05 5.5 3.4 3.0 0.8 9.0 6.0

m 9 7 2 2 9 8 10 9 11

n 3 3 1 1 3 3 3 4 6

FIGURE 7 Example of fitting of the total nonbonded interaction energy

(per area) between continuum components of E. coli-MscL. The x axis is the

normalized separation between the center-of-masses (with 1.0 being the

equilibrium spacing). (a) Comparison between FEM and molecular me-

chanics calculations for helical pairs in the closed structural model. (b) The

fitted set of parameters is fairly transferable to other structural states

(expanded/intermediate and opened). In b, the scale for the interaction

between lipid and S1 helices is given on the right of the figure, whereas the

scale for interaction between helices is given on the left.
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Thus, the increment of lipid cavity radius is

Dc ¼ urðcÞ ¼ c½ð�s1 1 �s2Þ1 2cosð2uÞð�s1 � �s2Þ�=�Et: (8)

Under equibiaxial tension, �s ¼ �s1 ¼ �s2 :

Dcbiaxial ¼ 2c�s=�Et: (9)

For the POPE lipid bilayer with properties listed in Table 1,
�Et and �vt are 81 MPa and 0.50, respectively. For E. coli-
MscL, c¼ 22 Å. To enlarge the cavity radius by 17 Å for full

gating (where channel radius a is increased by 12.5 Å), the

required equibiaxial tension stress is estimated to be ;31

MPa. Note that this is a rough estimation and in the nonlinear

MDeFEM simulation (Part II), the actual load is adjusted

until the desired MscL pore opening is reached.

Osmotic pressure

In the cellular context or liposome based measurements, one

of the sources of in-plane tension in lipid membrane comes

from osmotic pressure. Denote Dp as the net variation of

osmotic pressure acting on the cell membrane, and the cell/

liposome radius is R, with R� t: Since the radius (typically

microns) is much larger than that of a protein (such as MscL),

the curvature effect can be neglected and the averaged in-

plane tensile stress is �s ¼ DpR=ð2tÞ; and the lipid cavity

radius increment is

Dcpressure ¼ cRDp=ð�EttÞ: (10)

For a typical liposome diameter of 5 mm, the estimated

pressure for gating is 0.88 bar.

Axisymmetric pure bending

For a homogeneous layer, the relationship between the

bending moment and inclination angle of axisymmetric pure

bending was given in Tang et al. (36). For the three-layer

lipid model, deformation compatibility requires the curva-

tures kr and ku in the cylindrical coordinates to be the same

for headgroup and tail layers. The line moment applied on the

cross section, Mr and Mu, are related to the curvatures through

the equivalent elastic constants

Mr ¼ �Dbðkr 1 �vbkuÞ; Mu ¼ �Dbðku 1 �vbkrÞ; (11)

where �Db and �vb are the equivalent bending stiffness and

Poisson’s ratio of the composite upon axisymmetric bending,

which satisfy

�Db ¼
Etail

1� v
2

tail

t3

tail

12

� �
1

Ehead

1� v
2

head

t3

12
� t3

tail

12

� �
(12)

�vb ¼
Etailvtail

1� v
2

tail

t
3

tail

12

� �
1

Eheadvhead

1� v
2

head

t
3

12
� t

3

tail

12

� �� �
=�Db: (13)

When a large sandwich membrane contains a hole of radius c,

and subjected to axisymmetric bending with radial line

moment Mo, the gradient of deflection is

dw

dr
¼ Moð1� �vbÞr 1 Moð1 1 �vbÞc2

=r
�Dbð1� �v

2

bÞ
: (14)

The lipid cavity wall, which is normal to lipid surface before

deformation, becomes inclined after bending, and the incli-

nation angle is

dw

dr

����
r¼c

¼ 2Moc
�Dbð1� �v2

bÞ
: (15)

For the POPE bilayer parameters in Table 1, the equivalent

elastic constants for bending are �Db ¼ 487 pN�nm and �vb ¼
0:50: According to the structural model (23), the averaged

tilting angle of the TM1 helices in the closed state is ;10�
(with respect to the normal of lipid). Therefore, a distributed

moment Mo ; 14.6 pN is expected to make the TM1 helices

upright.

Protein interaction

The interaction between neighboring proteins dictates the

cooperativity, which is of considerable interest in mechano-

transduction. We consider the most fundamental case of in-

FIGURE 8 (a) Schematic of a continuum three-layer sandwich lipid

membrane containing a circular hole. (b) The normalized stress concentra-

tion factor as a function of the normalized separation between two circular

cavities (46,58,59) for a plane stress problem.
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teraction between two identical MscLs, when the lipid is

subjected to an equibiaxial load. For a membrane containing

two circular holes of radius c (with center-to-center distance

l), the stress concentration factor on the boundary of one of

the circular holes is (46)

kc¼2ðcoshu�cos-ÞKcsinhu 114 +
N

n¼1

sinhnucosn-
sinh2nu1nsinh2u

� �
;

(16)

where

Kc

1

2
1 tanhusinh

2u

�

�4 +
N

n¼2

e
�nu

sinhnu 1 nsinhuðnsinhu 1 coshuÞ
nðn2 � 1Þðsinh 2nu 1 nsinh 2uÞ

�
¼ 1

(17)

with coshu ¼ l=ð2cÞ and cos- ¼ ð11coshucosuÞ=
ðcoshu1cosuÞ: Here, u is measured as that shown in Fig. 8

b. The resulting kc is plotted in Fig. 8 b, and it is normalized

by 2 (the stress concentration factor when l=c/N). It

follows that when l=c is ,;4, the interaction between the

two proteins becomes obvious under equibiaxial tension.

These theoretical estimations will be examined in Part II of

this study.

Simulation protocol and finite element analysis

In contrast to the two-stage simulation used in the prelimi-

nary study (36) (Fig. 4 b), in this study, both the lipid bilayer

and the full protein model are coupled concurrently and

simulated explicitly. While the lipid bilayer is deformed by

applying external load, the lipid cavity is deformed and thus

forces are transferred to the protein. Such force could also

influence the local strain field of the lipid surrounding the

channel. The configurations of lipid bilayer and protein are

updated after every time step, via such ‘‘two-way’’ coupling

(Fig. 4 c). The results of the concurrent simulation will be

compared with those from the ‘‘one-way’’ (two-stage) ap-

proach used in our preliminary study (36), so as to reveal the

quantitative influence of coupling.

Four-node tetrahedron elements are used to mesh the

helices and lipid. The longest helix, TM1, contains ;1800

nodes and ;7000 elements, with all nodes roughly equal

spaced. The lipid incorporates ;23,000 nodes and 118,000

elements. The mesh of lipid is more refined toward the inner

cavity where it interacts with the protein extensively. Two-

node spring elements are used mesh the loops. The longest

loop, connecting TM1 and TM2 helices, contains more than

100 nodes. An example of the mesh is given in the insets of

Fig. 4 c for E. coli-MscL, where for the lipid, only the mesh

near the cavity is shown. Finite element simulations are

carried out using ABAQUS (47) with finite deformation. The

nonbonded interactions (‘‘Estimation of load’’ subsection)

are implemented by a user interaction subroutine (UINTER)

(36). The typical computational time for an equibiaxial gating

simulation of E. coli-MscL is ;7 h on a Dell work station

with 3.2 GHz Intel Xeon CPU and 2 Gb RAM. The results of

the MDeFEM simulations, which provide insights into var-

ious mechanistic issues, are presented in Part II.

ANALYTICAL MODELS

Although the MDeFEM framework can significantly reduce

the computational cost compared to all-atom simulations, it

still involves a large number of degrees of freedoms.

Therefore, another important goal of this work is to explore

the possibility of establishing closed-form and simple ana-

lytical models, as an alternative approach that can capture the

most essential features of MscL gating, such as the evolution

of the channel pore under different magnitudes of equibiaxial

tension that might be broadly applicable to MS channels.

As discussed above, patch clamp experiments (17) on lipid

vesicles showed that as the main carrier of force in a lipo-

some, the lipid membrane is critical during the gating of

MscL. Once stressed, the load is transferred to the protein

(mostly through the transmembrane helices since they are in

close ‘‘contact’’ with the lipid) and triggers major confor-

mational changes in the channel (see Part II for detailed

analyses). For a typical load applied on the membrane, the

averaged deformation of the lipid cavity that holds the

channel is derived in the ‘‘Estimation of load’’ subsection,

which serves as the displacement boundary condition for the

protein. The next key issue is to establish an effective ana-

lytical model for MscL, such that its conformational transi-

tion can be estimated upon a specified boundary condition. In

the next two subsections, we develop continuum and ‘‘dis-

crete’’ versions of such analytical models, respectively. The

effectiveness of such models will be explored by comparing

to results from MDeFEM simulations in Part II.

A linear effective continuum medium model

During gating, the deformation of the membrane cavity is

mainly transferred to the closest TM2 helices via nonbonded

interactions in the radial direction. The nonlinear interaction

pressure-distance relationship (Eq. 2) is analogous to a

nonlinear elastic medium between the lipid cavity and the

TM2 bundle. After the TM2 helices are pulled open, the

TM1/TM2 nonbonded interactions (another effective non-

linear medium) may perturb the MS channel radius, which is

enclosed by the five TM1 helices (36). Therefore, a simple

analytical model can be established in which the details of

protein structures are ignored and the nonbonded interactions

are described by effective elastic media.

A schematic of such a plane stress effective continuum

medium model (ECMM) is given in Fig. 9 with E. coli-MscL

as an example. The inner effective annular medium I ac-

counts for the TM1-TM1 interactions in the hoop direction

and TM1-TM2 interactions in the radial direction, and the
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outer continuum medium II incorporates TM2-TM2 inter-

actions in the hoop direction and TM2-lipid interactions in

the radial direction. The inner radius, interface radius, and

outer radius of the ECMM are denoted by a, b, and c, re-

spectively. Here, a is the effective radius of the closed MscL

(and consistent with the previous definition in the subsection

‘‘The mechanosensitive channel of large conductance’’),

which corresponds to the smallest ‘‘through’’ capacity of the

TM1 bundle, and b is defined similarly for the TM2 bundle; c
is the averaged radius of the lipid cavity surface (refer to the

subsection ‘‘Comparison of continuum models of different

sophistication’’). From the closed homology structure of E.
coli-MscL, a, b, c equals 6.5 Å, 17 Å, and 22 Å, respectively.

A boundary condition is applied on the ECMM, which is in

general a function of angle u, where the radial and hoop

displacement components urðr ¼ cÞ and uuðr ¼ cÞ can be

obtained from Dc in the subsection ‘‘In-plan tension’’. The

goal is to first determine the effective elastic moduli (in radial

and hoop directions) of the annular media, and then estimate

the radial displacement (MS channel radius evolution) at r ¼
a using linear elasticity.

Elastic constants in the hoop direction

The plane-stress constitutive relationship of an orthotropic

elastic material is

er ¼ Srrsr 1 Srusu; eu ¼ Srusr 1 Suusu; (18)

where er and eu and sr and su are the strain and stress

components in radial and hoop directions, respectively. Srr,

Sru, and Suu are the in-plane elastic (compliance) constants.

Since the normal nonbonded interactions are more prominent

than the lateral components, Sru is assumed to be zero in

ECMM (which is also consistent with the current MDeFEM

approach). The effective elastic constants, SI
rr; SI

uu; SII
rr; and

SII
uu; for materials I and II, are estimated by letting the strain

energy of the effective media to be equal to the potential

energy change in molecular mechanics under the same

deformation.

Among the elastic constants, SI
uu is determined by the

TM1-TM1 interaction. When the radial and hoop properties

are decoupled and the TM2 bundle is removed, the potential

energy difference of the TM1 helix bundle between the

closed and the opened states can be obtained from molecular

mechanics calculations as DUTM1 ¼ UTM1
opened � UTM1

closed: Con-

sider the deformation of medium I only if a uniform radial

displacement �j is required to expand annulus I from the

closed to opened structure (for E. coli-MscL, �j ¼ 13.1 Å,

which is the averaged variation of the inner radius and in-

terface radius), the hoop strain is �j=r; and the strain energy is

DU
I

u
¼
Z H

0

Z 2p

0

Z b

a

1

2
s

I

u
eI

u
rdrdudz ¼ p�j

2
Hlnðb=aÞ=S

I

uu
;

(19)

where H is the height of the ECMM that equals to the

membrane thickness (35 Å for the POPE bilayer). By letting

the strain energy of ECMM to be equal to the potential energy

change from molecular mechanics calculations, SI
uu can be

estimated by

S
I

uu
¼ p�j

2
Hlnðb=aÞ=DU

TM1
: (20)

Similarly; S
II

uu
¼ pĵ

2
Hlnðc=bÞ=DU

TM2
; (21)

where ĵ is radial expansion of annulus II between the closed

and opened states (15.4 Å for E. coli-MscL), and DUTM2 is

the relevant potential energy change of the TM2 helix bundle

determined from molecular mechanics calculations.

Elastic constants in the radial direction

SI
rr is governed by the TM1-TM2 interaction. From molecular

mechanics calculations, the nonbonded interaction energies

between a pair of the nearest TM1 and TM2 helices are

readily obtained in closed and opened structures (see Fig. 7).

By summing up the contributions from the nearest neighbor

interactions and ignoring those from further neighbors, the

potential energy change in radial direction deformation,

DUTM1�TM2; can be estimated.

In ECMM, let �h to be the radial displacement difference at

r¼ a and r¼ b, the radial strain can then be approximated as

�h=ðb� aÞ; with strain energy

DU
I

r ¼
Z H

0

Z 2p

0

Z b

a

1

2
s

I

re
I

rrdrdudz ¼ p�h
2
Hðb 1 aÞ

2S
I

rrðb� aÞ
: (22)

By letting this term to be equal to DUTM1�TM2; SI
rr can be

estimated by

S
I

rr ¼ p�h
2
Hðb 1 aÞ=½2DU

TM1�TM2ðb� aÞ�: (23)

Similarly; S
II

rr ¼ pĥ
2
Hðc 1 bÞ=½2DU

TM2�lipidðc� bÞ�; (24)

where DUlipid�TM2 is the nonbonded interaction energy

between TM2 helix bundle and the lipid cavity surface, and

ĥ is the radial displacement difference at r ¼ b and r ¼ c.

General axisymmetric solution

Upon equibiaxial tension (the most effective way of gating,

as shown in Part II); the problem is axisymmetric. With x ¼

FIGURE 9 Schematic of the linear effective continuum medium model

(ECMM).
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Srr=Suu

p
; the general solutions of the radial displacement

component and stresses are

ur ¼ c1rx
1 c2r

�x
(25)

sr ¼ ðc1r
x � c2r

�xÞ=ðr
ffiffiffiffiffiffiffiffiffiffiffi
SrrSuu

p
Þ; su ¼ ðc1r

x
1 c2r

�xÞ=ðrSuuÞ;
(26)

where c1 and c2 are constants related with the boundary

condition. In equibiaxial membrane tension, the resulting

lipid cavity radial displacement Dcbiaxial ¼ 2c�s=�Et is im-

posed at the outer boundary (r ¼ c) (‘‘In-plane tension’’

subsection); alternatively, from the variation of osmotic

pressure, the boundary condition of ECMM can be

Dcpressure ¼ cRDp=ð�EttÞ (‘‘Osmotic pressure’’ subsection).

We use Dc to denote the lipid cavity radial expansion in this

section. For material II, uII
r ðcÞ ¼ Dc and the inner surface

(r ¼ a) is traction free, sI
rðaÞ ¼ 0: Continuity of radial stress

and displacement at the interface (r ¼ b) requires sI
rðbÞ ¼

sII
r ðbÞ and uI

rðbÞ ¼ uII
r ðbÞ: By applying these boundary con-

ditions, the MscL pore radius increment of ECMM is solved

as

which varies linearly with respect to Dc:

Closed-form solution for E. coli-MscL

In the first two subsections of this section, the energy dif-

ference between the closed and opened configurations of

MscL is used to fit the elastic constants of the effective me-

dium, which leads to SI
uu ¼ 39:5 GPa�1; SII

uu ¼ 0:0639

KPa�1; SI
rr ¼ 0:225 GPa�1 and SII

rr ¼ 1:34GPa�1: From Eq.

27, DaECMM ¼ 0:98Dc: Due to the nonlinear nature of non-

bonded interactions, at a large deformation the fitted elastic

stiffness should be smaller, i.e., the set of compliance con-

stants should be regarded as the ‘‘upper-bound’’ of the

ECMM.

One can also use the energy difference between the closed

and a small deformation state of relevant helix bundles (based

on the structural model (23)), which leads to the ‘‘lower-

bound’’ of compliance constants SI
uu ¼ 0.221 GPa�1 and SII

uu ¼
15.2GPa�1; the SI

rr and SII
rr are of similar magnitude as that

of the upper bound. From Eq. 27, DaECMM ¼ 0:31Dc: Both

bounds of the simple ECMM model are compared with the

MDeFEM simulation results in Part II.

Although simple and explicit, the ECMM is subjected to

severe limitations: 1), it can be applied to in-plane loading

only, and 2), there is no detailed information regarding

structural motifs. To overcome these disadvantages, we ex-

plore the elastic network model as described below.

Elastic network model

Basic formulation

Elastic network models (ENMs) have become popular in

recent literature for exploring flexibilities of large macro-

molecules that undergo significant structural changes for

function (48–50). In ENM, the atomic structure of a macro-

molecule is simplified to a network of elastic springs, where a

harmonic spring is used to link any pair of atoms within a

specified cutoff distance. Upon deformation, the displace-

ment field of a complex system can be represented by the

superposition of its lowest eigenmodes, which depend on the

collective motion of atoms that can be effectively captured by

the ENM. In its simplest form, the potential function of a

macromolecule (VM(x)) is written as that of a set of elastic

springs (see Fig. 10 a):

V
MðxÞ ¼ 1

2
g +

i,j

ðRij � R
0

ijÞ
2
QðRcut � R

0

ijÞ; (28)

where the sum goes over either all atoms in the system (all-

atom ENM) or selected atoms (e.g., Ca atoms); R0
ij is the

equilibrium distance between atoms i and j, Rcut is a cutoff

value that determines the number of elastic springs, and Q is

the Heaviside step function. The magnitude of the force

constant, g, is taken to be the same for all interactions, which

is clearly a dramatic simplification but found to be a rather

good approximation when only large-scale deformations are

of interest. The optimal values of g and Rcut, which are the

only two parameters in the simplest ENM, can be determined

based on matching the calculated atomic fluctuations via a

normal mode analysis (NMA) using the ENM potential to

either experimental data (e.g., the Debye-Waller factor in the

x-ray crystal structure) or all-atom simulations based on a

realistic force field (e.g., CHARMM (42,43)); see the next

subsection for details. A number of variations have been

proposed for ENM to make the interactions more heteroge-

neous and thus the elastic model for realistic. In this work, we

take the slightly modified version in which the force con-

stants for the covalently bonded interactions are taken to be

substantially larger, i.e.,

DaECMM ¼ u
I

rðaÞ

¼

4Dcffiffiffiffiffiffiffiffiffiffiffi
S

II

rrS
II

uu

q 1

b
�x

II

c
x

II

� b
x

II

c
�x

II

� �
1

a
�x

I

b
x

I

1 a
x

I

b
�x

I

� �

1ffiffiffiffiffiffiffiffiffiffiffi
S

I

rrS
I

uu

q a
�x

I

b
x

I

� a
x

I

b
�x

I

a
�x

I

b
x

I

1 a
x

I

b
�x

I

 !
1

1ffiffiffiffiffiffiffiffiffiffiffi
S

II

rrS
II

uu

q b
�x

II

c
x

II

1 b
x

II

c
�x

II

b
�x

II

c
x

II

� b
x

II

c
�x

II

 ! ; (27)
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V
MðxÞ ¼ 1

2
g

cov +
i,j

ðRij � R
0

ijÞ
2
QðRcov

cut � R
0

ijÞ

1
1

2
g

noncov +
i,j

ðRij � R
0

ijÞ
2
QðRnoncov

cut � R
0

ijÞ

3QðR0

ij � R
cov

cut Þ; (29)

where Rcov
cut and Rnoncov

cut are taken to be 1.7 and 5.0 Å in the

current study, gcov taken to be 1000 kcal/(mol�Å2), and

gnoncov is fitted against all-atom normal mode calculations

(see next subsection). Previous studies (51) found that

treating the covalent and noncovalent interactions separately

gives a distribution of normal mode frequencies in ENM that

better resembles that using more realistic potential functions

(e.g., using an all-atom force field).

Once the potential function of the system is given, we can

explore the structural changes of the molecule induced by

tension in the lipid membrane in several ways. In the simplest

protocol (Protocol 1), we mimic the effect of membrane

tension by attaching harmonic springs to a selected number of

protein atoms (e.g., those exposed to the lipid atoms) and

gradually pulling on the springs; i.e., the potential function of

such a composite system is given as,

Vðx; sÞ ¼ V
MðxÞ1 +

i2S

1

2
kðsi � xiÞ2; (30)

where si indicates the end of the harmonic spring under

tension, and k is the corresponding force constant. During the

simulation, the values of si are changed gradually in a radially

outward fashion (based on the estimated boundary condition

derived in the ‘‘In-plane tension’’ subsection), which gener-

ates tension through the harmonic springs that pulls on the

protein structure. The selection of the atoms to pull directly

(i.e., set S) is not entirely straightforward and therefore

several options have been tested (see Table 3 for three

different selections).

In a more elaborate model (Protocols 2 and 3), the elastic

protein is embedded in a lipid bilayer also described at the

ENM level (see Fig.10 b); then the lipid molecules at the

peripheral of the membrane are pulled using harmonic

springs, and the distortion of the membrane is propagated to

the membrane-protein interface in a way that is similar to the

continuum framework. In this model, the elastic constant for

noncovalent interactions within the lipid is taken to be

slightly larger than that within the protein to ensure the

structural integrity of the membrane under tension, which is

consistent with an estimate based on NMA of a pure lipid

TABLE 3 Summary of calculations (protocols) using elastic network models

Notation Model Pulling set S* Parametersy

ECO-1-1 United atom ENM TM1 (16–40) & TM2 (77–106) backbone gcov ¼ 1000; gnoncov ¼ 0:41

Rcov
cut ¼ 1:7; Rnoncov

cut ¼ 5:0

k ¼ 0.41

ECO-1-2 United atom ENM Backbone jzj , 20 Å Same as ECO-1-1

ECO-1-3 United atom ENM TM2 (77–106) backbone Same as ECO-1-1

ECO-2-1 United atom ENM 1 elastic lipid Outer membrane shell (2 Å); solving Eq. 31 Same as ECO-1-1, except

k ¼ 4.49; gnoncov
lipid ¼ 4:49

ECO-3-1 United atom ENM 1 elastic lipid Outer membrane shell (2 Å); explicit minimization Same as ECO-1-1, except

k ¼ 4.49; gnoncov
lipid ¼ 4:49

*In all calculations, the ends of the external harmonic pulling springs are displaced in a radially outward fashion, and these pulling springs are free to move in

the z-direction. The membrane center is at z¼0.0 Å.
yThe force constants for the elastic springs (g) and the harmonic pulling springs (k) are in kcal/(mol�Å2); the cutoffs (Rcut) are in Å.

FIGURE 10 ENM of E. coli-MscL: (a) Protocol 1, where only the protein

is modeled. (b) Protocols 2 and 3, where the lipid is also taken into account.
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bilayer with the materials properties specified in the MDe-

FEM (see below); the protein-lipid interaction is treated with

the same elastic force constant as that within the protein (see

Table 3). The relative position of the protein and the lipid

bilayer is established in a similar fashion as in a typical MD

simulation, which involves overlapping the closed state of

MscL with a preequilibrated POPE bilayer and removing the

lipids within 2.2 Å from the protein atoms.

The structural response of an elastic model under external

tension (as represented by pulling the harmonic springs at-

tached to certain protein or lipid atoms) can be derived in at

least two ways. The more straightforward approach involves

simply minimizing the total potential energy of the system

that includes both the ENM and harmonic pulling springs

(i.e., Eq. 30); we do this for the protein plus membrane

model, referred to as Protocol 3-1 in Table 3. In a different

approach (all other protocols in Table 3), which was moti-

vated by recent studies of molecular motor proteins (52), we

use a second-order expansion of the total potential energy to

predict the structural response of the elastic system under

pulling force. The result can be cast in a compact form using

matrix notations,

QM

00 1 kI3m33m QM

01

QM

10 QM

11

� �
dx1...m

dxm11...N

� �
¼ kds1...m

0

� �
; (31)

where Q indicates the Hessian (second derivative) matrix of

the molecular potential energy (VM(x)), subscripts 0 and

1 indicate the set i 2 S (including m atoms) and i;S
(including N-m atoms), respectively, and ds indicates the

displacements of the harmonic pulling springs based on

the ‘‘In-plane tension’’ subsection. The displacements of

the protein (and lipid) atoms are obtained by solving Eq. 31

using the LASPACK linear equation solver (53).

Given the quadratic form of the potential, the results from

direct minimization and solving Eq. 31 are expected to be

similar; see Part II (protocol 2-1 versus 3-1). If the potential

energy function takes more complicated forms and therefore

has many local minima, predicting the displacements using a

quadratic approximation as in Eq. 31 can be advantageous

because important contributions from collective (i.e., low-

frequency) modes are explicitly included. Although we

limit our attention to in-plane tension, the structural detail-

enriched ENM can be readily extended to various types of

loading modes (e.g., Fig. 3).

Noncovalent force constants (gnoncov) in the ENM models

To estimate the noncovalent force constant (gnoncov) in the

ENM model of E. coli-MscL, results from an all-atom NMA

using the CHARMM19 force field and the EEF1 implicit

solvation model are taken as the reference. Two protocols are

used to explore the variation of the estimated value. In the

first protocol, the value of gnoncov is adjusted such that the two

lowest frequencies from the ENM normal mode calculations

best match those from the CHARMM19 results. In the sec-

ond protocol, the value of gnoncov is determined based on the

best matching between root mean-square deviation fluctua-

tions calculated from ENM and CHARMM19 normal mode

analyses. In both the ENM and CHARMM19 calculations,

the block normal mode (or translational-rotational-block)

approximation (54) is used due to the large size of E. coli-
MscL; for ENM, this is accomplished with the Elnemo pro-

gram (55), whereas the implementation of (56) in CHARMM

is used for the CHARMM19 calculations.

The estimated value for gnoncov using the two approaches is

0.30 and 0.41 kcal/(mol�Å2), respectively, which are rather

close. In the pulling simulations, 0.41 kcal/(mol�Å2) is used

for the protein. To estimate the value of gnoncov for the lipid

membrane model, an alternative reference is used because the

normal modes of an all-atomic model of the lipid bilayer

might be sensitive to the configurations. Instead, the refer-

ence is taken as a circular membrane plate of radius 60 Å with

the elastic properties specified in the continuum model; for

this system, the normal modes can be calculated analytically

(57). For example, the first several normal modes are given

by

vij ¼ ðlij=R
2

l Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Db=ðrltÞ

q
; (32)

where i is the number of nodal diameters, j the number of

nodal circles, Rl the radius of the plate (60 Å), rl the mass

density of the plate (0.783 g/cm3), t the thickness of the plate

(35 Å) and �Db the equivalent bending modulus of the plate

(the ‘‘Axisymmetric pure bending’’ subsection); lij is a root

of a frequency equation involving Bessel functions, and the

numerical values are given in (57) (e.g., l20 ¼ 5:25;
l01 ¼ 9:08).

The value of gnoncov for the lipid atoms is then adjusted

such that the first two ENM normal mode frequencies for the

lipid plate best match the analytical results according to Eq.

32 above; note that a scaling factor of 0.588 is used for the

ENM frequencies because the block normal mode approxi-

mation is used (54). Such an estimated value for gnoncov of

lipid is 4.49 kcal/(mol�Å2), which is much larger than the

estimated value for protein atoms.

CONCLUSION

In this study, we establish the framework of what to our

knowledge is a new top-down approach, MDeFEM, for

studying biomechanical processes. It is a phenomenological

continuum-based model decorated with the most important

details from atomistic simulations, and the parameterization

process for the MDeFEM makes a natural coupling between

continuum and parallel all-atom simulations. The MDeFEM

framework includes mechanical forces on long length scales

while being faithful to local chemical details on short length

scales. The flexibility of this framework enables its applica-

tion to biological processes involving complex geometries/
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loads and systems with highly heterogeneous physical prop-

erties at a computational cost much lower than conventional

all-atom simulations.

An E. coli-MscL is used as a model system to illustrate the

MDeFEM approach. The representation of the continuum

components and the parameterization of relevant materials

properties have been chosen to be simple in this work to focus

on the most fundamental physical principles of MscL gating.

The transmembrane and cytoplasmic helices are modeled as

elastic rods, and loops are taken to be elastic springs. The

lipid is modeled by a three-layer structure to take into account

the difference between headgroup and tails. The phenome-

nological mechanical properties of the continuum units are

fitted from normal mode analysis. The interactions between

the components of the integrated structure are derived from

the nonbonded interactions between helices and lipid using

molecular mechanics-based energy calculations, although

more elaborate molecular simulations that include thermal

fluctuations can also be carried out. The system is discretized

and solved using the finite element method.

Since the MDeFEM continuum still involves a large

number of degrees of freedoms, to envision the essential

aspects in the gating of E. coli-MscL, ECMM and ENM are

developed. These alternative models assume that the lipid

deformation governs MscL conformation, which is imposed

as a boundary condition on the channel and proper bounds

(ECMM). The ENM model contains structural details for the

approximate transition pathway.

In Part II of this study, the established MDeFEM protocol

and analytical models will be used to study the detailed

conformational transitions of E. coli-MscL, including the

effects of different simulation protocols, structural motifs,

loading modes, and protein interactions, as well as the sim-

ulation of patch clamp and nanoindentation experiments. The

results will be validated via comparisons to all-atom simu-

lations, structural models, and available experimental data.

Furthermore, limitations of the current approach, especially

the consequence of using a solid description for the mem-

brane and neglect of solvation, will be discussed. It is envi-

sioned that such a hierarchical multiscale framework will find

great value in the study of a variety of mechanobiology

problems.
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