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ABSTRACT The increasingly widespread use of parametric mathematical models to describe biological systems means that the
ability to infer model parameters is of great importance. In this study, we consider parameter inferability in nonlinear ordinary
differential equation models that undergo a bifurcation, focusing on a simple but generic biochemical reaction model. We
systematically investigate the shape of the likelihood function for the model’s parameters, analyzing the changes that occur as the
model undergoes a Hopf bifurcation. We demonstrate that there exists an intrinsic link between inference and the parameters’
impact on the modeled system’s dynamical stability, which we hope will motivate further research in this area.

INTRODUCTION

Mathematical models in the modern biomedical and life

sciences have proved to be particularly useful (1), not only

because they can help to increase understanding of the

modeled biological system and allow predictions to be made,

but also because their use forces model assumptions to be

stated explicitly and fully (2). However, there are many

challenges associated with mathematical modeling in biology

(3). Perhaps the most fundamental of these are model spec-

ification (i.e., formulating an appropriate model based upon

prior understanding and observations) and—in the case of

parametric models—parameter estimation. It is with the latter

that this study is concerned.

Once a parametric model has been proposed, it is neces-

sary to infer or estimate its parameters based upon experi-

mental data. Parameter estimation can often prove difficult,

with missing data, observational noise, and incomplete

model specification being among the numerous problems

encountered in practice. However, rather than focusing on

these practical issues (which are often highly and subtly

investigation-specific), we are here concerned with how the

underlying dynamics of the modeled system can affect our

ability to perform inference. In particular, we address the

apparent need (see, for example, (4)) for further investigation

into parameter inferability in nonlinear ordinary differential

equation models that undergo a bifurcation.

Informally, bifurcation refers to a phenomenon by which a

small change in parameter values may cause a significant and

global qualitative change in dynamical behavior. In this

study, we shall be principally concerned with how parameter

inferability changes in deterministic nonlinear systems that

undergo a Hopf bifurcation, although the methods presented

here could just as well be applied to investigations into other

types of bifurcation. The Hopf bifurcation is of especial in-

terest, however, as it is often cited as a cause of oscillatory

behavior in biological systems, and recent research has

demonstrated that Hopf bifurcations may occur in (to name

but a few) metabolic networks regulated by product-feedback

inhibition (5), the plant mitochondrial tricarboxylic acid cy-

cle (6), and models for gene expression (7). The use of global

dynamical features is perhaps most prominently illustrated by

studies of the yeast cell-cycle (8), where a sequence of Hopf

bifurcations (for timing of events) and saddle-point bifurca-

tions (which provide switches taking the system from one

stage to the next) appear to capture the underlying dynamics.

Since models that exhibit Hopf bifurcations are being pro-

posed and applied to biological systems, it is prudent to in-

vestigate the particular challenges that may be faced when

inferring their parameters. In practice, we may frequently

have to estimate such parameters from finite—often even

very short—time series data (e.g., from quantitative Western

blots). Fitting a model is preferable to simply measuring (for

example) half-times from simple regression analyses, as

these do not allow us to account for global features—such as

bifurcations—of a biological system’s dynamics.

THEORY

We consider a particular chemical reaction system with a Hopf bifurcation

(9). This example was formulated as the mathematically simplest reaction

system to undergo a Hopf bifurcation, and is well supported by existing

mathematical analyses in the literature (9,10). The relative simplicity and

tractability of this reaction system makes it particularly suitable for our in-

vestigation, while retaining generality and biochemical relevance.

The system involves four reactants (A0, X1, X2, and X3) and is described by

the mechanism shown in Fig. 1. Note that A0 denotes outer reactants whose

concentration, A, is assumed to be constant (see (9) for details).

The system may be described by the ordinary differential equation (ODE)

model

_x1 ¼ ðkA � k4Þx1 � k2x1x2

_x2 ¼ �k3x2 1 k5x3

_x3 ¼ k4x1 � k5x3; (1)
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where each xi is a function of time, t, and represents the concentration of Xi at

time t; kA¼ k1A is the product of the concentration of outer reactants, A, and

the rate parameter k1; and each ki . 0 denotes a rate constant. For our

purposes, the values kA, k2, k3, k4, and k5 are regarded as the parameters of the

system. For convenience, we shall frequently employ the vector notation

x(t)¼ [x1(t), x2(t), x3(t)], write the parameters as u ¼ ½kA; k2; k3; k4; k5�>; and

refer to our ODE system using the shorthand _x ¼ gðxjuÞ. In the usual way,

using vector notation also allows us to represent the progression of the

system through time as a trajectory in three-dimensional space.

It can easily be shown (see (9)) that this system has two stationary points,

located at

xð0Þ ¼ ½0; 0; 0�>; (2)

xðHÞ ¼ kA � k4

k2k4

� �
k3;

kA � k4

k2

;
kA � k4

k2k5

� �
k3

� �>
: (3)

The first of these is stable provided 0 # kA , k4, and the second is stable for

k4 , kA , k3 1 k4 1 k5. We shall be solely concerned with x(H), which

undergoes a supercritical Hopf bifurcation as kA passes through the value

k3 1 k4 1 k5 (9,10). Fig. 2 (adapted from (11)) provides a simplified phase

portrait representation of this three-dimensional supercritical Hopf bifurca-

tion, illustrating the qualitative changes in the dynamics of the system as kA

passes through the bifurcation point k3 1 k4 1 k5.

Maximum likelihood inference for ODEs

For our mathematical model in Eq. 1, we aim to infer the

values of the parameters from a set of observed data. That is,

given a set D¼ fy1, . . . , yMg of observations at times t1, . . .,
tM, we wish to infer the true parameter vector u*.

Here we consider maximum likelihood estimation of the

parameters, which requires us to specify a likelihood function

for our model. Given that the ODE is a deterministic and not a

probabilistic description of the system, we cannot establish a

direct likelihood approach; instead, we define the likelihood

through the error between predicted and actual value (anal-

ogous to regression/least-squares procedures). Following the

likelihood approach for ODE parameter estimation outlined

in Williams and Kalogiratou (12) (which is itself a specific

case of more general maximum likelihood analysis; see (13),

for example), we assume for any observed data point yi that

yi ; NðmiðuÞ;SiÞ. Here, mi(u) is the solution to the system

_x ¼ gðxjuÞ evaluated at time t ¼ ti, and Si is a covariance

matrix. We shall further assume that Si ¼ S is the same for

all i.
Assuming independence between observations (an assump-

tion that is straightforwardly relaxed, but helps us to keep

notation to a minimum), we therefore obtain the following

form for the likelihood function, L(ujD), which tells us how

the probability of observing the data set D¼ fy1, y2, . . ., yMg
changes with u:

LðujDÞ ¼
YM
i¼1

1

ð2pÞ3=2jSj1=2

3 exp �1

2
ðyi � miðuÞÞ

>
S
�1ðyi � miðuÞÞ

� �
: (4)

We are particularly interested in the maximum likelihood

estimate for the parameter vector, ûML; that maximizes the

likelihood function, and shall investigate this via the log-

likelihood, ln(L(ujD)). In our case, we have

lnðLðujDÞÞ ¼M ln
1

ð2pÞ3=2jSj1=2

 !

� 1

2
+
M

i¼1

ðyi � miðuÞÞ
>

S
�1ðyi � miðuÞÞ; (5)

}� 1

2
+
M

i¼1

ðdSðyi;miðuÞÞÞ
2
; (6)

where dSðyi;miðuÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyi � miðuÞÞ

>
S
�1ðyi � miðuÞÞ

q
is

the Mahalanobis distance (14) between yi and mi (with

FIGURE 1 (Left) Representation of the mechanism of the reaction

(adapted from (9)). (Right) The reaction described as a system of chemical

equations. Each of the ki (i ¼ 1, . . ., 5) values is a rate constant.

FIGURE 2 Simplified phase portrait for the system show-

ing the change in dynamics as kA passes through the bi-

furcation value of k3 1 k4 1 k5. (a) x(H) is a stable focus;

(b) as the bifurcation value is approached, the rate at which

the trajectory approaches x(H) decreases; (c) x(H) becomes

unstable, but a stable limit cycle bifurcates from the sta-

tionary point. As kA . k3 1 k4 1 k5 increases, the radius of

this limit cycle increases.
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respect to S), and M lnð1=ð2pÞ3=2jSj1=2Þ is a constant term

independent of u. As we are not interested in model selection

or comparison, we can neglect this constant term in this con-

text. Investigating the log-likelihood function, ln(L(ujD)), for

a given D is therefore equivalent to investigating how the

sum of squared Mahalanobis distances between the observa-

tions yi and the exact solutions mi(u) changes with u.

In all the experiments that follow, we shall assume that

S ¼ I3, the 3 3 3 identity matrix. Under this assumption, the

Mahalanobis distance is just the Euclidean distance, and so,

lnðLðujDÞÞ} � 1

2
+
M

i¼1

ðdðyi;miðuÞÞÞ
2
; (7)

where d(yi,mi(u)) denotes the Euclidean distance between yi

and mi(u). It is clear from the above that maximizing the

likelihood is equivalent to minimizing the distance function

d (often also called the cost function). We can therefore see

that investigating the log-likelihood for different parameter

values is directly related to the problem of determining how

the distance between solutions that start from the same initial

point changes with the parameters. Thus, our investigation

could be viewed as an inversion of a traditional (and well

studied; see (11), for example) problem in nonlinear dynam-

ics: namely, the problem of determining the rate of separation

of nearby solutions (given a fixed set of parameters).

METHODS

We initially make the simplifying assumption that the rates k2, k3, k4, and k5

in Eq. 1 are all known and equal to 1. By Eq. 3, this means that x(H) is located

at [kA – 1, kA – 1, kA – 1]> and will undergo a bifurcation as the value of kA

passes through 3. We shall denote the true kA value by k�A.

To obtain the data set D, we numerically simulate observations from the

model. In such a simulation study, we are able to control k�A, which enables

us to investigate the change in inferability as its value passes through 3, the

bifurcation point. It also means that we can either avoid or tightly control

practical issues such as observational noise and missing data, so that we may

focus specifically on the effect that the Hopf bifurcation has on parameter

inferability.

To produce the simulated data, we specify a set of initial conditions and

a value for k�A, and then use a numerical ODE solver to evaluate the solution

xi ¼ [x1(ti), x2(ti), x3(ti)] to the system of differential equations in Eq. 1

at times t1, . . ., tM. Unless otherwise stated, our initial conditions are al-

ways taken to be [x1(0), x2(0), x3(0)]> ¼ [1, 1, 1]>, and we take t1 ¼ 1, . . .,

tM ¼ M. This yields the trial data, DM
k�

A
¼ fyi ¼ xðtijkA ¼ k�AÞg

M
i¼1. To

imitate the imperfect nature of real experimentation, we also generate noisy

data yi¼ [x1(ti) 1 ei1, x2(ti) 1 ei2, x3(ti) 1 ei3], with each eij being drawn from

a zero-centered Gaussian distribution.

The numerical ODE solver that we use throughout this section is the

Dormand-Prince f4, 5g method (a member of the Runge-Kutta family of

ODE solvers; see (15) for details of the Runge-Kutta method and (16) for the

implementation).

RESULTS

To highlight the generic impact of a Hopf bifurcation on pa-

rameter inference from time-course data, we consider a con-

crete example in detail and under initially idealized conditions

of very long time-series. In Appendix A, we show that these

results persist for much shorter, realistic time series.

Dynamics and inferability

To understand the effect of the bifurcation on likelihood es-

timation, we evaluate and then plot the log-likelihood,

ln L kAjD1000
k�

A

� �� �
; against kA, for a range of values of k�A.

Although the number M ¼ 1000 would be an unrealistic

number of observations in practice, additional experiments

demonstrate that qualitatively similar results are also ob-

tained for the more realistic value M¼ 10 (see Appendix A).

Fig. 3 shows six log-likelihood plots for a range of values

of k�A. As expected, the maximum likelihood (ML) parameter

value is always the true value. However, the appearance of

the plots obtained when k�A # 3 are noticeably different to

those obtained when k�A . 3.

For 1 , k�A # 3, each of the log-likelihood curves consists

of:

1. A relatively flat part in the region 1 , kA , 3.

2. A relatively steep part with negative gradient in the

region kA . 3.

3. A distinct elbow in the curve at kA ¼ 3, which marks the

boundary between the other two regions of distinct

behavior.

The overall shape of the curve means that, when

1 , k�A # 3, all parameter estimates .3 become rapidly (and

increasingly) unlikely. On the other hand, parameter esti-

mates in the interval (1, 3] are all relatively likely, with a

maximum occurring at kA¼ k�A. This is very satisfying to our

intuition, as it means that parameter estimates that yield so-

lutions whose dynamical behavior is qualitatively the same as

the true solution are generally more likely than those for

which the qualitative dynamical behavior is different. Fur-

thermore, the bifurcation value kA ¼ 3, which marks the

critical point of change between the two different types of

dynamical behavior, also marks the critical point of changing

behavior in the log-likelihood curve.

For k�A . 3, although we still obtain a maximum at kA ¼
k�A, this occurs as a spike in the curve. Apart from this, the

log-likelihood curves obtained for k�A . 3 are all qualitatively

similar to the curve obtained for k�A ¼ 3, in that there is a local

maximum at kA¼ 3 and the gradient of the curve to the right

of this local maximum is steeper than to the left. We also note

that as k�A . 3 increases, the log-likelihood of values of kA

other than kA ¼ k�A decreases, so that the amplitude of the

spike appears greater (relative to the level of the rest of the

curve). While we would certainly expect to see a maximum at

kA ¼ k�A, intuition would suggest that values of kA close to

k�A should also be likely—and certainly more likely than

values of kA between 1 and 3 (where the solution is quali-

tatively different).

To understand the observed behavior, we have to think a

little more deeply about the nature of the stationary point
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x(H)* ¼ [k�A – 1, k�A – 1, k�A – 1]. The plots in Fig. 4 show a

section of the numerical solution to the system _x ¼ gðxjkAÞ
obtained for different values of kA, and are helpful when

considering the effect of the nonlinear dynamics on the

likelihood.

Let us first consider the case when 1 , k�A , 3. Here, x(H)*

is asymptotically stable, which means that all trajectories that

start near to the stationary point will be drawn toward it (see

Fig. 2 a). In general, for any k�A 2 (1,3), the solution obtained

using a parameter estimate ckA 2 ð1; 3Þ will be qualitatively

similar to the true solution. Crucially, this means that the true

solution and estimated solution both start at the same point

and end at nearby points, and hence the distance between

corresponding points in D1000
k�

A
and D1000bkA

will be relatively

small. Thus, given the relationship between distance and

likelihood (see Eq. 7), we expect all estimates ckA 2 ð1; 3Þ to

be relatively likely.

However, when the estimate ckA . 3; we observe a quali-

tative change in the behavior of the corresponding estimated

solution (see Fig. 2 c). The (estimated) stationary point at

FIGURE 4 The plots here provide a graphical represen-

tation of sections of the solutions for different values of kA.

The solutions were evaluated at the times t ¼ 1, . . . , 1000,

and are shown with straight lines joining adjacent time

points. Note how the scales on the axes grow larger as kA .

3 increases.

FIGURE 3 Log-likelihood plots for different values of

k�A (as specified by the headings, D1000
k�

A
). In each case, the

black cross indicates the maximum value (as expected, in

every case this occurs when kA is the true value). The y axis

of each plot shows the value of the log-likelihood, while the

x axis shows the value of kA.
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½ckA � 1;ckA � 1;ckA � 1� is no longer stable, and the esti-

mated solution is instead attracted toward a stable limit cycle.

Two solutions obtained for two different values of kA . 3 will

only be close to one another when the two kA values are

themselves very close together. Trajectories are no longer

drawn-inward toward a central point, but are instead forced-

outward toward the limit cycle. The effect of this is that, for

solutions obtained for any two different values of kA . 3, the

distances between corresponding data points sampled from

these solutions can become very large very quickly. This is

why we observe a spike in the log-likelihood curve: only

values of kA very, very close to the true value will result in

data points that are close to the observed data.

An approximate likelihood

If yðtiÞ 2 DM
k�

A
2ð1;3Þ and i is sufficiently large, we may make

the approximation y(ti)� [k�A – 1, k�A – 1, k�A – 1]; i.e., y(ti) is

close to the stationary point. Suppose we also consider ob-

servations yd (ti) from the set DM
k�

A
1d;where d 2R is such that

d 6¼ 0 and d2 (1 – k�A, 3 – k�A) (this simply says that k�A 1 d is

a number from (1, 3) that is not equal to k�A). Then, for i
sufficiently large, we have yd (ti) � [k�A 1 d – 1, k�A 1 d – 1,

k�A 1 d – 1]. Therefore, the squared Euclidean distance be-

tween corresponding points y(ti) and yd(ti) is eventually close

to 3d2.

Numerical simulation suggests that the squared Euclidean

distance between corresponding points in D1000
k�

A
and D1000

k�
A

1d is

;3d2 for the majority of points, so we make the further ap-

proximation that this is true for all points (provided k�A 1 d,

k�A 2 (1, 3)). By Eq. 7, this suggests that if k�A 2 (1, 3), then

the log-likelihood function may be approximated by

lnðLðkAjDÞÞ � M ln
1

ð2pÞ3=2

 !
� 1

2
+
M

i¼1

3ðk�A � kAÞ2; (8)

}� 3M

2
ðk�A � kAÞ2; (9)

in the region 1 , kA , 3.

The accuracy of this approximation is likely to depend on

many factors. For example, we would expect the approxi-

mation to be poorer if fewer observations were taken, or if the

initial starting point were further away from x(H)*. However,

we can see from Fig. 5 that for our idealized case, the ap-

proximation provides a good fit to the likelihood function.

Fisher information

To further quantify the sensitivity of the system to changes in

kA, we now consider the Fisher information, I(kA) (17). This

tells us the amount of information that the observable vari-

able x ¼ [x1, x2, x3]> carries about the value of kA. The

method used to approximate the Fisher information is given

in Appendix B.

Fig. 6 shows that the Fisher information is relatively low

for parameter values between 2 and 3, and then rapidly in-

creases once kA has passed through the bifurcation point.

This reiterates the previous findings and nicely illustrates the

difference in parameter inferability either side of the bifur-

cation point.

Noisy data

Until now, we have been solely concerned with simulating

‘‘perfect’’ data that are absent of noise. To demonstrate that

FIGURE 5 Log-likelihood for 1 , kA , 3 (the true

parameter was set to k�A ¼ 2.5), together with the

approximation given in Eq. 9. The inset shows that the

squared Euclidean distance between corresponding

points from D1000
2:5 and D1000

2:2 approaches 3d2 ¼
3(0.3)2, as predicted.
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our findings are also valid in practice, we now try to imitate

more realistic experimental conditions by introducing a

Gaussian noise term. Our data sets are now of the form

DM

k
�
A

:¼ fyi ¼ xðtijkA ¼ k
�
AÞ1 ½ei1; ei2; ei3�>gM

i¼1; (10)

where each eij ; Nð0;s2Þ. To obtain the results shown in Fig.

7, we took s ¼ 10. This was deliberately chosen to provide a

very large noise term, so that we could test the robustness to

noise of our previous findings.

Overall, these plots appear qualitatively similar to the ones

obtained in the absence of noise (Fig. 3); in particular, the

spike for k�A . 3 persists. Of course, the log-likelihood for

any given kA value is lower here, reflecting our reduced

confidence in the value of any particular parameter value (for

example, even when kA ¼ k�A, the total distance between the

FIGURE 6 Plot showing I(kA) for a range of values of

kA. Inset is a plot showing ln(I(kA)) for the same range of

kA values.

FIGURE 7 Log-likelihood plots obtained using noisy

data sets (see Fig. 3). The maximum log-likelihood values

(indicated by the black cross) in each case are as follows:

2.13, 2.93, 2.99, 3.2, 3.5, and 3.8.
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observed and expected data is nonzero, and so the log-like-

lihood is lower).

Maximum likelihood estimation of
other parameters

So far, we have assumed that only the value of kA was un-

known, and that the values of the other parameters were all

known and equal to 1. We shall now return to using noiseless

data, but shall consider a case in which both kA and k2 are

unknown.

Suppose that the true values of kA and k2 are k�A and k�2.

Then we denote the Hopf-bifurcating stationary point of the

system _x ¼ gðxjk�A; k�2Þ by x(H)*, and refer to this as the true

stationary point. Since k3¼ k4¼ k5¼ 1 are known, we know

by Eq. 3 that

xðHÞ� ¼ k
�
A � 1

k
�
2

;
k
�
A � 1

k
�
2

;
k
�
A � 1

k
�
2

� �
:

Similarly, if ckA and bk2 are estimated values of kA and k2,

then we denote the Hopf-bifurcating stationary point of the

system _x ¼ gðxjckA; bk2Þ by dxðHÞ and refer to this as the esti-

mated stationary point. Clearly, we have

dxðHÞ ¼ ckA � 1bk2

;
ckA � 1bk2

;
ckA � 1bk2

� �
:

Assuming both kA and k2 to be unknown turns out to be

particularly interesting for two main reasons:

1. We know that the stationary point x(H) of the system

g(xjkA, k2) is stable provided kA is in the open interval

(k4, k3 1 k4 1 k5). Thus, since we are keeping the other

three parameters (k3, k4, k5) fixed, the stability of x(H) is

determined solely by the value of kA and not by k2.

2. Given any estimate ckA of kA, there is always a value

j2 ¼ ðk�2ðckA � 1ÞÞ=ðk�A � 1Þ such that if bk2 ¼ j2; the

location of the estimated stationary point will coincide

with the location of the true stationary point (regardless

of how poor the estimates ckA and bk2 may be).

We start by setting k�A ¼ 2.5 and k�2 ¼ 1, and calculate the log-

likelihood on a grid of values for kA and k2 (using exactly the

same method as previously, taking the initial point to be [1, 1,

1] and the number of data points, M, to be 1000). We consider

2 # kA # 3.9 and 0.2 # k2 # 4, with a spacing of 0.02

between grid points in both directions. This defines a log-

likelihood surface, as shown in Fig. 8. The absolute maxi-

mum is marked on the surface with a white dot, and occurs

when (kA, k2) ¼ (k�A, k�2) (as we would expect).

To provide more insight, Fig. 9 shows for each value of kA

the value of k2, which yields the maximum log-likelihood.

We can see from Fig. 9 that there are two approximately

linear regions. Shown in red is the line k2 ¼ ð2Þ=ð3ÞðkA �
1Þ; and we can see that it provides a good fit to the curve in

approximately the region 2 # kA & 3. This line corresponds

to bk2 ¼ j2 being the estimate which ensures that dxðHÞ ¼ xðHÞ�.
This means that even if we estimate kA incorrectly, then—

provided ckA 2 ½2; 3�—the maximum likelihood estimate of

FIGURE 8 Plot of the log-likelihood surface on a grid of

kA, k2 values. The absolute maximum value has been

highlighted as a circled white dot.
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k2 is the one that places the estimated stationary point at the

true location (or within a ellipsoid with radii determined by

the level of noise in the system). Intuitively, this makes a

great deal of sense: provided ckA is in the range 1 # kA # 3,dxðHÞ is asymptotically stable and so represents the ‘‘destina-

tion’’ of the solution to the system _x¼ gðxjckA; bk2Þ as t / N.

Thus, if bk2 ¼ k2 correctly places the estimated stationary

point, then this means that the estimated solution both starts

and ends at the same places as the observed solution.

Shown in green is the line k2 ¼ kA – 1, which provides a

good fit to the curve in the region 3.08 # kA # 3.9. This line

corresponds to bk2 being the estimate that locates dxðHÞ at [1, 1,

1], i.e., so that the estimated stationary point coincides with

the initial starting point of the trajectory. This means that the

whole trajectory will just appear at the single point [1, 1, 1].

We can think of this as follows: if kA is estimated in such

a way that dxðHÞ would be unstable, then the maximum like-

lihood value estimate bk2 attempts to correct this behavior.

Since the value of k2 cannot alter the stability of dxðHÞ; the best

that can be done is to estimate bk2 so that the entire solution

shrinks down onto a single point. We can also see that there is

in fact a small interval of kA values (namely (3, 3.08)) in

which the unstable solution is favored. Within this interval,

the radius of the limit cycle is relatively small, and hence the

maximum likelihood solution can be unstable and still be

relatively close to the observed solution.

The results from this section appear to demonstrate

that—when we perform inference in order to estimate the

parameters of an ODE system—not only are we attempting to

find the parameter values that best explain the particular

observed trajectory, but that also accurately describe the

underlying dynamics of the system. In particular, our results

suggest that if the true stationary point x(H)* is stable, then

parameter estimates for which dxðHÞ is stable and correctly

located will be preferred over those for which it is not.

We also investigated situations in which kA and k4 were

unknown (and the remaining parameters were assumed to be

known), and obtained similar results. However, in contrast to

the above, both of these two unknown parameters affect the

location of the stationary point, which makes the results more

difficult to interpret.

DISCUSSION

We have considered the smallest chemical reaction system

with a Hopf bifurcation (9), and have investigated how pa-

rameter inferability changes in this model. We found that the

presence of a Hopf bifurcation in the system has a clear effect

on the shape of both the log-likelihood function and the

Fisher information considered as a function of the parame-

ters. An analysis of the log-likelihood function for different

values of k�A revealed that the function’s qualitative behavior

changes depending on whether k�A is above or below the

critical bifurcation value (see Fig. 3), which we expect to

have an effect upon inferability. For k�A . 3, highly likely

estimates for the parameter only occur within a very small

interval that contains the true value. Thus, although it might

be difficult to find a particularly likely parameter estimate,

once we have one, we can be sure that it will be close to k�A.

For 1 , k�A # 3, any parameter estimate that lies within the

interval (1, 3] is relatively likely. So, in this case we have the

opposite situation: although it may be easy to find plausible

parameter estimates, determining which one is correct is

likely to be more difficult.

There is—mirroring the rich literature on dynamical sys-

tems, in general, and on bifurcation analysis, in particular—a

rich set of phenomena related to estimating parameters of

dynamical systems. Parameter estimation generally considers

only local dynamics, i.e., its specific aim tends to be to home

in on those model parameters most likely to have generated

the observed data points as efficiently as possible. Global

dynamical effects, such as bifurcations, are hardly ever

considered although their importance for understanding bi-

ological systems has been amply demonstrated (7,8). Here

we have discussed how global dynamics interact with our

ability to draw statistical parameter inferences from time-

series data. There are a number of obvious ways in which this

research can be extended. A relatively simple but important

next step would be to consider the effects of having fewer

experimental/simulated observations. Preliminary investiga-

tion (see Appendix A) suggests that the results presented here

remain valid, yet the picture quickly becomes more compli-

cated as data quality and quantity decrease. There is a clear

need for a thorough treatment of this issue, as experimental

data are often sparse. Another simple extension would be to

study the effects of varying or inferring initial conditions.

Once these issues have been addressed, the methods used

here could be applied to other systems to determine the ef-

fects on inferability of other types of bifurcation.

FIGURE 9 Plot showing for each value of kA the value of k2 that yields

the maximum log-likelihood (blue dots). Shown in green is the line k2 ¼
kA – 1, and in red is the line k2 ¼ ð2Þ=ð3ÞðkA � 1Þ.
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APPENDIX A: INFERENCE FROM SHORT
TIME-SERIES RESULTS

Throughout, we have considered data sets that consist of 1000 data points.

However, with real experimental data, we would typically expect far fewer

observations. In Fig. 10, we show log-likelihood plots obtained using a data

set consisting of only 10 observations taken at times t ¼ 10, 20, . . . , 100.

Although now perhaps less clear, the results are still qualitatively similar

to those obtained previously. A notable difference is that the maximum value

for k�A . 3 no longer occurs as a true spike in the curve. Instead, values of kA

near to k�A are also likely, so that the maximum occurs as the peak of a much

more gentle hump in the curve. One effect of this is that it is much more

difficult to determine the precise bifurcation value of kA just from looking at

these plots. Another is that for k�A . 3 we would expect to find it more

difficult to pinpoint the precise value of k�A than in our previous cases.

However, overall, we can see that the shape of the likelihood curve is roughly

similar to previously, with different behavior either side of kA � 3.

APPENDIX B: APPROXIMATING THE
FISHER INFORMATION

The Fisher information is defined as

IðkAÞ ¼ E
@

@ðkAÞ
lnðLðkAjDÞÞ

� �2

jkA

 !
: (11)

Here, the expectation is with respect to the probability density function

f(DjkA), so we may write the expression above as

IðkAÞ ¼
Z

D

@

@ðkAÞ
lnðLðkAjDÞÞ

� �2

f ðDjkAÞdD: (12)

Hence, for each kA, I(kA) is the square of the derivative with respect to kA of

the likelihood function for kA, averaged over all observable data sets D.

Using standard techniques (Monte Carlo integration (see, for example, (18)),

we can clearly approximate the Fisher information by

IðkAÞ �
1

N
+
N

j¼1

@

@ðkAÞ
lnðLðkAjDðjÞÞÞ

� �2

; (13)

where N is a large number and each D(j) is an independent draw from

f(DjkA).Furthermore, from Verdugo and Rand (7), we have

lnðLðkAjD ¼ fyig
M

i¼1ÞÞ} �
1

2
+
M

i¼1

ðdðyi;miðkAÞÞÞ2;

where mi(kA) is the exact solution evaluated at time t ¼ ti.Thus, we have

IðkAÞ �
1

4N
+
N

j¼1

@

@ðkAÞ
+
M

i¼1

ðdðyðjÞi ;miðkAÞÞÞ2
� �2

; (14)

where fyi
ðjÞgM

i¼1 ¼ DðjÞ is an independent draw from f(DjkA).

Since we cannot write mi(kA) analytically, we must make the following

further approximation,

@

@ðkAÞ
+
M

i¼1

ðdðyðjÞi ;miðkAÞÞÞ2

�
+
M

i¼1

ðdðyðjÞi ;miðkA 1 hÞÞÞ2 � +
M

i¼1

ðdðyðjÞi ;miðkAÞÞÞ2

h
; (15)

where 0 , h� 1.

Thus, we have

IðkAÞ �
1

4Nh
2 +

N

j¼1

+
M

i¼1

ððdðyðjÞi ;miðkA 1 hÞÞÞ2
�

�ðdðyðjÞi ;miðkAÞÞÞ2Þ
�2

: (16)

Using the above, it is possible for us to approximate I(kA) numerically for

any value of kA. Results are shown in Fig. 6.

FIGURE 10 Log-likelihood plots obtained using a data

set consisting of 10 points, with observations taken at times

t ¼ 10, 20, . . ., 100.
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