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ABSTRACT Small, icosahedral double-stranded DNA bacteriophage pack their genomes tightly into preformed protein capsids
using an ATP-driven motor. Coarse-grain molecular-mechanics models provide a detailed picture of DNA packaging in
bacteriophage, revealing how conformation depends on capsid size and shape, and the presence or absence of a protein core.
The forces that oppose packaging have large contributions from both electrostatic repulsions and the entropic penalty of confining
the DNA into the capsid, whereas elastic deformations make only a modest contribution. The elastic deformation energy is very
sensitive to the final conformation, whereas the electrostatic and entropic penalties are not, so the packaged DNA favors
conformations that minimize the bending energy.

INTRODUCTION

Bacteriophage carry double-helical DNA genomes sur-

rounded by protein capsids. The capsids of the smallest bac-

teriophage, with genomes of ;10–50 kbp, are icosahedral, or

nearly so. At one vertex of the capsid there is a group of

proteins that are responsible for driving the DNA into the

capsid and holding it there while the tail proteins are attached,

finishing the viral assembly.

Early x-ray diffraction studies showed that the DNA inside

viruses has some order, leading to the suggestion that it is

arranged in a series of coaxially spooled layers (1,2). This

model has two potential problems. First, coils near the center

of the spooling axis would be strongly bent. Second, the

highly ordered coaxial spool model ignores entropic contri-

butions that would favor disorder at physiological tempera-

tures. Flow dichroism experiments showed that DNA is not

as ordered as predicted by the coaxial spool model (3). Early

electron microscopy (EM) images of elongated bacterio-

phage suggested that the DNA resembles a twisted toroid (4).

Other proposals include the ball-of-string model (5), models

with kinks in the DNA (5,6), and the folded-toroid model (7).

Packaging of viral DNA into the capsid is driven by a

motor within the portal. Energy is required to force the DNA

into this small space because of elastic deformations of DNA

bending, electrostatic DNA-DNA repulsions, and the entro-

pic penalty of the reduced conformational space. Single-

molecule experiments found that the f29 motor can generate

forces in excess of 50 pN (8), and thus is stronger than the

myosin and kinesin motors. The total free-energy change is

;12,000 kcal/mol, and the motor has an efficiency of ;30%

(8). More recent measurements have suggested that the forces

can exceed 100 pN (9). Similar experiments have examined

the effects of ionic strength and the concentrations of poly-

valent cations on packaging forces (10).

Here we review recent advances in theoretical and model-

ing studies on DNA packaging. We describe the approaches

used, discuss how well they reproduce the experimental data,

and close with a discussion of current challenges and open

problems. The reader is referred to reviews by Jardine and

Anderson (11) and by Johnson and Chiu (12) for excellent

coverage of recent experimental work.

SURVEY OF MODELING APPROACHES

There are two principal methods for modeling DNAs the

size of bacteriophage chromosomes (i.e., ;10–100 kbp in

length): continuum-elastic models and molecular-mechanics

models.

The continuum-elastic approximation requires the pre-

supposition of a conformation for the final structure. In the

most detailed studies (13–15), the structure was assumed to

be globally arranged as a coaxial spool and locally hexago-

nally close-packed. The DNA-DNA interaction potential was

based on a potential of mean force measured by Rau and

Parsegian (16,17), who used osmotic pressure to compress

DNA to densities typical of those found in viruses. Entropic

contributions to the packaging free energy were assumed to

be negligible. The resulting curves for the force as a function

of the percent DNA packed (13,14) strongly resembled those

observed in the single-molecule packaging experiments (8),

and quantitative agreement was obtained with the adjustment

of two free-fitting parameters (15).

Theoretical studies using continuum-elastic models have

had considerable success in investigating ejection of the

DNA from mature viruses (13,15,18–23), in large part be-

cause they have been so tightly coupled to experiment.

Among the most significant contributions of these works are

a deep understanding of the role of osmotic pressure in

packaging and ejection (13,15,18,20–23), and the demon-
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stration that binding of host cell proteins accelerates ejection

through ratcheting and entropic effects (19).

The second method for modeling viral packaging is based

on molecular-mechanics approaches. The level of detail in

all-atom models (24) precludes their use for problems as large

as viral DNA packaging. Coarse-grain models treat double-

helical DNA as a string of beads connected by springs pa-

rameterized to mimic the elastic moduli of the real molecule

(18,25–36), and the DNA is driven into the capsid using

various algorithms. This approach allows one to examine the

forces, thermodynamics, and kinetics of packaging, along

with the range of packaged structures. As we will see, the

molecular-mechanics studies cast doubt on two critical as-

sumptions of the continuum-elastic approach: DNA confor-

mations are not coaxially spooled in all capsids, and the

entropic cost of packaging is not negligible.

Coarse-grain DNA models contain beads ;25 Å in diam-

eter that represent 5–10 basepairs (bp). Successive beads are

connected by harmonic springs whose stiffness matches the

Young’s modulus for DNA stretching. The angular springs

connecting successive triplets of beads are parameterized to

match the persistence length. All of the studies reviewed here

used similar parameters for these degrees of freedom. Only

two of these studies included DNA torsional stiffness (29,36).

Volume exclusion terms keep regions of DNA that are far

apart in the primary structure from passing through one an-

other. Most use a semiharmonic ‘‘soft sphere’’ repulsion or

the repulsive part of a van der Waals potential. Some purely

elastic models (25–28,30–32) do not include long-range

electrostatic repulsions. Other models do (18,29,33–35).

They use a variety of functional forms for long-range DNA-

DNA interactions, but all are parameterized to match the

Rau-Parsegian potentials of mean force (16,17).

The simplest approach for modeling a capsid is to treat it as

a sphere of radius R and penalize any DNA bead at radius r .

R. The energy can depend either quadratically (25,26,31,32)

or as the fourth power of (r-R) (18,29). Spherical (27,28) and

ellipsoidal restraints (28) have been modeled with a Weeks-

Chandler-Anderson potential (37). Repulsive planes can be

used to define an icosahedral capsid (30). We model capsids

of arbitrary shape with pseudoatomic representations (33–36).

A recent coarse-grain model uses a density functional

approach that formulates the Helmhotz free energy as a

functional of DNA and ion density profiles (38). This model

examines osmotic pressure inside capsids and reveals radial

DNA density profiles at different packing densities. Pack-

aging forces have not been determined, and the absence of a

bending stiffness term precludes prediction of specific con-

formations.

Model DNAs can be packaged without assuming a final

geometry by pushing successive DNA pseudoatoms into the

capsid one at a time and equilibrating the structure at each

step. A variety of equilibration algorithms have been used,

including molecular dynamics (MD) (26,31–35), Brownian

dynamics (BD) (18,29), and Langevin dynamics (LD) (30).

MD without solvent damping allows equilibration of ge-

nomes as large as 40 kB, but the absence of viscous effects

means that kinetic questions cannot be addressed. BD and LD

allow the determination of kinetic parameters, but the slow

rate of equilibration limits them to DNAs containing ;6 kbp

(30) to ;8 kbp (18). Stochastic rotation dynamics is a vari-

ation of MD in which the polymer is immersed in a coarse-

grained solvent model (39). Ali et al. (27,28) used this

algorithm to examine the packaging of models with ,800 bp

of DNA and a persistence length ;¼ that of B-DNA. It re-

mains to be seen whether this algorithm can be used to study

more realistic models of bacteriophage DNA.

THE STRUCTURE OF DOUBLE-HELICAL DNA
IN BACTERIOPHAGE

Cryo-electron microscopy (cryo-EM) provides a high-

resolution view of the average organization of bacteriophage

DNA. Simulations yield individual DNA conformations, and

FIGURE 1 Concentric spools. (a) Sequence of energy-

minimized structures for DNA packed into a spherical capsid

with no core (26). (b) Idealized representation. (c) DNA

packaged in a spherical capsid with no core at T¼ 300 K (35).
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one can assess the accuracy of these by calculating the av-

erage densities from multiple simulations and comparing

them with the cryo-EM results. The average (ideal) confor-

mation of bacteriophage DNA depends on the capsid size and

shape, and the presence or absence of core proteins that help

to organize the DNA (35), but the simulations reveal sub-

stantial particle-to-particle variation in conformation.

DNA conformations in spherical and icosahedral capsids

lacking large core structures favor a concentrically spooled

structure (26,31,35) (Fig. 1). Hall and Schellman (3) proposed

concentric spooling as a possibility 25 years ago. Brownian-

dynamics simulations gave similar structures (18), but only

when the DNA-DNA interaction included an attractive

component.

The overall organization is a coaxial spool if the virus has a

large core and is spherical or icosahedral in shape (30,32,

34,35) (Figs. 2 and 3). Two-dimensional cryo-EM images of

T7 showed concentric ring patterns that clearly suggested

coaxial spooling (40). Pronounced rings are obtained from

coarse-grained models if a single projected density pattern

is azimuthally averaged (30), or if densities from several

particles are averaged and then reconvolved with the EM

contrast transfer function (32) (Fig. 2 b). Fig. 3 shows that

three-dimensional density maps from models closely re-

semble those obtained from cryo-EM (41–44). There is

substantial variation in the DNA conformations in different

packaging runs.

The f29 virus has an elongated capsid with an axial ratio

of ;5:4, and it has almost no core. The favored conformation

is a folded toroid (Fig. 4), which closely resembles the

structure first proposed by Hud (7). It is interesting that

Forrey and Muthukumar (30) found a folded toroidal con-

formation in a model DNA packed into an icosahedral capsid

with no core, but only with an attractive DNA-DNA inter-

action potential. Spakowitz and Wang (29) found folded

toroids in a spherical capsid, but only when they did not re-

lieve torsional stresses by rotating the DNA as they packed it

(the folded conformation is produced when twisting stress is

converted to writhe, which is more favored energetically).

In elongated capsids with axial ratios of 2:1–3:1, twisted

toroidal conformations are favored (Fig. 5), as suggested by

Earnshaw et al. (4). This balances the penalties of elastic

deformations (which would favor longitudinal DNA pack-

aging) against the entropic penalty associated with ordered

longitudinal conformations.

We recently examined models with torsional stiffness in

which the entering end of the DNA is unconstrained. We

confirm the earlier report of Spakowitz and Wang (29) that

inclusion of torsional stiffness has no effect on the energetic

FIGURE 2 Coaxial spools. (a) Idealized representation.

(b) Simulated (32) (upper two panels) and experimental

(40) (lower two panels) transmission EM density maps for

T7 DNA. Projections of single particles along an axis

perpendicular to the axis of packaging give a punctate

pattern (left two panels), whereas projections along the axis

of packaging give concentric rings when multiple images

are averaged (right two panels): 10 independent packaging

trajectories for the simulations, and 70 independent parti-

cles for the experiments. (c) Cutaway view of a single

coaxially spooled conformation for a model of e15 (34). To

permit a clearer view of the DNA organization, the

graphical diameter of the DNA strands is ;8 Å (much

less than the DNA-DNA contact distance of 25 Å).

FIGURE 3 Single-particle reconstructions of electron density maps for e15

from simulations (34) (panels a and b) and experiment (41) (panels c and d).

The complete capsid and core are shown in the transverse cutaway views

(a and c), whereas only the DNA density is shown in the views down the

packaging axis (b and d). The central closed circular ring of density in views

b and d is a consequence of averaging over many conformations (40 inde-

pendent packaging trajectories in the simulations, and ;15,000 particles in the

experimental reconstruction). The ring of density is due to the groove in the

core protein, which, from very early in the packaging trajectory, has high DNA

density. Build-up of pressure in this groove is believed to drive a conforma-

tional switch in the portal protein, signaling that the capsid is full (43).
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cost of packaging. In contrast to their study, we find no effect

of torsional stiffness on conformation, whether the model is

rotated as it enters the capsid or not. Both ends of the DNA

were constrained in their model, preventing the complete

relief of torsional stresses. These stresses are easily relieved

at each step of packaging in our model.

Collectively, these studies have clarified the circumstances

under which different DNA conformations are favored. All of

these descriptions, however, are idealizations, and the con-

formations generated in all simulations are distributed widely

about these ideal forms (18,28–34).

FORCES, THERMODYNAMICS, AND KINETICS
OF DNA PACKAGING IN BACTERIOPHAGE

In molecular-mechanics simulations, the packaging force can

be directly calculated during DNA packing (18,27–34). The

simulation is stopped at regular intervals, and a separate

simulation is carried out while the end of the DNA is held

fixed at the portal. The average force required to keep the

DNA from leaving the capsid is an equilibrium value, be-

cause the net packing velocity is zero during the measure-

ment. Integrating the F versus d curve along the packaging

trajectory gives the change in Helmholtz free-energy, DA.

The molecular-mechanics energy is an internal energy, so the

entropic penalty is obtained by subtraction: �TDS ¼ DA �
DU. The energy function also gives separate values for the

elastic and electrostatic components of DU.

Our simulations on f29 (33) yielded packaging F versus d
curves with an excellent match to the original results from the

single-molecule experiments (8). Fig. 6 shows the results of

these simulations, along with the decomposition of the

packaging free energy into its principal components. Elec-

trostatic repulsions contribute most of the enthalpic penalty,

whereas the elastic cost of bending is modest. The entropic

penalty makes up ;½ of the total free-energy cost, invalid-

ating the assumption of theoretical studies (13–15) that the

�TDS term is negligible. The f29 genome has a radius of

gyration of ;340 nm free in solution and ;15 nm inside the

virus, so it undergoes a volume compression of ;10,000-

fold on packaging. It would be surprising if there were no

entropic penalty for such a reduction of conformational

space.

SUMMARY AND CHALLENGES

Coarse-grained modeling studies have revealed how the ideal

conformation of viral DNA depends on the capsid size and

shape, and the presence or absence of core proteins, and that

individual conformations vary widely around those ideal

conformations. Electrostatic repulsions and entropic penal-

ties are the dominant components of the free-energy costs of

DNA packaging. The bending-energy cost, though small, is

the dominant factor in defining the optimal conformation

because it is more sensitive to conformation than the elec-

trostatic energy, which depends almost entirely on the

packaging density.

Such modeling studies still face significant challenges,

however. Methods are needed for treating very large ge-

nomes (above 50 kbp) and examining kinetic issues in DNAs

FIGURE 4 Folded toroidal conformation. (a) Idealized structure proposed

by Hud (7). (b) Simulation of DNA packed into the slightly elongated capsid

of f29, which has a very short core (33). Individual pseudoatoms (6 bp) are

shown in some regions to facilitate recognition of the characteristic pattern,

which resembles the seams on a baseball.

FIGURE 5 Twisted toroidal conformation. (a) Idealized

structure. (b) Electron micrograph of a partially disrupted

giant T4 phage (4), which led to (c) the original model of

Earnshaw et al. (4). (d) Simulation of 39.7 kbp of DNA

packed into an elongated icosahedral capsid with an axial

ratio of ;3:1 (35).
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larger than the current limits (;10 kbp). Models are needed

that can accurately treat DNA kinking, a possibility that was

suggested long ago (5,6) and has been proposed to explain un-

expectedly high rates of cyclization of small closed-circular

DNAs (45). Simulations should be carried out to investigate

the distributions of knots found in tailless mutants of bacterio-

phages P2 and P4 (46–49).
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