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ABSTRACT Cell focal adhesions are micrometer-sized aggregates of proteins that anchor the cell to the extracellular matrix.
Within the cell, these adhesions are connected to the contractile, actin cytoskeleton; this allows the adhesions to transmit forces
to the surrounding matrix and makes the adhesion assembly sensitive to the rigidity of their environment. In this article, we predict
the dynamics of focal adhesions as a function of the rigidity of the substrate. We generalize previous theories and include the fact
that the dynamics of proteins that adsorb to adhesions are also driven by their coupling to cell contractility and the deformation of
the matrix. We predict that adhesions reach a finite size that is proportional to the elastic compliance of the substrate, on a
timescale that also scales with the compliance: focal adhesions quickly reach a relatively small, steady-state size on soft
materials. However, their apparent sliding is not sensitive to the rigidity of the substrate. We also suggest some experimental
probes of these ideas and discuss the nature of information that can be extracted from cell force microscopy on deformable
substrates.

INTRODUCTION

Focal adhesions (FAs) are micrometer-sized regions of pro-

teins that connect the extracellular matrix (ECM) to the cel-

lular cytoskeleton. Cytoskeletal stress fibers contain actin

filaments and myosin II molecular motors and transmit force

to their environment via the FAs. These highly organized

adhesions play a crucial role in cell development and cell

movement. One important feature of focal adhesions is their

sensitivity to the compliance of the extracellular environ-

ment: FAs are only stable on substrates whose rigidity ex-

ceeds a certain critical value which may depend on cell type

(1). Consequently, the mechanical properties of the substrate

are an important determining factor of cell activity and via-

bility (2). For example, for a given chemistry and geometry of

the extracellular matrix, stem cells differentiate into different

types of cells, depending on the stiffness of the ECM (2). The

ability of the cell to probe the mechanical properties of its

environment originates in the coupling of the FAs to the

contractile stress fibers. An important probe of the mecha-

nosensitivity of FAs is measurements of the forces cells exert

on substrates. Several experiments have quantified the forces

exerted by adhering cells by measuring the deformation of

elastic substrates (patterned elastomers (3–5), deflection of

elastomer pillars (6–8), and birefringence of an elastomer

(9)). In all these experiments, it is observed that focal adhe-

sions reach a steady-state value of the force and a steady-state

area. On stiff substrates, focal adhesions of stationary fibro-

blasts were also observed to be highly motile (10).

The sensitivity of FAs to the elastic properties of the ex-

tracellular matrix has not yet been studied experimentally in a

comprehensive manner. In this article, we investigate theo-

retically the impact of a deformable substrate on the growth

dynamics of focal adhesions, and show that these dynamics

are markedly different on very rigid surfaces compared with

deformable ones. In a previous article, we proposed a model

that accounts for the mechanosensitivity of focal adhesions

(11). In that study, we assumed that focal adhesions contain a

mechanosensitive, macromolecular unit that is activated by

stress resulting from acto-myosin activity or from external,

tangential applied stress (fluid flow, stretch of the substrate,

micropipette-induced shear, etc.). With this model, we

showed that the dynamics of focal adhesions is anisotropic,

as opposed to the isotropic growth of protein domains in the

usual, force-free, problem of protein surface adsorption; the

adhesions grow in the direction of the stress: additional

proteins join the adhesion at its front (the front and the back

edges of the adhesion are defined relative to the direction of

the stress), while proteins may (in some cases) dissociate

from the back (11,12). A further analysis of the energetics

(13) accounted for the observation that focal adhesions only

form on ECM whose stiffness exceeds a certain threshold

value (1). Finally, we predicted that on very thick elastic

ECM, focal adhesions would reach a stationary size, whose

value is proportional to the stiffness of the ECM. This implies

that a focal adhesion deforms an elastic substrate with a total

force that is proportional to the rigidity of the substrate. This

result appeared to be consistent with the work by Saez et al.

(6) that presented an alternative interpretation that did not

take into account the adhesion size as a function of rigidity.

Instead, those authors claim that the adhesions operate at a

setpoint of fixed displacement or strain, rather than fixed

force. This still-open question provides additional motivation
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for the analysis of our model for focal adhesion mechano-

sensitivity, and we show here that dynamics behavior is far

from simple when the ECM has a finite compliance.

In Focal Adhesions: Two-Layer Model, we briefly review

the framework of our model. The crucial assumption is that

the dynamics of focal adhesions is driven by the exchange of

energy of the anchoring/desorbing proteins including their

coupling to cell contractility and hence to the resulting sub-

strate deformation. The thermodynamic system under con-

sideration therefore includes not only the adsorbing proteins

as in the usual nucleation and growth or adsorption/con-

densation problems, but also includes the energetics of the

processes that exert force on the adhesion and hence deform

the substrate. When considering the situation of a fixed stress

on soft substrates, one must account for the fact that part of

the work done by cell contractility is used to deform the

substrate. This results in an increase of the total free energy

and therefore limits the growth of focal adhesions. (In the

absence of cell contractility, condensation of adsorbing

molecules in or on an elastic medium is, on the contrary,

favored by the softness of the substrate (14).) In Dynamics of

Focal Adhesions on a Rigid Substrate, we show that the

dynamics of focal adhesions on a rigid substrate is charac-

terized by several different regimes, depending on the stress

exerted on adhesion. These results are a generalization of the

predictions of Besser and Safran (12) that treated only the

case of infinitely rigid substrates. Dynamics of Focal Adhe-

sions on a Deformable Substrate predicts the dynamics of

focal adhesions for the case of thick, elastic substrates. These

new results show that adhesions saturate to a size that is

proportional to the rigidity of the substrate with a charac-

teristic time that is also proportional to the rigidity: adhesions

on soft substrates reach small steady-state sizes on short

timescales. In Discussion, we compare the predictions of our

model to existing experimental results and finally conclude

by discussing which physical quantities are accessible by cell

force microscopy and which features must be studied using

other techniques.

FOCAL ADHESIONS: TWO-LAYER MODEL

We model focal adhesions as a two-layer structure. The lower

layer contains membrane-bound integrins and related pro-

teins such as paxillin or zyxin that connect the cell to the

ECM. The upper layer contains proteins such as vinculin or

talin that link the lower layer to actin stress fibers (Fig. 1).

This very schematic model highlights the different dynamical

behaviors of the various components of FAs. The two layers

refer to two distinct dynamical behaviors and not necessarily

to a specific spatial organization. Although the limitation to

only two dynamical classes is a simplification that is not yet

supported by detailed experiments, the existence of different

dynamics for various components of FAs is supported by

recent high resolution fluorescence recovery after photo-

bleaching (15) and total internal reflection fluorescence or

fluorescence correlation spectroscopy (16) experiments.

Atomic-force microscopy structural measurements have re-

lated these findings to some specific spatial arrangements

(17), and show that stress fibers are localized above the FAs

while paxillin lies close to the membrane. In the following,

we assume that the lower layer is formed independent of, and

prior to, the formation of the upper layer. This assumption,

although crude at the molecular level, is inspired by the ob-

servation that integrin clustering in FAs requires neither force

nor actin filaments (integrin clustering does require talin and

PI(4, 5)P2 (18)). This is in contrast to the assembly of the

other components of the FAs that are only stable in the

presence of acto-myosin force (18). In the following, we

assume that the lower layer contains the mechanosensitive

units, while the upper layer contains proteins, hereafter called

linker proteins that transmit the stress from the stress fibers to

the mechanosensitive, lower layer (Fig. 1). Our model as-

sumes that once a linker protein anchors to the mechano-

sensitive layer, it instantaneously transmits a fixed and

constant stress, f~ (force per unit area); see Discussion for

more about this assumption. Experiments have shown that

the tangential component of the stress, f~; plays a dominant

role (19), and have quantified the stress that arises from actin

contractility (3,7,5,9). We thus focus our analysis on the

effect of the tangential component of the stress, f~; which

we denote as a scalar f. The direction of this component de-

fines the direction x (Fig. 2), which we term the force di-

rection.

The dynamics of focal adhesions is controlled by
the exchange of energy of the linker proteins
coupled to the stress fibers

What causes a focal adhesion to grow? As detailed in pre-

vious publications (11,13), our model accounts for recent

FIGURE 1 The two-layer model: linker proteins in the upper layer con-

nect the acto-myosin stress fibers and the mechanosensitive, lower layer that

is anchored to the substrate via integrins.
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experiments if we assume that the dynamics of FAs is driven

by the variation of energy of the linker proteins including

their coupling to cell contractility and hence to the substrate

deformation. Linkers bind to the lower layer and instanta-

neously connect this layer to the stress fibers, thus transmit-

ting the forces of the stress fibers to the mechanosensitive

layer. The force originates in the mechanical work performed

by molecular motors in actin stress fibers and results in the

elastic deformation of both the mechanosensitive layer and

the elastic substrate. We assume that the assembly of FAs is

limited by the kinetics of the various interactions among the

proteins, while diffusion occurs on much faster timescales

(12). Thus, the kinetics of the adsorption/desorption of the

linker proteins results from the variation of the chemical

potential of this coupled system (20),

@F

@t
¼ C1ðmbulk � madsÞ; (1)

where F is the concentration of linker proteins in the upper

layer that transmit the stress from the actin stress fibers to the

mechanosensitive layer: 0 # F # 1. The prefactor C1 relates

the variation of the chemical potential to the dynamics of the

FAs: C1 ¼ FbulkD/(kBTa2), where D is the diffusion coeffi-

cient of the linker proteins, Fbulk is the bulk protein concen-

tration, and a is the typical distance between two adsorbing

sites in the mechanosensitive layer. The chemical potential

difference between the linker proteins in the cell cytoplasm

and those connecting the stress fibers to a focal adhesion, is

mbulk – mads. The free energy from which mads is derived has

two contributions:

1. The mechanical energy that originates in the work done

by the stress fibers to maintain a constant stress (force per

unit surface) as the adhesion grows. (The assumption that

the stress is kept constant as the size of the adhesion

varies is deduced from (3), but is questioned in another

study (6), as discussed in the final section of our article.)

The forces exerted by the stress fibers deform both the

FAs and the substrate if indeed, the latter is deformable.

2. The chemical binding energy involved as additional

linker proteins adsorb on the existing FAs. We showed

in Nicolas et al. (11) that this energy must be exothermic

(a lowering of the cellular energy) for our model to

properly account for the observed, force-induced growth

of FAs (19).

The total free energy that is relevant to the calculation of the

linker protein chemical potential is obtained by starting with

the following Hamiltonian:

H ¼ Hel 1 Hp: (2)

The first term is related to the energy the molecular motors

provide to maintain a constant stress on the focal adhesion;

the contribution of this term becomes more important on

deformable substrates. It is coupled to the concentration of

linker proteins because the stress is only transmitted to the

substrate via these proteins. When additional proteins adsorb,

they connect the FAs to the cytoskeleton and the motors in

the stress fibers must expend more energy (or must recruit

additional motors with a consequent chemical potential en-

ergy cost) to maintain a constant stress on the deformable

area, which has grown due to the presence of the additional

linker proteins. The second term includes the energy that is

released when additional linker proteins adsorb and enlarge

the focal adhesion.

We treat the top of the lower layer as a two-dimensional

lattice. Each site i may or not contain a linker protein, that

connects the lower layer to the actin stress fibers (the site

occupation variable Fi is then 1 or 0 whether there is or is not

a linker protein at site i). For a given discrete distribution of

linker proteins {Fi}, we write

H ¼ f
2
ha

2

2lxz

+
sites i

F
2

i 1 Hsubstrate

el ðfFigÞ � eB +
sites i

FiÆsiðFiÞæ

1
J

2
+

sites i;j

Fið1�FjÞ: (3)

The first term is the stress-induced deformation of the FAs,

which is characterized by a Young’s modulus Y, a Poisson

ratio n, and a shear modulus lxz¼ Y/(2(1 1 n)), as well as by

the thickness h. The stress is denoted by f (see Table 1 for

numerical values) and in Appendix B we present a detailed

derivation of this term. The second term is the energy asso-

ciated with the deformation of the substrate with shear

modulus Lxz and Poisson ratio S. Since the linker proteins

transmit the stress from the actin stress fibers to the substrate,

this energy depends on the distribution {Fi} of the linkers:

Fi ¼ 0 if the site i is unoccupied, Fi ¼ 1 otherwise. The

functional form of Hsubstrate
el also depends on the geometry of

the substrate. A derivation of this term for a semiinfinite,

elastic substrate is also presented in Appendix B. For the sake

of simplicity and with no loss of generality, we limit our

analysis to the case where S ¼ 1/2. Coupling of the defor-

mations of the adhesion and the substrate is a second-order

correction in the limit where the substrate is much more rigid

than the adhesion (lxz � Lxz). The third term accounts for

FIGURE 2 The lower layer is deformed by the tangential component of

the stress, f~; that acts along the dash-dot line. The rods have no molecular

significance but help to visualize the deformation of the molecular units. The

stress-induced tilt is not uniform in the layer, giving rise to a nonzero

gradient of tilt.
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the energetics of adsorption of the linker proteins on the lower

layer (the mechanosensitive layer); this adsorption is energet-

ically favorable since it releases an energy eB . 0 if the lower-

layer molecule (e.g., integrin) at position i is activated (si¼ 1)

and is therefore in a conformation in which it can associate

with a linker protein. If si¼ 0, the lower-layer molecule is not

activated and cannot associate with the linker protein; no

binding occurs in this case. The last term is the short-ranged,

two-body attractive interaction between adsorbed linker pro-

teins; this interaction is due to local effects and is independent

of the acto-myosin force and substrate deformations. We as-

sume J . 0, since experimentally it is observed that conden-

sation of the adsorbed linker proteins is favored.

From this expression for H (Eq. 3), one can calculate the

free energy of the system and hence the chemical potential of

the linker proteins (including their coupling to cell contrac-

tility as described above),

mads ¼
dF
dF

; with F ¼ �kBTlnZ and

Z ¼ +
fFig

expð�bHðfFigÞÞ;

where F(x, y, t) is the concentration of the adsorbed linker

proteins averaged using the Boltzmann distribution. The

expression F(x, y, t) is the continuum analog of the discrete

variable ÆFiæ (see (12) for more details). The partition func-

tion Z is summed over all the realizations {Fi} of the site

variables, Fi ¼ 0, 1; b is the inverse of the thermal energy:

b ¼ 1/(kBT).

The mechanosensitive layer is activated by two
modes of deformation

To calculate mads, we first calculate the probability, Æsiæ, that a

site, i, in the mechanosensitive layer is activated and has

changed its conformation in such a way so that association

with the linker proteins is favorable. In the two-layer model

that we use, the lower layer is composed of a uniform dis-

tribution of mechanosensitive units of size a. As discussed

previously, linker proteins release an energy eB when they

adsorb onto an activated site. In the following, we assume

that activation is favored by two different modes of the me-

chanical deformation of the lower layer (12): 1), an in-plane

shear, that results in both a tilt and an extension of every

mechanosensitive unit; and 2), a gradient in tilt along the

mechanosensitive layer (Fig. 2). Stretching of proteins is a

common deformation that influences the molecular confor-

mations and was suggested to induce a transition between

very transient initial adhesions and the more force-resistant

focal complexes (21). The gradient of the tilt is another

possible, but less studied, way of inducing conformational

change in proteins mainly because as a gradient of the mo-

lecular tilts, it is only applicable to protein aggregates.

However, in the case of FAs, the assumption that the gradient

of tilt induces a conformational change of the proteins leads

to results that are consistent with observations. One major

consequence of this assumption is that it is responsible for the

nonuniform stress, and hence nonuniform activation of

the lower layer in the direction of the stress f~;which results in

the directed growth of FAs. Further consequences of this

assumption are presented in Nicolas et al. (11) and compared

to experimental observations. It also accounts for the sliding

of FAs that results from the simultaneous addition of new

proteins at the edge of the FAs that is in the direction of the

applied force and disassembly of the FAs at the opposite edge

(22). In addition to the gradient of tilt, the in-plane shear of

the mechanosensitive layer results in a uniform activation

(12) of the entire FAs, consistent with experimental evidence

for the disappearance of FAs when the force is removed. As

already mentioned in Besser and Safran (12), this term is

TABLE 1

Mechanosensitive layer

a Size of elementary mechanosensitive units. 0.02–0.06 mm (25)

h Thickness of the mechanosensitive layer. ;100 nm (17)

lxz ¼ Y
2ð11nÞ Shear modulus of the mechanosensitive layer. ;1 kPa (28)

DG Energy barrier between the inactivated and activated state for the mechanosensor.

t Lowering of the energy barrier associated with the gradient of tilt.

d Molecular length scale associated with the change of conformation of the stretched mechanosensor.

s(x, y) Degree of activation of the site located at (x,y). 0 # s # 1

Linker proteins

f Magnitude of the tangential component of the actin induced or external stress. 3–6 nN/mm2 (3,4,7)

fFig A particular realization of the occupation of the sites of the lower layer by the linker proteins. Fi ¼ 0, 1

F(x, y, t) Linker proteins concentration averaged over all possible realizations fFig. 0 # F(x, y, t) # 1

c (x, y, t) Small deviation from the average linker proteins concentration. c ¼ F – 1/2

eB Energy of adsorption of a linker protein on an activated site. eB . 0

J Coupling coefficient for the short-ranged two body interaction. J . 0

mbulk Chemical potential of free linker proteins.

C1 Prefactor that relates the variation of the chemical potential to the dynamics. C1 ¼ FbulkD
kBTa2

Extracellular matrix

Lxz ¼ YE C M

2ð11SÞ Shear modulus of the extracellular matrix. S ¼ 1/2
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responsible for the switching from a shrinking FAs at small

stress to a growing adhesion at larger stress. We therefore

write the Hamiltonian that determines the probability, Æsiæ,
that site i is activated and can associate with linker pro-

teins as

HactðiÞ ¼ siðDG 1 t=
/

== � ðDu~ðiÞÞ � f d a
2
FiÞ; (4)

where =
/
== ¼ ð@=@x; @=@y; 0Þ: In this expression, DG is

the energetic barrier related to the changes in conforma-

tion of the mechanosensor that must occur for it to switch

from an inactivated state (si ¼ 0) (where it cannot asso-

ciate with the linker proteins), to the activated one (si ¼ 1)

(where association can occur). The value u~ðiÞ is the displace-

ment of the mechanosensitive layer, relative to its unstressed

state (Fig. 2). The value Du~ðiÞ is the relative displacement of

the top of the mechanosensitive layer (where the acto-myosin

force is applied) compared to its bottom (which is grafted to

the substrate). =
/
== � Du~ðiÞ therefore describes the gradient of

tilt between neighbor mechanosensitive units: when =
/
== �

Du~ðiÞ, 0; the upper part of the units in the vicinity of site i
are closer than their lower parts, as one can see at the front

edge of the stressed region on Fig. 2; when =
/
== � Du~ðiÞ. 0;

the upper parts are farther away than the lower parts of

these molecular units, as shown at the back edge of the

stressed region on Fig. 2. We assume that a negative tilt

gradient induces the change of conformation of the

mechanosensitive units from deactivated to activated.

We therefore take t . 0, since it multiplies the gradient

of tilt of the mechanosensor (=
/
== � Du~ðiÞ, 0) to determine

the decrease of the energy barrier for the conformational

change that arises from compression of the top of the

units. The last term accounts for the lowering of the

energy barrier for the conformational change that arises

from the in-plane shear-induced stretching of the mecha-

nosensitive units (21). Stress transmitted by the linker

proteins (Fi ¼ 1) causes stretching and hence a confor-

mational change in the mechanosensitive units. The value

d is the molecular length scale associated with the change

of conformation. If one assumes that the lowering of the

energy barrier, DG, by compression is perturbative (bt=
/
==�

Du~i � 1), we can use Eq. 4 to estimate the probability that

the site i is activated:

ÆsiðFiÞæ ¼
1

1 1 e
bðDG 1 t=

/
== �Du~i�f da

2
FiÞ
’ 1

1 1 e
bðDG�f da

2
FiÞ

3 1� bt=
/

== � Du~i

1 1 e
bðDG�f da

2
FiÞ

 !
: (5)

We can now calculate the variation of the chemical potential

of the linker proteins that adsorb onto the focal adhesion,

including the work done by the stress fibers due to the defor-

mation of the substrate.

DYNAMICS OF FOCAL ADHESIONS ON
A RIGID SUBSTRATE

We first focus on the case of cells placed on an infinitely rigid

substrate for which there is no substrate deformation. In this

case, the stress transmitted by the cells due to their contrac-

tility only results in a deformation of the adhesion sites and

not of the substrate: Hsubstrate
el ¼ 0 in Eq. 3. In the situation

where adhesions are grafted to an undeformable substrate

(and hence cannot displace the ECM), the elastic energy Hel

that determines the occupation probability, Fi, of linker

proteins at site i is ((13); see also Appendix B)

Hel ’
f

2
ha

2

2lxz

+
i

F
2

i ¼ e0 +
i

F
2

i ; (6)

where lxz is the shear modulus of the mechanosensitive layer

and h its thickness. The Hamiltonian, Eq. 3, simplifies to

H ¼ e0 +
i

F
2

i � eB +
i

FiÆsiæ 1
J

2
+
i;j

Fið1�FjÞ; (7)

where Æsiæ is the average activation rate of the mechanosen-

sitive layer at site i. Note that this expression differs from the

one that was previously proposed by Besser and Safran (12)

(see Eq. 13 in (12)) because we focus on the thermodynamic

system that consists of the linker proteins coupled to the

stress fibers and the substrate. Besser and Safran (12) focused

only on the variation of the energy of the linker proteins. As

was previously shown (11), we must include the coupling of

the linker proteins to cell contractility to predict increased

growth of FAs on rigid substrates compared with soft

substrates (13).

This activation is caused by the elastic stresses in the lower

layer, as explained above. Adsorption of new linker proteins

at the activated sites influences the deformation of the layer,

and therefore also changes the activation probability. How-

ever, the process of activation is much slower (of the order of

seconds (24)) than the nearly instantaneous elastic defor-

mation of the lower layer by the forces transmitted by linker

proteins (the sound velocity in an elastic material with a

Young’s modulus of ;1 kPa and with a density of ;103 kg/m3

is ;1 m/s). This means that the activation probability, Æsiæ,
averages over many attempts by many linker proteins to as-

sociate with the lower layer, so that Æsiæ is a function of the

local average linker concentration on the lower layer, F(x, y).

(This can also include the effects of linker proteins that are

adjacent to the location of a given, microscopic site, i.) This is

in contrast to the terms in the Hamiltonian that directly ac-

count for the deformation and binding of a given linker

protein; those terms depend on the instantaneous and local

value of the site variable, Fi.

Taking into account the different timescales, and moving

from a local to a coarse-grained description where the con-

centration is a continuous function of x and y, the chemical

potential mads of the adsorbing linker proteins is then (see (12)

for detailed calculations)
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mads ¼
f

2
ha

2

2lxz

� eBÆsðx; yÞæ 1 kBTðlnF� lnð1�FÞÞ

1
J

2
ð1� 2FÞ � Ja

2

2
=
/2

F; (8)

where F(x, y) is the average adsorbed linker proteins con-

centration at position (x, y). Since the substrate is rigid, the

stress-induced deformation of the mechanosensitive layer is

short-ranged (12,13). For a force in the x direction, we write

Dux ’ a
f h

lxz

Fðx; yÞ; Duy ’ 0; (9)

where a is a coefficient that depends on the Poisson ratio of

the mechanosensitive layer (13). The gradient of tilt-induced

activation is therefore largest at the front of the domain, in the

direction of the stress. The activation rate, that combines the

effect on the activation of both the uniform and nonuniform

deformations, is therefore written

Æsðx; yÞæ ’ 1

1 1 e
bðDG�f da

2
FÞ

1� a
f h

lxz

bt

1 1 e
�bððDG�f da

2
FÞ

@F

@x

� �
:

(10)

Using the same procedure as in Besser and Safran (12), we

consider the chemical potential Eq. 8 along with the (con-

centration- and gradient-dependent) activation rate Eq. 10 to

obtain the dynamical equation for the linker protein concen-

tration at the edges of the adhesion, where the concentration

of linker proteins decreases from high to low values. Defining

F ¼ 1/2 1 c with c� 1, we find from Eq. 1 that

@c

@t
’ C1

b
bDm

rigid

0 ðf Þ � bsðf Þ@c

@x
1 eðf Þc� cc

3
1 B=

/2

c

� �
:

(11)

Compared with the usual, isotropic condensation of a solute

at an interface, Eq. 11 contains an additional term propor-

tional to @c/@x that accounts for the fact that the activation of

the mechanosensitive layer is force-dependent and hence

nonuniform; this term is responsible for the nonuniform con-

densation dynamics of linker proteins from solution, result-

ing in growth of the FAs in the direction of the force. The

various coefficients are

Dm
rigid

0 ðf Þ ¼ mbulk �
f

2
ha

2

2lxz

1
eB

1 1 e
bðDG�f da

2
=2Þ

eðf Þ ¼ bJ � 4 1 b
2
eBfa

2
d

e
bðDG�f da

2
=2Þ

1 1 e
bðDG�f da

2
=2Þ

� �2

sðf Þ ¼ abt
f h

lxz

eB

1 1 ebðDG�f da
2
=2Þ

� �
1 1 e�bðDG�f da

2
=2Þ

� �;
(12)

and c ¼ 16/3 and B ¼ b Ja2/2. Equation 12 includes an

additional term in the chemical potential difference, Dm
rigid
0 ;

compared with the chemical potential difference of Besser

and Safran (12). This term, which is proportional to the

square of the applied stress, accounts for the contribution of

cell contractility that results in the deformation of the focal

adhesion (for the case of an incompressible substrate). That

is, the anchorage of each linker protein results in a deforma-

tion of the FAs and this modifies the chemical potential of

these proteins. In the case of a soft substrate, as explained

below, a similar term accounts for the elastic deformation of

the substrate. The second line of Eq. 12 also shows that the

dependence of the activation probability on the average,

bound linker protein concentration results in an effective

attraction among the linker proteins since the linkers bind to

regions that are activated; those tend to be regions in which

there was already a high concentration of linker proteins from

previous binding events.

The solution of Eq. 11 yields the two-dimensional con-

centration profile of linker proteins c (x, y, t). However, be-

cause of the nonuniformity of the gradient of tilt-induced

activation (the @c/@x term), we expect that the concentration

profile of the linker proteins varies nonuniformly with x but

uniformly with y. For simplicity, we therefore consider the

one-dimensional dynamics of FAs in which they grow only

along the direction of the applied force (and hence the de-

formation and concentration gradients), which we take to be

in the x direction. Within this simplified picture, the solution

of Eq. 11 is a moving front (to first order in the small quantity

bDm
rigid
0 � 1 (12)),

cðx; tÞ ¼ bDm
rigid

0 ð f Þ
2eð f Þ 6

ffiffiffiffiffiffiffiffiffi
eð f Þ

c

r
tanh

ffiffiffiffiffiffiffiffiffi
eð f Þ
2B

r
ðx � vb;f tÞ

" #
;

(13)

where vb and vf are the velocities of the back and the front

edges (defined relative to the force direction) of the cluster of

linker proteins:

vb ¼ C1

�3

eðf Þ

ffiffiffiffiffiffi
Bc

2

r
Dm

rigid

0 ðf Þ1 sðf Þ
" #

; (14)

vf ¼ C1

3

eðf Þ

ffiffiffiffiffiffi
Bc

2

r
Dm

rigid

0 ðf Þ1 sðf Þ
" #

: (15)

For the case of a rigid substrate, the velocities of the front and

back edges of the adhesion do not depend on the initial size,

L0, of the adhesion, as long as we assume that the stress, f is

fixed. We therefore predict that in this case, the size, L, of the

adhesion varies (in a decreasing or increasing manner, de-

pending on the sign of Dm
rigid
0 ) linearly with time:

LðtÞ ¼ L0 1 ðvf � vbÞt ¼ L0 1
3C1

eðf Þ
ffiffiffiffiffiffiffiffi
2Bc
p

Dm
rigid

0 t: (16)
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DYNAMICS OF FOCAL ADHESIONS ON
A DEFORMABLE SUBSTRATE

Cells that adhere to a deformable substrate form adhesions;

but the acto-myosin force that stabilizes the FAs also stresses

the substrate. In the case that the substrate is deformable but

has a thickness that is smaller or of same order of magnitude

as the thickness of the mechanosensitive (lower) layer of the

FAs, the stress-induced deformation is short-ranged. This is

because deformation must vanish on the bottom surface of

the substrate. The acto-myosin force therefore acts on both

the mechanosensitive layer and the relatively thin substrate in

a similar manner. Thus, the range of deformation is the sum

of the thickness of the mechanosensitive layer of the FAs and

of the substrate. In this case, the dynamics of FAs can be

extrapolated from the dynamics of FAs on infinitely rigid

substrates by renormalizing the elastic moduli of the me-

chanosensitive layer in the expression for Dm
rigid
0 ð f Þ or s( f )

(Eq. 12): h=lxz/ðh=lxz1H=LxzÞ; where H is the thickness

of the elastic substrate and Lxz its shear modulus (see Fig. 1).

However, in the case of an elastic substrate whose thick-

ness is much larger than that of the mechanosensitive layer in

the FAs, the deformation of the substrate is long-ranged; this

introduces new physical features. In this situation where the

substrate is much thicker than the size, L, of the adhesion, the

substrate deformation decays slowly so that the contribution

of the entire stressed region, as expressed by the size of the

FAs, enters in the expression for its energy (13).

In this context, the deformability of the substrate or ECM

has several effects. First, it modifies the nature of the defor-

mation within the mechanosensitive layer and thereby in-

fluences the rate of activation (Eq. 5). To calculate this effect

one must consider the true, three-dimensional elasticity of the

adhesion; deformations along different directions are coupled

by the elastic moduli. However, for simplicity, we focus here

on substrates that are more rigid than the mechanosensitive

layer (Lxz� lxz) and adhesions whose size, L, is much larger

that the thickness, h, of the mechanosensitive layer. In this

limit, the contribution of the deformation of the substrate to

the deformation of the FA, =
/
== � Du~; is negligible (13).

Second, the deformability of the substrate induces an

elastic interaction between the linker proteins. As shown in

detail in Appendix A, this interaction is repulsive because we

assume that the driving process for FA dynamics is the var-

iation of the energy of adsorbing linker proteins coupled to

the stress fibers. The elastic interaction between two adsorbed

linkers separated by a distance, r, that transmit a stress f from

the stress fibers to the lower layer of the FAs, is

Hint ¼
f

2

4pLxzr
ð2ð1� SÞ1 2Scos

2
uÞ;

where S is the Poisson ratio of the substrate and u is the angle

between r~ and f~: This repulsion opposes the local, short-

ranged two-body attraction as represented by the coupling

coefficient J described above. For a material with Poisson

ratio S ¼ 1/2, condensation no longer occurs for forces that

are too large, due to this repulsion. The crossover occurs when

f
2
a

3

2pLxz

$ J: (17)

In the following, we assume that the substrate is rigid enough

(i.e., Lxz is large enough) so that this criterion is not obeyed;

that is, we only consider the regime where linker proteins do

condense and assemble in a dense plaque.

The last but major effect of the deformable substrate is its

effect on the work that the stress fibers must perform to

maintain a constant stress f on the adhesion, even while de-

forming the substrate. Because part of the work performed by

the stress fibers goes into deforming the substrate, the mo-

lecular motors must invest additional energy, Hsubstrate
el ; to

exert a constant stress, f, on the mechanosensitive, lower

layer of the adhesion. This tends to effectively increase the

free energy of the linker proteins and thus reduces the dif-

ference between the chemical potentials, mbulk and mads. This

results in a smaller driving force for adsorption which then

slows down (and can even stop) the dynamics.

Unfortunately, the more complex expression of the elastic

Hamiltonian Hsubstrate
el for the case of the deformable substrate

does not permit us to use the procedure we used to treat the

rigid substrate; this is due to the long-range coupling between

adsorbing, linker proteins (see Appendix B). We can, how-

ever, estimate the dynamics of the FAs by assuming a gate-

shaped profile for the concentration, Fðr~; tÞ; of linker

proteins, in which the concentration is nonzero and constant

in a region whose extent is L and zero elsewhere. The de-

formation energy of the substrate then contributes a term to

Hel that is proportional to the size, L, of the adhesion (13).

(The modification of the activation rate by the substrate de-

formation energy is negligible, as discussed above.) We then

assume that the FAs grow slowly, and adiabatically solve Eq.

11 keeping the adhesion size, L, constant. The velocities at

the edges of the adhesion in the direction of the stress are

given by expressions that are similar to those derived above,

for the case of a rigid substrate (Eqs. 14 and 15), although the

coefficient, Dm0, now includes the contribution of the sub-

strate deformation energy. (We ignore the corrections of the

substrate deformation in the expressions for s(f), or for e(f)
since we showed above that these are negligible in the regime

where the substrate is more rigid than the FAs, Lxz� lxz.)

We write the difference in chemical potentials as

Dm0ðf Þ ¼ mbulk �
f 2ha2

2lxz

� f 2La2

2Lxz

1
eB

1 1 e
bðDG�f da

2
=2Þ
: (18)

For a thick, elastic substrate, the variation of the chemical

potential in the absence of interactions, Dm0, now depends on

the size, L, of the adhesion via the third term of Eq. 18.

Consequently, the velocities vb and vf also exhibit a depen-

dence on L. Up to now, we considered the adiabatic limit and

calculated the velocities for instantaneous values of L. This
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relationship can now be used to derive an expression for the

time dependence of the FA size, L(t), since the net velocity

difference between the velocities of the front and back edges

of the FAs cause the FAs to grow or shrink; this velocity

difference is thus identified with dL(t)/dt,

dL

dt
¼ vf � vb: (19)

Replacing the velocities vb and vf by their expressions Eqs. 14

and 15, which contain the length-dependent term Dm0 (Eq.

18), leads to an expression for the time evolution of the

length, L(t), of the adhesion,

LðtÞ ¼ LNð1� exp½�t=t0�Þ; (20)

where LN is the saturation length and t0 is the characteristic

decay time (see Eq. 12):

LN ¼
Lxz

f
2
a

2Dm
rigid

0 ; (21)

t0 ¼
Lxz

f 2a2

eðf Þ
3C1a

ffiffiffiffiffiffiffiffi
2Bc
p : (22)

We therefore conclude that on deformable, thick substrates,

FAs reach a saturated size that is proportional to the rigidity

of the substrate on a timescale that also scales with the elastic

compliance of the substrate.

DISCUSSION

The major assumption of our model is that the dynamics of

FAs is driven by the exchange of energy of the linker proteins

as they adsorb from the bulk and assemble on the adhesion.

These energies include the coupling of the linker proteins to

the stress fibers that must perform more work to keep the

stress exerted on the FAs constant, even as they deform the

substrate. This couples the energies of the linker proteins to

the substrate deformation energy and introduces a depen-

dence on the adhesion size that modifies the growth law of the

FAs. This model predicts that the linker proteins assemble

into clusters above the mechanosensitive, lower layer of the

FAs and that the edges of the cluster move with velocities vf

at the front and vb at the back of the adhesion, where the front

and back refer to the direction of the stress f. These two ve-

locities differ because we assume that the mechanosensitive

layer is activated, allowing a conformational change that

induces association with the linker proteins, by two kinds of

deformations:

1. A gradient of tilt, which leads to a nonuniform activation

of the layer, with a strong maximum at the front edge (in

the direction of the tangential stress). This nonuniform

activation results in the apparent sliding of FAs, with a

velocity (vf 1 vb)/2 } t, where t is the lowering of the

energy barrier for this conformational change when the

mechanosensitive unit experiences compression of its

upper part (see Eq. 4).

2. The second mode of activation is due to the in-plane

shear-induced stretching of the mechanosensitive layer,

which results in a uniform activation of this layer and is

responsible for the overall growth of the adhesion with

velocity vf – vb.

In the case of a rigid substrate, the velocities of the edges of

the cluster are given by Eqs. 14 and 15, along with Eq. 12.

Experiments show that FAs are not stable in the absence of

stress. This constrains the parameters to satisfy: mbulk 1 eB /

(1 1 ebDG) , 0 (see Table 1). Moreover, to get a regime

where the adhesion indeed grows in response to stress, the

parameters must be chosen so as Dm0(f) . 0 for a certain

range of stress f (see Eq. 16). Both conditions limit the range

of accessible parameters and we finally extract two different

possible regimes: 1), a regime where the back edge moves in

the direction opposite to that of the stress (see Fig. 4, bt ¼
0.5); and 2), a regime where the velocity at the back of the

cluster is in the same direction as the stress (see Fig. 4, bt ¼
2). In the first regime, there is a range of stress where the

uniform, in-plane shear-induced activation of the mechano-

sensitive units dominates the nonuniform gradient of tilt-

induced activation; FAs still show maximal growth at their

front edges, in the direction of the stress, f; the back edge of

the FAs moves in a direction opposite to that of the stress due

to the activation from the uniform shear. The system switches

from one regime to the other as the magnitude of the non-

uniform activation of the mechanosensitive layer is varied

relative to the uniform mechanism; in practice, this is done by

varying t. This last regime has not yet been reported in the

literature, but may indeed exist (P. Heil, Heidelburg Uni-

versity, personal communication, 2007).

For cells plated onto a rigid substrate, we predict that ad-

hesions always continue to grow with time, with a constant

velocity vf – vb (Fig. 3, and see Eq. 16); this quantity can be

small or large. Smilenov et al. (10) reports that FAs in sta-

tionary fibroblasts slide with a velocity of 0.12 6 0.08 mm/

min but do not measurably get larger or smaller. Of course,

this could be due to the fact that the linker proteins or motor

proteins have become depleted and are no longer available to

change the size of the FAs; however, we do not consider this

possibility here. Alternatively, our model can account for

such observation, with a choice of suitable parameters. We

find that within a wide range of values of the parameters, our

model can indeed reproduce a sliding velocity that is much

larger than the growth velocity which may be so small as to

be unobservable. For example, f ¼ 20 kBTa3, which corre-

sponds to 0.3 # f # 10 nN/mm2 for 20 nm # a # 60 nm (25),

together with the parameters used in Fig. 4 leads to

ðvf � vbÞ=ððvf 1 vbÞ=2Þ ’ 0:03:
An important prediction of our model is the existence of a

maximal stress above which the adhesion no longer grows, as

illustrated in those regions of Fig. 4, where the growth ve-
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locity goes to zero. This threshold is a straightforward con-

sequence of our assumption that the dynamics of FAs is

determined, in part, by its coupling to the stress fibers and that

these fibers must perform some mechanical work to keep the

stress, f, constant when the substrate is deformed. Above a

certain threshold of stress f, this deformation energy (which is

a result of the large stress exerted on the FAs) cannot be

compensated by the chemical energy released by the ad-

sorption of the linker proteins; this is because the mechani-

cal energy scales quadratically with f which, at large stress

values, dominates the chemical energy that scales only lin-

early with f. This prediction—that the FAs cease growth at

large values of the stress—has not yet been tested experi-

mentally. It is, however, of importance since this feature

distinguishes our model from other scenarios for focal ad-

hesion mechanosensitivity (26).

Our main result is that the deformation of the substrate

causes the dynamics of FAs to depend on its elastic properties

(Fig. 5). We showed that in this case, the adhesion size sat-

urates to a finite value, LN, that is proportional to the elastic

modulus of the substrate (Eq. 21). This effect originates from

the term Hel in Eq. 2 that includes the long-ranged substrate

deformations in the energetics and hence, the dynamics of the

linker proteins that cause the FAs to grow. Since we assume

that the cell pulls with a constant stress, f, on the adhesion, the

linear relationship between the saturation length, LN, and the

substrate rigidity, Lxz, also implies that the total force exerted

by a single FA reaches a stationary value that is proportional

to the rigidity of the substrate. (FAs grow mainly in one di-

rection, so that the total force is proportional to L.) This

scaling is observed in the experiments of Saez et al. (6). Here

we have shown that even if the mechanosensitivity of the FAs

is triggered by stress, the force may still be proportional to the

rigidity because of the long-range nature of the substrate

deformation (13). In addition, we have predicted that the

timescale to reach this stationary regime is also proportional

to the rigidity of the substrate. This implies that adhesions on

a soft substrate reach a relatively small, stationary size, LN,

on a timescale that is proportional to the substrate rigidity.

Finally, we predict that the sliding velocity (vf 1 vb)/2 is, to

a good approximation, independent of the rigidity of the sub-

FIGURE 3 Solution of Eq. 11 for the dynamics of the density profile of

the linker proteins for a cell on a rigid substrate. The stress pulls on the FA

from left to right. The FA grows and slides for this choice of parameters:

mbulk¼�2.7 kBT, DG¼ 2.5 kBT, eB¼ 30 kBT, lxz¼ 40 kBT/a3, J¼ 4.2 kBT,

h ¼ 2a, d ¼ 0.23a, and t ¼ 2 kBT.

FIGURE 4 Growth dynamics of FAs assum-

ing a stiff substrate with velocities at the front

(vf) and back (vb) edges of the cluster of linker

proteins, together with the sliding velocity

vsliding ¼ (vf 1 vb)/2 and the growth velocity

vgrowth ¼ vf – vb, as a function of the stress f per

unit of thermal stress 1/ba3. On the left-hand

side, bt ¼ 0.5, is chosen so that the velocity

at the back edge is in the direction opposite that

of the stress. On the right-hand side, bt ¼ 2

and the back edge always moves in the direction

of the stress. The sketches below the graph depict

the direction of the velocities at the edges of a

focal adhesion as a function of the stress, f. We

have chosen mbulk ¼ �2.7 kBT, DG ¼ 2.5 kBT,

eB ¼ 30 kBT, lxz ¼ 40 kBT/a3 (this corresponds

to 0.7 kPa # lxz # 20 kPa for 20 nm # a #

60 nm (25), J ¼ 4.2 kBT, h ¼ 2a, d ¼ 0.23a).
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strate. To our knowledge, the dependence of the sliding

velocity of focal adhesions on the mechanical properties of the

extracellular matrix has not yet been discussed in the literature.

Note that in the limit of a rigid substrate, where Lxz / N
in Eq. 20, the size of the adhesion grows linearly in time, as

expected for simple growth driven by a constant difference

between the velocities of the back and the front of the FAs

(Eq. 16).

Our model assumes that the cell exerts a constant stress, f,
that is independent of the properties of the adhesion or the

substrate. We account for the rigidity sensitivity of adhesions

by the fact that additional work is required to maintain this

stress on a deformable substrate as both the adhesion and

substrate are deformed. We assume that this work results in

additional forces that act on the linker proteins as they adsorb.

Other detailed scenarios that also account for adhesion sen-

sitivity to substrate rigidity are indeed possible. A possible,

alternate model might consider constant cell energy as op-

posed to constant stress. In such a picture, the proteins are

affected only by their mutual interactions and the binding to

the lower layer of the FAs (this would be represented by Eq. 3

without the elastic terms). However, the stress exerted on the

lower layer results in an energy that must be added to the

energy cost of deforming the substrate. Since, in this model,

the total cell energy is fixed, the stress is not constant and

depends on the substrate deformation and hence, for soft and

thick substrates, on the size of the FAs. Consequently, the

protein binding probability, Æs(x)æ, which is a function of

the stress, depends on the substrate deformation. Although

the details of this model differ from those of the theory pre-

sented in this article, both approaches share the common

feature of the influence of cell contractility and substrate

deformation on the dynamics of the linker proteins. This, we

believe, is an important factor in determining the larger

growth of adhesions on rigid substrates. Only experiments

can discriminate between the different detailed models. For

example, a theory that is consistent with experiment (6), must

predict a linear relationship between the saturation length,

LN, and the rigidity of the substrate, Lxz.

Our assumption of constant stress is consistent with the

data in Balaban et al. (3), but has been questioned by other

authors (6). In Balaban et al. (3), the authors combine static

measurements of the area, the eccentricity, and the force

exerted by single focal adhesions, and dynamic measure-

ments of those quantities in response to 2,3-butanedione

monoxime, or BDM treatment (BDM reduces the activity of

the molecular motors, and therefore the stress, f). Dynamic

measurements were done approximately every 25 s, faster

than the expected timescale for the adhesion to reach a sta-

tionary state (of the order of several minutes). Both the static

and dynamic measurements gave similar results, suggesting

that the stress reaches a steady-state value on timescales that

are much faster than the maturation of FAs. Transmission of

stress from the stress fibers to the substrate through the protein

plaque is also fast compared with the timescale for focal ad-

hesion maturation. If we assume that the Young’s modulus of

the focal adhesion is ;1 kPa (because focal adhesions are

sensitive to the elasticity of the substrate when the compliance

of the latter is of the order of a few kPa), and that the density,

r, of the protein plaque is close to that of water, the velocity

for stress transmission is of order of
ffiffiffiffiffi
lxz

r

q
� 1 m/s ð27Þ.

Combining these estimates makes our assumption of constant

stress fairly realistic.

Our results show that experiments whose goal are mea-

surements of the absolute values of forces exerted by ad-

hering cells through measurements of the magnitude of the

substrate deformation should be considered with caution.

The experimental force sensor indeed perturbs the measure-

ment in an important manner, since it can change the size of

the FA and hence the amount of force the FA transmits. The

value of the measured forces is proportional to the elastic

compliance of the substrate as is the dynamics of growth of

the focal adhesion. Only the apparent sliding of the focal

adhesion is, to a good approximation, independent of the

rigidity of the substrate. Our analysis leads us to conclude

that cell force microscopy on deformable substrates gives

unambiguous results only for questions related to the mag-

nitude of force, or to the dynamics required to reach this force

by cells in the context of a given, specific, environment. In

addition, the various velocities and steady-state quantities

have a complex dependence on stress. (Stress seems to be a

more tunable parameter compared with the use of drugs that

inhibit the activity of the molecular motors.) This means that

it may be difficult to extract molecular quantities, such as the

energy of activation of the mechanosensor or mechanical

properties of the adhesion itself, from force measurements on

deformable substrates. Nevertheless, as a tool to quantify and

understand the mechanical forces exerted in vivo, cell force

microscopy on deformable substrates can give some valuable

insights. However, such experiments should therefore be

designed to use elastic probes whose rigidities are consistent

within the in vivo environment of the cells.

FIGURE 5 Growth velocity for a stress f ¼ 10 kBT/a3 as a function of the

rigidity of the substrate for three sizes, L, of the adhesion: L¼ 10a (—), L¼
100a (– – –), and L ¼ 1000a (– � –). The other parameters are the same as in

Fig. 4. For a substrate with rigidity Lxz, the adhesion shrinks (vgrowth , 0)

when its size exceeds a threshold that is proportional to 1/Lxz (see Eq. 18).
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APPENDIX A: REPULSIVE INTERACTION
BETWEEN ADSORBING LINKER PROTEINS

When a protein adsorbs onto the lower layer of a focal adhesion, it imme-

diately couples the adhesion to the cytoskeleton. An adsorbed protein is

therefore equivalent to a point force that applies a surface stress f~¼ f e~x (in

the plane of the lower layer). We shall now consider the interaction between

two such point forces.

In the case of the adsorption of physical point forces onto an elastic me-

dium, one expects an attractive interaction since the driving force is the min-

imization of the energy of the elastic medium. This energy is written

Hel ¼
1

2

Z
V

sijeij dt �
Z

V

f
bulk

i ui dt � F
S

f
surf

i ui dS; (23)

where sij is the stress tensor, eij is the strain tensor, and u~ is the displacement.

The first term is the energy associated with the bulk deformations of the

elastic solid. The second and third terms are the mechanical work performed

by the external stresses (such as the point forces we consider). Note that this

work is negative; the external stresses perform work on the elastic system and

this work lowers the energy of the adsorbing bodies.

In the case of focal adhesions, we assume that the kinetics is driven by the

minimization of the energy of the linker proteins coupled to the stress fibers.

The stress fibers exert a fixed stress that results in the elastic deformation of

the adhesion and the substrate. The deformation energy is the work exerted

by the stress fibers:

H
FA

el ¼
1

2

Z
V

sijeij dt: (24)

We assume local equilibrium at each instant:

@sij

@xj

¼ f
bulk

i ¼ 0

sijdSj ¼ f
surf

i dS: (25)

Transformation of Eq. 24 with the expression of the strain tensor, integration

by parts, and Eq. 25 leads to

HFA

el ¼
1

2
F f surf

i uidS: (26)

This expression has the opposite sign compared with the case of physical

defects, using Eq. 23. This originates from the assumption that we must

account for the mechanical work performed by the cell in the energy of the

linker proteins. Our thermodynamic system therefore includes the work done

by cell contractility. This is in contrast to the negative work that is done by

the forces in the case of physical defects that lower their energy (perform

negative work on the medium) when they exert forces. In the case of focal

adhesions, the cell expends energy and this must be accounted for as part of

the thermodynamic system. The energy provided by the cell is partially

expended, in the elastic deformation of the substrate, so that the Hamiltonian

that drives the kinetics of the linker proteins includes the term HFA
el ; as written

in Eq. 24.

We now consider two proteins that adsorb on the lower layer of a focal

adhesion. Each defect applies a stress fa at position r~2 (a ¼ 1, 2), so that the

total external stress on the lower layer is f~
surfð~rÞ ¼ ðf1dðr~�~rÞ1f2dðr~2 �

~rÞÞe~x: Since we focus on linear elastic deformations, the total displacement is

additive and we write u~ð~rÞ ¼ u~ðf1;~rÞ1u~ðf2;~rÞ; with u~ðfa;~rÞ the displace-

ment at point ~r due to the stress fa alone. We replace f~
surf and u~ by the

respective expressions in Eq. 26. We find

H
FA

el ¼
1

2
f1uxðf1; r~1Þ1 f2uxðf2; r~2Þ1 f1uxðf2; r~1Þ1 f2uxðf1; r~2Þ½ �a2

;

(27)

with a2 the area of the point force. The two first terms are the self-energies of

the point forces. The two last terms are the interaction terms: for example,

1=2f1uxðf2; r~1Þ is the elastic energy due to the action of the external stress f1 at

position r~1 that is deformed by f2.

The elastic interaction is written in terms of the Green’s function as

H
FA

int ¼
1

2
f1Gxxðr~1 � r~2Þf2 1 f2Gxxðr~2 � r~1Þf1½ �a4

: (28)

Since Gxx is an even function of the distance, the interaction energy is simply

written as

H
FA

int ¼ f1f2Gxxðr~1 � r~2Þa4
: (29)

In the case of a thin elastic medium with shear modulus Lxz and Poisson ratio

S, which is anchored to an undeformable substrate,

Gxxð~rÞ ¼
h

3

3Lxz‘
4

ffiffiffiffi
p

2

r
e
�r=‘ffiffiffiffiffiffiffi
r=‘

p 1 1
1 1 6S

2ð1� SÞ cos
2
u

� �
; (30)

where h is the thickness of the thin elastic solid and ‘ ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

23�48S
24ð1�2SÞð1�SÞ

q
’ h

is the characteristic length of decay of the deformation. The value u is the

angle between~r and f~(13); from that article, for a thick substrate, one finds

Gxxð~rÞ ¼
1

4pLxzr
ð2ð1� SÞ1 2Scos

2
uÞ: (31)

In both cases, Gxx is positive as is the interaction energy. The interaction

between adsorbed linker proteins is therefore repulsive. This is a straight-

forward consequence of our assumption that we must take into account the

mechanical work performed by the cell in the energy of the linker proteins.

This effect can be understood as follows: the deformation at point B due to

the point force at point A is larger as B approaches A. The elastic energy

stored in the solid is thus larger as the distance between the two point forces

decreases. The cell must therefore invest more energy to maintain a fixed

stress when the two point forces are close and less energy when they are far

apart.

APPENDIX B: EXPRESSION FOR THE ELASTIC
HAMILTONIAN HEL

We solve the elastic force balance equation for two adjacent, elastically

coupled layers. In this Appendix, we term the FA the upper layer, with index

1. The bottom layer, with index 2, is the substrate. (Note: In the main text

the upper layer refers to the linker proteins and the lower layer to the

mechanosensitive part of the FA.) In each layer,

ð1� 2niÞDu~1 gra~dðdivðu~ÞÞ ¼ 0
/
; (32)

where ni is the Poisson ratio of layer i. These equations are solved along with

the boundary conditions

u~2ðz/�NÞ ¼ 0
/

u~1ðz ¼ 0Þ ¼ u~2ðz ¼ 0Þ ¼ u~0

u~1ðz ¼ hÞ ¼ u~h: (33)

The displacements, u~h; on the top layer and u~0 at the interface between the

two layers are obtained by minimizing the total elastic energy for a given

stress f,

Helðu~0; u~hÞ ¼ H1ðu~0; u~hÞ1 H2ðu~0Þ �
Z

top

f~� u~hdS; (34)
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where H1 and H2 are the elastic energies of the adhesion and the substrate

respectively, integrated along their thickness:

H ¼ Y

2ð1 1 nÞ

Z
dS

Z
dz

3
1� n

1� 2n
+

i

u
2

ii 1
n

1� 2n
+
i 6¼j

uii ujj 1 2 +
i6¼j

uij

" #
:

Here, the values of the Young’s modulus Y and the Poisson ratio n are those

of the elastic substrate (in which case, H is used to calculate H2) or the

adhesion (in which case, H is used to calculate H1). In these formulae, uij is

the (i, j) component of the strain tensor (27): uij¼ (@ui/@xj 1 @uj/@xi)/2. The

elastic layers are assumed to be infinite in the x and y directions. We use a

Fourier transform to solve Eq. 32:

u~qðzÞ ¼
1

2p

Z
u~ðx; y; zÞeiðqxx1qyyÞ

dxdy: (35)

Detailed calculations can be found in Nicolas and Safran (13). In this model,

the stress that is transmitted to the mechanosensitive layer at a given position

is proportional to the probability that a linker protein is present at that

position. The surface stress to be considered in Eq. 34 is therefore the product

of the force per unit area and the linker protein concentration, f~Fðx; yÞ;where

the stress, f~; is taken to be a constant. In Fourier space, this is written f~Fq;

where Fq is the Fourier transform of the linker protein concentration, F(x, y).

We first present the simpler situation of a rigid substrate: H2¼ 0 in Eq. 34.

Identical calculations to those presented in Nicolas and Safran (13) yield

Hel ’
f

2
h

2lxz

Z
jFqj2 qdqdu; (36)

where h is the thickness of the mechanosensitive layer whose shear modulus

is lxz: lxz ¼ Y1/(2(1 1 n1)). Using Parseval’s theorem, we write Hel as an

integral in real space as

Hel ’
f

2
h

2lxz

Z
jFðx; yÞj2 dxdy ¼ f

2
ha

2

2lxz

+F
2

i : (37)

In the case that the substrate has a finite compliance and a Poisson ratio n2¼
1/2, the former calculation yields

Hel ’
f

2
h

2lxz

Z
jFqj2 qdqdu 1

f
2

4pLxz

Z
2� cos

2
u

q
jFqj2 qdqdu;

(38)

where Lxz is the shear modulus of the substrate (Lxz ¼ Y2/(2(1 1 n2)).

The contributions of both elastic media simply add because we assume that

Lxz � lxz. As before, we can write the energy as an integral in real space

using Parseval’s theorem. The contribution of the substrate is now

H2 ’
f

2

4pLxz

Z
jGðx; yÞj2 dxdy; (39)

where G(x, y) is the convolution of the concentration field, F(x, y), and the

inverse Fourier transform of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� cos2uÞ=q

p
: The convolution introduces a

coupling between the different locations (x, y) on the top of the mechano-

sensitive layer. This effect is expected since the elastic interaction is long-

ranged and decreases like 1/r for a semiinfinite medium. However, we do not

have any analytical expression for the inverse Fourier transform offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� cos2uÞ=q

p
: This method therefore fails to give an analytical expression

for the elastic Hamiltonian of the substrate in Eq. 3. We avoid this difficulty

by assuming that the size of the adhesion varies slowly and adiabatically

compared with the fast dynamics of the linker proteins as they move from

solution (in the cytoplasm) to their adsorbed state on the adhesion, as

presented in ‘‘Dynamics of focal adhesions on a deformable substrate’’.
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