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ABSTRACT Information about intramural propagation of electrical excitation is crucial to understanding arrhythmia mecha-
nisms in thick ventricular muscle. There is currently a controversy over whether it is possible to extract such information from the
shape of the upstroke in optical mapping recordings. We show that even in the complex geometry of a whole guinea pig heart,
optical upstroke morphology reveals the 3D wavefront orientation near the surface. To characterize the upstroke morphology,
we use V �F ; the fractional level at which voltage-sensitive fluorescence, VF, has maximal time derivative. Low values of V �F (;0.2)
indicate a wavefront moving away from the surface, high values of V �F (;0.6) a wavefront moving toward the surface, and
intermediate values of V �F (;0.4) a wavefront moving parallel to the surface. We further performed computer simulations using
Luo-Rudy II electrophysiology and a simplified 3D geometry. The simulated V �F maps for free wall and apical stimulations as well
as for sinus rhythm are in good quantitative agreement with the averaged experimental results. Furthermore, computer
simulations show that the effect of the curvature of the heart on wave propagation is negligible.

INTRODUCTION

Optical mapping with voltage-sensitive dyes has become the

most widely used method for the study of excitation propa-

gation in the heart (1–5). Although the largest contribution to

the optical fluorescence signal comes from the cardiac sur-

face, it is now well established that subsurface layers also

contribute significantly to the optical signal (6–13). There is

evidence that these subsurface contributions make it possible

to determine the three-dimensional orientation of subsurface

wavefronts from the optical signal. A theoretical study first

pointed out that the transmural component of propagation

velocity should have an impact on the optical upstroke (14),

and a subsequent study predicted a one-to-one correspon-

dence between upstroke morphology and wavefront orien-

tation (15). In contrast, the first study to simulate optical

signals in a whole rabbit heart did not find a significant

correlation between the overall propagation direction and

upstroke morphology (16).

The measure used to quantify the upstroke shape is the

fraction of the action potential amplitude at which the VF, the

optically determined transmembrane potential, has its

steepest slope. This fraction is called V�F. An upstroke for

which dVF/dt is maximal close to its beginning would have

V�F ; 0, whereas an upstroke for which dVF/dt is maximal

close to its end would have V�F ; 1. In terms of V�F; the studies

that predicted a one-to-one correspondence between upstroke

morphology and wavefront orientation (15) described char-

acteristic patterns of V�F for different types of wave propa-

gation, whereas the simulation study in rabbit hearts (16) did

not observe such characteristic patterns.

These conflicting results were discussed in Comments to

the Editor in the Biophysical Journal (17,18), and both sides

agreed that only experiments in whole hearts could determine

whether a correlation exists between upstroke morphology

and subsurface wavefront orientation. The main factors that

might obscure these theoretically predicted correlations are

the complex geometry of the heart, including its curved

surface, and heterogeneities such as blood vessels.

In this article, we report the results of experiments de-

signed to resolve the described controversy. The experiments

were conducted using whole guinea pig hearts. We find that

the upstroke morphology does indeed contain information

about the transmural propagation direction. More specifi-

cally, the spatially averaged distributions of V�F determined

experimentally closely follow theoretically predicted distri-

butions. In particular, we studied three modes of activation:

stimulation of the free ventricular wall, apical stimulation,

and sinus rhythm. In computer simulations with a cylindrical

cardiac geometry, we reproduce the experimentally observed

morphologies. We also provide a computational analysis

of the effect of the curved geometry of the heart on wave

propagation.

MATERIALS AND METHODS

Experimental preparation

All experimental protocols conformed to the Guide for the Care and Use of
Laboratory Animals (National Institutes of Health publication No. 85-23,

revised 1996). Guinea pigs (n¼ 4) were injected with heparin (550 U/100 g),

and euthanized by sodium pentobarbital (7.5 ml/kg), after which the heart
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was immediately excised and placed in ice-cold cardioplegic solution,

composed of (in mmol/l) 280 glucose, 13.44 KCl, 12.6 NaHCO3, and 34

mannitol. After removal of extraneous tissues, the aorta was cannulated (see

Fig. 1 A) and Langendorff perfusion was started with a standard oxygenated

Tyrode’s solution (composed of (in mmol/l) 130 NaCl, 24 NaHCO3, 1.2

NaH2PO4, 1.0 MgCl2, 5.6 glucose, 4.0 KCl, and 1.8 CaCl2, buffered to a pH

of 7.4) at 80 mm Hg and 37�C. The whole, cannulated heart was put into a

special transparent chamber and superfused with the same solution at a rate of

30–40 ml/min. Perfusion and superfusion temperatures were continuously

monitored and kept at 37 6 0.5�C by using two sets of glass heating coils and

heated-refrigerated circulators.

Electrodes were sutured to whole hearts to monitor the electric activity.

All preparations were continuously paced at a basic cycle length of 300 ms.

After a 30-min stabilization period during which the perfusion flow and

electric activity were monitored, the excitation-contraction uncoupler dia-

cetyl-monoxime was added to the Tyrode’s solution (15 mmol/l) to stop

contractions of cardiac tissue. Then the preparation was stained with a bolus

injection of 1–2 ml of the voltage-sensitive dye Di-4-ANEPPS (from Mo-

lecular Probes (Eugene, OR), concentration 5 mg/ml), which was added into

the perfusion flow.

Optical setup

The optical setup consisted of a 14-bit CCD video camera (‘‘Little Joe’’,

SciMeasure, Decatur, GA) with a Computar H1212FI lens (focal length

12 mm, 1:1.2 aperture ratio; CBC, Commack, NY). We used a collimated

beam from a 250-W tungsten halogen lamp to uniformly illuminate the left

ventricular free wall. The light was heat filtered and then passed through

520 6 40-nm bandpass excitation filters. Fluorescence was recorded at 640 6

50 nm. The video images (80 3 80 pixels) were acquired from a 20 3 20-mm

area of the preparation (see Fig. 1 A) at 2000 frames/s. The background

fluorescence was subtracted from each frame to obtain the voltage-dependent

signal.

Processing of optical recordings

In all experiments, 50–100 optical action potentials of each recording were

ensemble-averaged to reduce noise while simultaneously avoiding the ex-

cessive use of spatial or temporal filters that might affect optical upstroke

morphology. The alignment error of the optical action potentials was no more

than one-half frame (0.25 ms). The ensemble averaged signal was filtered

with a (rectangular) moving average filter of radius 2 in space and radius 2 in

time.

To characterize the upstroke morphology, we used the fractional level V�F ;
at which the time-derivative of the voltage-sensitive fluorescence, V�F, is

maximal (see Fig. 1 C). For example, V�F ¼ 0 means that _VF is maximal

right at the beginning of the upstroke, whereas V�F ¼ 1 means that _VF is

maximal at the end of the upstroke. Unlike in our previous study (15), we

estimated V�F not by cubic spline interpolation but simply using a centered

second-order scheme; this was possible because the signal quality and

temporal resolution are significantly improved with the better camera we

now use. The V�F maps shown have also been filtered with a spatial filter of

radius 2 (see Fig. 1 B).

Computer simulations

To simulate electrical activity in the heart, we used the Luo-Rudy II

dynamic model (19), specifically created for guinea pig ventricular myo-

cytes. The geometry was a cylindrical tube with inner radius 10 mm, outer

radius 15 mm, and length 30 mm. We implemented this geometry in 2D,

using the gradient operator for cylindrical coordinates, =cyl ¼
ð@=@r; ð1=rÞ@=@u; @=@zÞT; and solved the standard reaction-diffusion

equation:

@tVm ¼ �Iion=Cm 1 =cyl � D=cylVm; (1)

where Vm is the transmembrane potential, Cmthe membrane capacity density,

Iion the total ionic current density of the membrane, and D the diffusivity

tensor. The diffusivity tensor, D, was scaled to produce steady-state con-

duction velocities of 60 cm/s in the longitudinal and 20 cm/s in the transverse

direction, consistent with our experimental measurements. The fibers were

assumed to rotate at a linear rate with depth. The total transmural rotation was

set to 100�, in accordance with our experimental determination of fiber

rotation in guinea pig left ventricle (20). Our simulations used a spatial

resolution dx ¼ 100 mm and a temporal resolution dt ¼10 ms.

Stimulation was achieved by applying a double threshold stimulus for

2 ms. For free wall stimulation, this stimulus was placed on the epicardial

surface, at half the cylinder’s height. For apical stimulation, we stimulated

the entire (ring-shaped) base of the cylinder (a good approximation of the

situation after a point stimulation, when a ring-shaped front has developed).

For sinus rhythm, we simultaneously stimulated a large number of endo-

cardial surface points, which were distributed as follows: at the apex, we

placed 10 equidistant stimulation points; at a height of 2.5 mm, 9 points; at

5 mm, 8 points; and so forth, up to a height of 22.5 mm, where we placed one

stimulation point. This scheme approximates the distribution of the end-

points of the Purkinje fibers, which are most dense at the apex of the heart and

thin out toward the base.

Optical model

To compare our simulation results to experiments, we further computed the

optical signals corresponding to the electrical activity that we determined.

We describe light propagation in cardiac tissue by the time-independent

diffusion equation (14,21):

ð3ms9 1 3maÞ
�1 � =

2
Fðr~Þ � ma � Fðr~Þ1 Q ¼ 0; (2)

where F is the photon density within the tissue due to a source Q, ms9 is the

reduced scattering coefficient, and ma is the photon absorption coefficient.

FIGURE 1 Experimental setup and typical V�F recording. (A) Langen-

dorff-perfused guinea pig heart. The black square indicates a typical field of

view of optical mapping movies. (B) Experimentally determined V�F map.

Tissue was stimulated at the location marked ‘‘1’’. (C) Upstrokes from

locations a–c of B, as marked. The steepest point of the upstroke is marked

and the fraction of the peak potential at the steepest point is indicated.
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This approach assumes isotropic light propagation, and is justified by our

previous work (14). We assumed Robin boundary conditions at all surfaces:

F ¼ ls � =F; (3)

where ls is the so-called extrapolation distance (22) that accounts for

refractive index mismatches at the boundary.

The electrical (Eq. 1) and optical (Eq. 2) models were coupled through the

source function Q, in defined in Eq. 2, to account for the voltage-dependent

fluorescence changes of the dye (14,21):

Q ¼ b 3 Fex � Vm; (4)

where b represents the quantum yield of the dye and Fex is the local photon

concentration of the excitation light.

Equation 2 was solved analytically by using the method of images

(23,24). The recorded surface distribution of voltage-dependent signals was

calculated using Fick’s law.

Our optical parameters are those previously reported (6,24). For the

voltage-sensitive dye Di-4-ANEPPS that we use in our experiments, we

have: ms9 ¼ 1.5 mm�1, ma ¼ 0.35 mm�1, and ls ¼ 0.8 mm for the excitation,

and ms9 ¼ 1.5 mm�1, ma ¼ 0.12 mm�1, and ls ¼ 1.0 mm for the emission.

RESULTS

Free wall pacing

Fig. 2 compares V�F maps and activation maps from experi-

ments and simulations for free wall stimulation. Fig. 2 A
shows the experimentally determined V�F map, and Fig. 2 B
shows the corresponding activation sequence. This activation

sequence reveals that in the vicinity of the stimulation site,

the wavefront has an elliptical shape, with a direction of

fastest propagation (long arrows) and a direction of slowest

propagation (short arrows). In Fig. 2 A, we see that V�F is low

(;0.2) at the stimulation site. Moving along the direction of

fastest propagation, V�F remains at a low level, but in the di-

rection of slow propagation, V�F increases rapidly, up to levels

around 0.7. Thus, the V�F pattern exhibits all the characteristic

properties we previously found in simulations of a slab of

tissue (15).

Fig. 2 C shows the simulated V�F map. It follows the

characteristic pattern that we found in slab preparations (15)

even more closely than the experimental data, and simulation

and experiment (Fig. 2 A) are in good qualitative agreement.

The simulated activation sequence (Fig. 2 D) is likewise in

good agreement with the experimentally determined one

(Fig. 2 B). The similar patterns in the V�F map are also re-

flected in the similar shapes of experimentally determined

and simulated optical upstrokes for corresponding locations,

shown in Fig. 2 E. For a more quantitative analysis, we

compared vertical profiles along the line that connects the

stimulation site with the maxima of V�F (in simulations, both

maxima of V�F lie on a line with the stimulation site due to

symmetry, and in experiments, we fit the line to minimize the

RMS of the deviations from the maxima). The comparison of

profiles is shown in Fig. 2 F. Both profiles are close to

symmetric with high values at the ends and a minimum in

between. The plateaus on the left side are 0.57 experimental

(average for x ¼ �7 mm to x ¼ �4 mm) and 0.54 simulated,

the minimum is 0.19 experimental versus 0.18 simulated, and

the right plateau (average for x ¼ 7 mm to x ¼ 4 mm) is 0.54

experimental versus 0.62 simulated.

To characterize the width of the minimum, we considered

the half-width of the profile, which we define as follows.

FIGURE 2 Variation of upstroke morphology for free wall stimulation in

experiment and simulation. (A) Experimental V�F map for point stimulation at

the center of the left ventricle. The stimulation site is marked ‘‘1’’, the

dashed line marks a section of the surface that we use for comparison of

profiles (see F). (B) Activation sequence for point stimulation experiment

(same experiment depicted in A). Black lines are isochrones, spaced 1 ms

apart; arrows indicate direction of wave propagation. (C) Simulated V�F map

for point stimulation at the center of the left ventricle. (D) Activation

sequence for point stimulation simulation; details are as in B. (E) Optical

upstrokes from selected locations as marked in A and C. (F) Comparison of

V�F profiles from experiment and simulation. Lines along which profiles are

taken are marked by dashed black lines in A and C; the stimulation site

corresponds to distance ¼ 0.
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From the minimum (at distance 0), we determine at which

distance to the left the value halfway between minimum and

maximum (min 1 maxL)/2 is reached. In the same way, we

determine the distance to the right where (min 1 maxR)/2 is

reached. The sum of these distances is the half-width. The

half-width of the minimum is 3.8 mm experimental and 3.0

mm in simulations. In short, there is good quantitative

agreement between experimental and simulated V�F maps.

Apical pacing

Fig. 3 compares V�F maps from experiments (A) and simula-

tions (B) for apical stimulation. The simulated V�F has, by

definition, perfect rotational symmetry, and the experimental

map exhibits this symmetry approximately, although there

is substantial local variation, especially in the upper part of

Fig. 3 B. The activation maps from experiment (Fig. 3 C)

and simulation (Fig. 3 D) agree on the most important

characteristics: activation travels upward in a rotationally

symmetrical way, and the conduction velocity increases

significantly as the wave propagates upward. For both ex-

periment and simulation, the change of upstroke shape in the

axial direction is impressive, and similar for corresponding

points (Fig. 3 E). The V�F profiles (Fig. 3 F) in the axial di-

rection have a low plateau at the apex, then a steep rise for

increasing x and finally a high plateau toward the base. The

level of the low plateau is 0.2 in experiments versus 0.33 in

simulations; that of the high plateau is 0.55 in experiments

versus 0.67 in simulations. The width of the transition is

;1.8 mm in experiments and ;2 mm in simulations. The line

a–c in Fig. 3 A was chosen so that it intersects the stimulation

site and is vertical, but the profiles along other vertical lines

give similarly good agreement. In summary, experimental

and simulation V�F -maps agree very well except for a general

shift toward larger V�F in simulations. The shift may be caused

by our approximation of linear transmural fiber rotation,

which is valid in good approximation in free wall, but not

close to apex. Despite the good qualitative agreement, it is

apparent that the experimental data exhibit greater variability

in V�F than the simulated data, a fact that can be attributed to

noise in our recording system or to small-scale heterogene-

ities in the tissue (see Discussion).

Sinus rhythm

Fig. 4 compares V�F maps from experiments (A) and simula-

tions (C) for sinus rhythm. In both cases, V�F varies much less

than for free wall and apical pacing, and V�F is .0.4 almost

everywhere. This should be expected for sinus rhythm, be-

cause during the ventricular activation, the Purkinje fibers at

the endocardium are excited first, and from there the excita-

tion travels outward. Only the experimental maps show a

systematic, if small, increase of V�F from apex to base.

The activation maps from experiments (Fig. 4 B) and

simulation (Fig. 4 D) both show relatively synchronous ac-

tivation. The only exception is the visible wave propagation

in the upper middle of Fig. 4 D; this is a consequence of our

relatively sparse stimulation on the endocardium. As Fig. 4 E
shows, there is not much spatial variation in upstroke mor-

phology in either experiment or simulation. The V�F profile

(Fig. 4 F) shows that small-scale variations can be seen in

FIGURE 3 Variation of upstroke morphology for apical stimulation in ex-

periment and simulation. (A) Experimental V�F map for point stimulation at the

apex. The thick semitransparent white bar marks the position of the stimu-

lation electrode; other details are as in Fig. 2 A. (B) Activation sequence for

apical stimulation experiment (same experiment as in A), with details as in

Fig. 2 B. (C) Simulated V�F map for apical stimulation. (D) Activation se-

quence for apical stimulation simulation. (E) Optical upstrokes from selected

locations as marked in A and C. (F) Comparison of V�F profiles from ex-

periment and simulation. Lines along which profiles are taken are marked by

dashed black lines in A and C; the stimulation site corresponds to distance¼ 0.
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experiment and simulation, with the average V�F from ex-

periment (0.52) and simulation (0.52) matching closely. The

line a–c was chosen vertically and in the center of the field of

view, but profiles are similar along other vertical lines. Fig.

4 G compares the distributions of V�F in experiments and

simulation. Both distributions have a maximum at V�F ¼ 0.54.

The experimental distribution is significantly wider; this may

be a consequence of small-scale tissue heterogeneities or of

noise in the recording system (see Discussion).

Variability of VF
* maps in different preparations

We compared V�F maps for free wall stimulation in different

preparations. All our preparations showed the characteristic

pattern in Figs. 1 B and 2 A, with its three prominent features:

1), a low value of V�F (�0.2) at the stimulation site, 2), a strip

of low V�F around the stimulation site, oriented in the fiber

direction at the stimulation site, and 3), rapidly increasing V�F
when moving from the stimulation site in a direction or-

thogonal to fibers.

Fig. 5 shows profiles of V�F through the point of stimulation

and orthogonal to fiber direction. All profiles have a mini-

mum at or near the stimulation points. The minimum value of

V�F is typically between 0.15 and 0.2, with one exception

(preparation 4), where it is slightly above 0.3. At the left and

right side, V�F goes up to between 0.55 and 0.7. The aver-

age the half-width (defined above) in our preparations was

3.50 6 0.60 mm.

Simulation study on the effect of curvature

In the controversy that motivated this study (17,16,18), it was

hypothesized that the complex geometry of the heart may

obscure the V�F patterns that had previously been observed in

slab preparations (15). To address this question, we per-

formed a series of simulations to assess the effect of curvature

on propagation. The inner radius of the cylinder was 2.5 mm

and the thickness 5 mm (see Fig. 6 A). Our simulations were

done in polar coordinates in a cross section of the cylinder,

with the regular Laplace operator (see Methods), as well as

with a modified Laplace operator, = ¼ ð@=@r; 1=ro@=@uÞ;
where ro is the (constant) outer radius. The modified operator

corresponds to propagation in a rectangle rather than a slice

of a cylinder.

Fig. 6 A shows that there is no visible difference in the

activation sequences with and without the curvature term.

From the stimulation to the point of time at which the whole
FIGURE 4 Variation of upstroke morphology during sinus rhythm in

experiment and simulation. (A) Experimental V�F map during sinus rhythm.

The dashed line marks a section of the surface that we use for comparison of

profiles (see F). Details are as in Fig. 2 A. (B) Activation sequence for sinus

rhythm experiment (same experiment as in A), with details as in Fig. 2 B. (C)

Simulated V�F map for sinus rhythm (same experiment as in A and C; the

stimulation site corresponds to distance ¼ 0. (G) Histograms comparing

V�F distribution in simulations and experiments. Amplitudes have been nor-

malized to achieve equal total histogram area.

FIGURE 5 Variability of V�F profiles in different preparations. In all prep-

arations, the stimulation site is at distance¼ 0. Profiles were measured in the

direction perpendicular to fastest surface propagation.
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medium is activated, the isochrones for propagation with and

without the curvature term are nearly identical. We also

computed V�F maps for both cases and they are virtually in-

distinguishable (no picture shown).

We repeated simulations with and without the curvature

term for a series of inner radii of the cylinder, keeping the

thickness constant (Fig. 6 B). To assess the difference in

propagation, we compared the transmural propagation time

with and without the curvature term for all radii. The trans-

mural propagation time was defined as the time between

stimulation and the time where the first epicardial point

reached 10% depolarization. In all cases, the difference in

propagation time is ,0.5 ms or ;1.5%. Fig. 6 B shows that

the transmural propagation time is independent of the radius

if the curvature term is excluded, which is expected, because

in this case, we are simulating propagation in slabs of dif-

ferent width, and curvature should not play a large role.

When the curvature term is included, the conduction time is

slightly larger, because in this case there is more surrounding

medium around the stimulation site. The effect of curvature is

diminished for large radii (small curvature). In summary, we

find that the effect of curvature on propagation is minimal,

even for curvatures that exceed those present in the guinea

pig ventricles.

Effect of total fiber rotation and tissue thickness

Two other factors that could be thought to influence V�F maps

are the total fiber rotation and thickness of the preparation. To

assess their impact on V�F maps, we compared three situa-

tions: 1), control conditions (as described in the Methods

section); 2), doubled rate of fiber rotation over half the regular

thickness (i.e., 100 degrees fiber rotation over 2.5 mm); and

3), doubled rate of fiber rotation, keeping the thickness

constant (i.e., 200� fiber rotation over 5 mm). The resulting

V�F maps are shown in Fig. 6 C. The maps for cases 2 and 3 are

virtually identical, suggesting that the fiber structure in the

superficial 2.5 mm almost entirely determines the subsurface

wavefront orientation. Case 1 is still very similar but has

slightly lower levels of V�F everywhere. This reflects the fact

that for a smaller rate of fiber rotation, it takes longer for the

excitation to penetrate to a depth at which fiber orientation is

significantly different from that at the surface, and subsurface

wavefront orientation is altered by propagation in deeper

layers only at a greater distance from the stimulation site.

Furthermore, we obtained one V�F map in a guinea pig right

ventricle. Although the typical thickness is only 50–75% that

of the left ventricle and the total fiber rotation is larger (119�
vs. 106� in the left ventricle (20)), still the V�F map was not

significantly different from those we showed for left ventri-

cles.

DISCUSSION

The goal of this study was to establish whether in whole

hearts, upstroke morphology can be used to assess the local

intramural orientation of activation fronts. Tissue curvature

and heterogeneities are the main factors that might distort

theoretically predicted correlations. We discovered that for

free wall and apical stimulation, the upstroke morphology

shows characteristic patterns that should be expected if the

morphology is correlated to subsurface wavefront orienta-

tion. For sinus rhythm, we observed little variation in V�F;
consistent with wavefronts propagating from the endo- to

FIGURE 6 Effect of myocardial wall curvature on wave

geometry and optical activation sequence. (A) Electrical

activation sequence in a cross section of a cylindrical

domain. The stimulation site is marked ‘‘1’’ and the

direction of wave propagation is indicated by arrows. Red

thick lines are isochrones (spaced 5 ms), computed in

observance of wall curvature. White thin lines show the

activation sequence as computed neglecting curvature (see

text). (B) Transmural conduction times for endocardial

stimulation with and without curvature term. (Insets) Ge-

ometry with curvature term (red) and without curvature

term (black). (C) Effects of total fiber rotation and prepa-

ration thickness on the V�F pattern, obtained in a slab

geometry.
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epicardium, with near simultaneous wavefront breakthrough

on the epicardium. Detailed quantitative comparisons with

simulations of all three modes of stimulation further support

the conclusion that the upstroke morphology correlates with

the subsurface wavefront orientation as follows: low values

of V�F (;0.2) indicate a wavefront moving away from the

surface, high values of V�F (;0.6) a wavefront moving toward

the surface, and intermediate values of V�F (;0.4) a wavefront

moving parallel to the surface. In simulations we found that

the curved geometry of the heart does not significantly in-

fluence V�F maps.

Interestingly, we never observed V�F . 0.8, not even in

simulations of sinus rhythm, where excitation waves are

oriented approximately parallel to the surface and one could

expect V�F to be close to 1. When studying this phenomenon,

we found, however, that a traveling wave in the Luo-Rudy

model has a voltage profile that explains the low maximum

value of V�F (see Fig. 7). Indeed, the cells are not fully excited

as the wavefront passes, but the wavefront only excites them

by ;80% of the action potential amplitude, whereas the last

20% of the excitation occurs slowly after the wavefront has

passed. This explains why V�F does not go above 0.8, even for

propagation directly toward the surface.

Differences between predicted and experimental
VF

* maps

Although we report good qualitative and quantitative

agreement of experimental and simulation results, experi-

ments exhibit a higher degree of local variation in V�F; as

manifested in the more patchy color maps (see Fig. 3 A, for

example). The most convincing explanation of this variation

is in our opinion that tissue heterogeneities (e.g., blood ves-

sels) locally perturb wave propagation. These heterogeneities

were not included in our simulations, but they should effect

wave propagation and thereforeV�F. Simulations that do in-

clude heterogeneities report similar variations in wavefront

propagation (17) (although no V�F maps have been pub-

lished). Another contributing factor to the variation in V�F is

noise in our acquisition system. The relative contributions of

noise acquisition and tissue heterogeneities cannot be deter-

mined based on the data presented here, but pose an impor-

tant question for future studies.

Comparison to earlier studies

Our results are in good agreement with the only related ex-

perimental study (15), which was conducted in isolated right

ventricular pig heart preparations. We find minimal values of

V�F at the stimulation site and a strip of low V�F around the

stimulation site and extending in the direction of fastest

preparation (as in the earlier study). For the most readily

comparable stimulation mode, i.e., stimulation of the free

ventricular wall, this strip has a typical half-width (defined

above) of 3–4 mm in both studies.

Careful analysis is needed when comparing our results to

those of a detailed anatomical modeling study by Bishop

et al. (16). It appears that their results disagree with ours, as

the authors state that they cannot identify a significant cor-

relation between upstroke morphology and intramural prop-

agation direction. However, as we pointed out in a comment

on their study (18), the key to resolving this apparent dis-

agreement likely is to note that the intramural propagation

direction close to the surface typically does not coincide with

the macroscopic propagation direction. Indeed, the simula-

tions of apical stimulation presented in earlier publications

(25,26) clearly show that whereas the macroscopic wave

propagation is from apex to base (orthogonal to the surface),

the subsurface intramural propagation direction far from the

stimulation site has a strong component toward the surface

(see Fig. 8). Consequently, the intramural propagation di-

FIGURE 7 Series of voltage profiles across the myocardial wall for a wave

that is approaching the epicardial surface. Arrow indicates the direction of

propagation.

FIGURE 8 Activation map for apical stimulation in the computational

model. A cross-section of the cylinder wall is shown to reveal the intramural

wave propagation. The arrows denote the local normal to the wavefront

beneath the epicardial surface.
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rection in this situation is similar to that of sinus rhythm

(endocardial stimulation), for simulations as well as for ex-

periments (compare Figs. 3 and 4). In this light, it is not

surprising that the upstrokes that Bishop et al. observed far

from the apex are similar for apical and endocardial stimu-

lation. Our experimental results obtained for different stim-

ulation protocols highlight the distinction that should be

made between macroscopic propagation direction and local

subsurface wavefront orientation. In all cases, we find that V�F
is a good indicator of the latter.

Applications

Our findings show how important additional information can

be extracted from optical mapping movies. Such movies can

be equivocal with respect to which three-dimensional exci-

tation pattern they project, and information about the trans-

mural velocity of the wavefront will, in some cases, allow a

definite determination. No modification of the standard op-

tical mapping is needed and even previously acquired optical

mapping data can be revisited to analyze transmural propa-

gation of excitation.

Limitations

We proposed a method to assess the intramural propagation

direction from V�F; but we can verify our assessment only in

computer simulations, because experimental methods with

sufficient accuracy are not yet available (15). Direct experi-

mental validation would clearly be desirable and should be

attempted once it is viable.

Since we filter our experimental results, the correspon-

dence that we claim between V�F and subsurface wavefront

orientation need not be present for space and timescales

smaller than those we filtered out (;1 mm and 1 ms). Indeed,

our raw data contain substantial small-scale noise that may be

a result of the intrinsic noise in our camera, a result of tissue

heterogeneities such as blood vessels, or both. In any case,

our study shows that the filtered V�F maps agree well with

those from simulations excluding heterogeneities; therefore,

these heterogeneities do not substantially affect medium- and

large-scale wave propagation.

In our computer simulations, we used a monodomain

model of electrical propagation with simplified geometry and

von Neumann boundary conditions. Thus, our model does

not account for the tissue-bath interface present in our ex-

periments. Bidomain models reported in the literature sug-

gest that boundary conditions at the tissue-bath interface may

affect wavefront orientation near the epicardium and may

have an impact on the dynamics of scroll-wave reentry.

Nonetheless, good agreement between our experiments and

model predictions suggests that errors attributable to ne-

glecting tissue-bath interface effects were small.

Our computer simulations also did not take into account

tissue heterogeneities (e.g., fatty and connective tissue,

electrical heterogeneities), tissue variations in voltage-sen-

sitive dye staining, and dye photobleaching. It is important to

note, however, that our experiments were performed in heart

tissue possessing such heterogeneities, and these experiments

were still in good agreement with computer simulations.
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