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ABSTRACT Solid-state NMR study shows that the 22-residue K3 peptide (Ser20-Lys41) from b2-microglobulin (b2m) adopts a
b-strand-loop-b-strand conformation in its fibril state. Residue Pro32 has a trans conformation in the fibril state of the peptide, while
it adopts a cis conformation in the native state of full-length b2m. To get insights into the structural properties of the K3 peptide, and
determine whether the strand-loop-strand conformation is encoded at the monomeric level, we run all-atom explicit solvent replica
exchange molecular dynamics on both the cis and trans variants. Our simulations show that the conformational space of the trans-
and cis-K3 peptides is very different, with 1% of the sampled conformations in common at room temperature. In addition, both
variants display only 0.3–0.5% of the conformations with b-strand-loop-b-strand character. This finding, compared to results on
the Alzheimer’s Ab peptide, suggests that the biases toward aggregation leading to the b-strand-loop-b-strand conformation in
fibrils are peptide-dependent.

INTRODUCTION

Protein aggregation plays a key role in many neurodegener-

ative diseases. For example, aggregates of the 40-residue

Ab-amyloid, the 210-residue prion, and the 99-residue

b2-microgobulin are linked to Alzheimer’s and Creutzfeldt-

Jakob diseases, as well as dialysis-related amyloidosis, re-

spectively. These proteins lack significant sequence identity

and length similarity, yet they all form amyloid fibrils with

a similar cross-b structure (1), suggesting the existence of a

common assembly mechanism controlling the formation of

these structures. Because the oligomeric species en route to

fibril are transient, however, a detailed knowledge of their

structures at the atomic level is still missing. Nevertheless,

indirect evidence point to universal properties. For instance, it

has been established that some unknown species are toxic and

share similar morphological features based on antibody rec-

ognition experiments (2,3).

The human b2m(1–99) protein has five proline residues,

with Pro32 adopting a cis conformation in the native state (4).

In patients with chronic renal failure, as a result of long-term

dialysis, the full-length protein aggregates into amyloid fi-

brils that often deposit on osteoarticular tissues, inducing

severe bone/joint complications. It is well established that

transition from the immunoglobulin fold in solution to the fi-

bril state involves a cis-trans isomerization (5,6) and a native-

like, marginally populated intermediate with a trans-Pro32

appears to be a key precursor to fibril formation (7).

Recently, the 22-residue K3 peptide (Ser20-Lys41 fragment

from human b2m(1–99) protein) was found to form amyloid

fibrils in vitro (8,9). The 3D-structure reconstruction, based

on solid-state NMR experiments (10), suggests that K3 fibrils

consist of two-layered, parallel, and staggered b-sheets. In

the fibrils, K3 folds into a b-strand (Asn21-Ser28)-loop

(Gly29-Pro32)-b-strand (Ser33-Lys40) conformation as in the

native full-length protein, and the residues Phe22, Asn24,

Tyr26, and Ser28 are buried in the fibril while they are exposed

to the surface in the native state.

Remarkably, the strand-loop-strand conformation is shared

by many other peptides in their fibrillar states, for example the

Alzheimer’s Ab(1–40) (11) and Ab(1–42) peptides (12), the

HET-s fragment (13), the second WW domain of human

CA150 transcriptional activator (14), and a 19-residue frag-

ment of the murine prion protein (15). This observation raises

the possibility that the strand-loop-strand could be a margin-

ally populated structure in solution, acting as an aggregation-

prone building block for fibril assembly. Such a hypothesis

has been proposed for Ab(10–35) and is still a matter of de-

bate. As we know, this peptide was described as random coil

in solution from NMR. A transient hairpinlike strand-loop-

strand, satisfying most of the NOE in solution (16), however,

was recently observed in a 1.2 ms molecular dynamics (MD)

trajectory at low pH (17). Because of the sampling limitations

of MD, it is not clear whether this state is stable or only

transient.

One of the main features of the K3 fibril is the presence of

a trans His31-Pro32 peptide bond, while the corresponding

bond in the native b2m(1–99) has a cis conformation. Al-

though the relation between isomerization and amyloid struc-

ture is not clear, protein self-assembly with cis-trans proline

isomerization has been discussed recently for the yeast prion

protein Ure2 (18) and human cystatin C, the key protein in

cerebral amyloid angiopathy (19). Increased interest in pro-
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line isomerization also comes from the recent finding that

in Alzheimer’s disease the prolyl isomerase Pin1 regulates

amyloid precursor protein processing and amyloid-b pro-

duction (20). Therefore, characterizing the free energy land-

scape of the trans-K3 and cis-K3 peptides in their monomeric

states could provide insights into their structural differences

in solution, and help develop a first qualitative picture of their

differences in aggregation-prone properties.

In this study, we first examine the stability of a protofibril

model using all-atom explicit solvent MD simulations with

the Pro32 amino acid either in trans (as determined by the

NMR chemical-shift data) or in cis conformations. Next, we

use replica exchange molecular dynamics (REMD) simula-

tions to explore the equilibrium structures of the trans-Pro32

and cis-Pro32 K3 peptides in solution. REMD is an enhanced

sampling protocol and provides a better exploration of con-

formational space than long MD simulations (21–24).

MATERIALS AND METHODS

The amino-acid sequence of K3 peptide is SNFLNCYVSGFHPSDIEV-

DLLK. The residues involved in cis/trans isomerization are indicated in

bold. To mimic the experimental acid conditions of pH ,2.5, the side chains

of Cys, Tyr, His, Glu, Asp, and Lys (Cys0, Tyr0, His1, Glu0, Asp0, and Lys1)

and the N- and C-termini (NH31, COOH) are protonated. The net charge of

the peptide is 13. In all simulations, water is treated by the simple point

charge model (25).

K3 protofibril

Two 40-ns MD simulations of the K3 protofibrils with the peptide in trans-

Pro32 and cis-Pro32 conformations are performed using periodic boundary

conditions in a rectangular water box. The protofibril model consists of eight

peptides in a bilayer, parallel b-sheet, with each sheet being modeled by eight

parallel b-strands. The initial intersheet Ca-Ca distance is set to 0.95 nm.

Both the trans-K3 and cis-K3 protofibrils are solvated by 14,000 water

molecules. The box dimensions are 7 nm 3 8 nm 3 8.2 nm.

K3 monomer

The structure of the cis-K3 peptide, taken from the full-length human protein

(PDB code: 1JNJ (4)), is subject to a 10-ns MD simulation at 500 K. The final

resulting structure shows no correlation with the initial state and is used as the

starting point for the cis-K3 REMD simulation. The trans-K3 structure is

taken from the fibril model of Goto et al. (PDB code: 2E8D (10)) and is also

subject to a 10-ns MD run at 500 K. The final conformation is used as the

initial state of the trans-K3 REMD simulation.

The peptides are solvated in a truncated octahedron box of 6000 water

molecules (the minimum distance between the peptide and the box wall is 1.0

nm) and simulated using periodic boundary conditions. Before REMD pro-

duction, a 1000-step steepest-descent minimization and MD equilibration of

1 ns are performed at each desired temperature.

MD and REMD simulations

MD simulations are performed in the NPT ensemble using GROMACS

software (26) and OPLS-AA force field (27). The SETTLE algorithm is used

to constrain the bond lengths and bond angles of water molecules. The bond

lengths of the peptide are constrained by the LINCS algorithm. This allows

an MD integration time step of 2 fs. A twin-range cutoff 1.0/1.4 nm is used

for the nonbonded interactions, and a reaction-field correction with dielectric

permittivity e¼ 80 is used to calculate long-range electrostatics interactions.

The temperature is controlled using the Berendsen method (28) with a

coupling constant of 0.1 ps. The solute and solvent are separately coupled to

external temperature and pressure baths. The pressure is kept constant at

1 bar using a coupling time of 1 ps (28).

REMD simulations are carried out in the NVT ensemble using 64 rep-

licas, each of 82 ns, at temperatures exponentially spaced between 275 K and

475 K. The swap time between neighboring replicas is 1 ps and the accep-

tance ratio varies between 16% and 28%. In the REMD analysis, the first

22 ns of each replica are discarded. Clustering of the structures is carried

out using the GROMOS method with a RMSD cutoff of 0.3 nm for residues

22–39. Secondary structure composition is calculated on the full sequence

using the PROSS program (29).

RESULTS

OPLS force field recognizes native from
nonnative protofibrils on short timescales

Based on the protofibril designed by Goto et al. (10) for the

trans-K3 peptide, we construct a protofibril model for the cis-

K3 peptide. Because of finite-size effects, we monitor the

time evolution of several parameters involving the four cen-

tral units of both layers. In Fig. 1 a, we see that for trans-K3

the Ca RMSD increases progressively in the first 20 ns and

then stabilizes at ;0.3 nm within the present 40-ns timescale.

The RMSD profile for the cis-K3 protofibril is significantly

different: a rapid increase to 0.38 nm in the first 3 ns followed

by fluctuations ;0.45 nm. Higher stability in the trans pep-

tide is also seen in the time evolution of the number of

intermolecular main chain H-bonds (Fig. 1 b) and inter-

molecular side-chain atomic contacts (Fig. 1 c). Here, a hydro-

gen bond (H-bond) is taken as formed if the donor-acceptor

distance is ,0.35 nm and the donor-hydrogen-acceptor angle

is .150�, and two heavy atoms are in contact if their dis-

tances come within 0.54 nm. Time evolution of all parameters

used indicates higher stability of the K3 fibril with the trans
His31-Pro32 peptide bond on a 40-ns timescale. We recognize

that force fields may lead to different results on long time-

scales, but ms simulations of fibrils are still out-of-reach.

Free energy landscapes of the trans- and cis-K3
peptides in solution

To probe the conformational space of the trans and cis iso-

mers, each peptide is subject to a REMD run starting from a

distinct point, shown in Fig. 2 a. A sufficient sampling re-

quires the trajectories to visit most/all of the available con-

formational space.

Convergence of REMD runs is first examined by com-

paring the b-strand probability of each residue at 298 K for

both peptides using four independent time intervals 2–22,

22–42, 42–62, and 62–82 ns. As seen in the Supplementary

Material Data S1, Fig. S1, while the four distributions

superpose well for the amino acids 21–23 and 29–40 in
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trans-K3 (Fig. 2 a), these profiles evolve considerably in cis-

K3 (Fig. 2 a), in particular between the later intervals 42–62

ns and 62–82 ns and the interval 2–22 ns. The very low

b-strand probability profile using 2–22 ns likely results from

the strong structural correlation between the starting struc-

tures used by all replicas that remains in the first 22 ns. To

decrease the bias associated with the initial state, data from 2

to 22 ns are therefore excluded for analysis.

The convergence of the REMD runs is next verified by

comparing the b-stand probability of each residue at 298 K

using now the cumulative time intervals: 22–42, 22–62, and

22–82 ns. Fig. 2 shows that the proportion of b-strands in the

cis- and trans-K3 peptides reaches a relatively stable distri-

bution after ;62 ns, with deviations being within 4% from

22–62 ns to 22–82 ns for cis-K3 (Fig. 2 b), and 2% for trans-

K3 (Fig. 2 c), indicating a convergence of the REMD simu-

lations.

We can also see that the simulations have converged by

comparing the free energy landscape of the cis-K3 peptide for

FIGURE 1 MD simulations of the trans-K3 and cis-K3 protofibrils. Both

models are shown in panel a. The parameters used for comparison are

calculated using the four central units of both sheets. (b) Ca-RMSD of the four

central chains with respect to the MD-generated trans- and cis-K3 protofibril

at 2 ns. Note that the trans structure at 2 ns deviates by 0.14 nm from the solid-

state NMR-derived model. (c) Time evolution of the total number of inter-

molecular main-chain hydrogen bonds. (d) Time evolution of the number of

intermolecular side-chain-side-chain atomic contacts between the two groups

of residues: Ile35, Val37, Leu39 and Phe22, Asn24, Tyr26, and Phe30.

FIGURE 2 Initial structures and first convergence test on the REMD runs.

(a) Initial structures of the trans- and cis-K3 peptides used for REMD

simulations. The position of the C-terminus is indicated. (b and c) The

REMD-averaged b-strand probability of each residue at 298 K using the

time intervals: 22–42 ns, 22–62 ns, and 22–82 ns.

512 Liang et al.

Biophysical Journal 95(2) 510–517



different durations of the simulation: 22–42 ns (Fig. 3 a), 22–

62 ns (Fig. 3 b), and 22–82 ns (Fig. 3 c). Here, the free energy

landscape is projected on the Ca radius of gyration and the Ca

RMSD with respect to the conformation of residues Phe22-

Leu39 in the fibril state (Fig. 3 e, corresponding to the last

frame and Chain C in the PDB code: 2E8D). As seen in Fig. 3,

there is little change in the location of the minima and the size

of the basins after 62 ns, demonstrating again reasonable

convergence of the simulation. Such a long convergence time

for the free energy landscape is not surprising, since meta-

stable states can exist that slow down the sampling, as was

recently discussed for the monomer of Ab(1–42) (30).

The secondary structure probability of each residue at 298 K,

as assigned by the PROSS program, is shown in Fig. 4.

PROSS uses a five-letter code based solely on backbone di-

hedral angles: b-strand, b-turn, PPII, helix, and coil (29). We

recall that the coil character of an amino acid and the random

coil character of an equilibrium structure have different

meanings, and a protein structure with random coil character

contains a low percentage of a- and b-secondary structures.

We see that the trans-K3 and cis-K3 peptides share very

similar secondary structure probabilities or profiles in the

regions A (Asn21-Val27) and B (Asp34-Leu39). The b-strand

content is 10–20% (Fig. 4 a) and the helix signal is very

small, ,5% (Fig. 4 d). The b-turn probability of residues

24–26 is slightly higher in trans (Fig. 4 b) than in cis. Overall,

the regions A and B are, however, mostly assigned as coil

(Fig. 4 e).

Not surprisingly, the greatest impact of trans/cis-Pro32 is

observed in the region Ser28-Ser33, where the difference be-

tween the two peptides is striking. Cis-K3 displays a negli-

gible b-strand signal and a small PPII content, but a coil

content between 70 and 100%. By contrast, trans-K3 dis-

plays b-strand, PPII, and coil signals. Note that the PPII

probability of residue Pro32 is zero in cis-K3 by definition in

PROSS. The secondary structure probabilities at 298 K of the

amino acids defined at least twice in the sequence are detailed

in Data S1, Table S1. While we see small fluctuations be-

tween the time probabilities of many amino acids for a sec-

ondary structure in trans- and cis-peptides—5% for b-strand

FIGURE 3 Free energy surfaces (in kcal/mol)

of the trans- and cis-K3 peptides. Evolution of

the cis-K3 free energy surface using the 22–42

(a), 22–62 (b), and 22–82 (c) ns intervals; free

energy surface of the trans-K3 peptide using the

22–82 ns interval (d). The two reaction coordi-

nates used are the Ca radius of gyration and the

Ca-RMSD with respect to the strand-loop-

strand structure in K3 fibril shown in panel e.

Pro32 is shown in all-atom representation.
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and PPII, and 9% for b-turn averaged over 13 amino acids—

amino acids of the same type such Asn21 and Asn24 or Leu39

and Leu40 behave differently, indicating that the REMD-

derived conformational preferences are not systematically

individual propensities and thus are context-dependent. For

instance, Asn21 is 1% b-turn, but Asn24 is 37% b-turn in

trans.

Overall, both peptides are essentially random in solution,

but still display a significant tendency to visit conformations

compatible with the native b2m(1–99) protein and K3 fibril

structures. In particular, the b-strand observed with a high

probability in regions A and B match exactly the location of

the b-strands found in both the native and fibril states.

The free energy landscapes of the trans-K3 and cis-K3

peptides at 298 K are shown in Fig. 3, c and d, projected on

the two reaction coordinates described above. The locations

of the low free energy basins corresponding to the first five

most populated clusters are shown, where TCi and CCi (i ¼
1. . .5) represent the central structures of the ith cluster for the

trans-K3 and cis-K3 peptides, respectively.

Comparing the free energy surfaces of cis-K3 (Fig. 3 c)

and trans-K3 (Fig. 3 d), we observe that the area spanned by

the trans-K3 peptide is slightly larger than that visited by the

cis-K3 peptide. The trans-K3 appears therefore more flexible

and able to visit a wider range of conformations than the cis-

K3 peptide. This observation is reflected by the result of

cluster analysis: the total number of clusters for the trans-K3

and cis-K3 peptides is 140 and 110 using a Ca RMSD cutoff

of 0.3 nm for residues 22–39, respectively.

The TCi and CCi structures along with their populations

are shown in Fig. 5. These five TCi and CCi states represent

35% and 29% of the total conformations available to the

trans- and cis-K3 peptides, respectively. Residues Ser28-

Ser33 are shown by tube representation. Comparing the two

sets of centers, we see that 11% and 9% of conformations

display b-sheet structure for the trans-K3 (TC2 and TC5) and

cis-K3 (CC1) peptides, respectively. The b-sheet involves

Cys25-Tyr26-Val27 and His31-Pro32-Ser33 in TC2, and Phe30-

His31-Pro32 and Glu36-Val37-Asp38 in TC5. In contrast, the

b-sheet spans Leu23-Asn24 and Val37-Asp38 in CC1. Overall,

the impact of Pro32 isomerization on the visited conforma-

tions is significant and the trans-K3 and cis-K3 peptides only

share two common clusters, representing a population of 1%,

among all those identified in these simulations. Thus, the

equilibrated trans-K3 and cis-K3 peptides visit a very dif-

ferent set of structures at 298 K.

Probability analysis on the structures with b-strand-loop-

b-strand character shows that the cis-K3 peptide populates

only 0.3% of the conformations with a Ca22-Ca39 RMSD

,0.4 nm from the solid-state NMR-derived structure, and the

trans-K3 peptide populates 0.5% of the conformations. In

this analysis, a strand is considered formed if at least four

consecutive residues are assigned in b-strand conformation

by PROSS. All these structures display a variety of b-hair-

pins with various loop lengths and registers of H-bonds.

FIGURE 4 Secondary structure probabilities of each residue in the trans-

and cis-K3 peptides: (a) b-strand, (b) b-turn, (c) PPII, (d) helix, and (e) coil

using the PROSS program.
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Because the strand-loop-strand topology matters more than

the exact conformation (17), we also calculate the popula-

tions of b-strand-loop-b-strand conformations with high

RMSD deviations. We find that a population shift to 0%

using a Ca22-Ca39 RMSD .0.4 nm, with respect to the

solid-state NMR structure.

To probe the effect of the cis-trans isomerization on the

loop region, the distance distribution between the Ca atom of

Ser28 and that of Ser33 is calculated and shown in Fig. 6. In

line with the structure analysis, the trans- and cis-K3 peptides

exhibit a distinct average Ca-Ca distance between these two

residues. The Ca28-Ca33 distance is ;1 nm in both the

native b2m(1–99) and K3 fibrils. Our calculation shows that

27% of trans-K3 conformations and 52% of cis-K3 confor-

mations display a Ca28-Ca33 distance between 0.8 and 1.2

nm, and the percentage shifts to 12% for trans-K3 and 22%

for cis-K3 conformations within 0.9 ; 1.1 nm. Most of these

conformations deviate within 0.1 ; 0.2 nm RMSD from the

loop conformation in the fibril state.

The impact of proline isomerization on the K3 peptide

structures can also be estimated by computing the formation

time probabilities of the side-chain-side-chain contacts pres-

ent in the fibril and native structures. Table 1 gives the list of

interactions with native character (Leu23-Leu39, Cys25-Val37,

Val27-Ile35, Cys25-Leu39, and Val27-Val37) and fibril char-

acter (Phe22-Leu39, Asn24-Val37, Tyr26-Ile35, Phe22-Val37,

Asn24-Ile35, and Tyr26-Phe30). A contact is considered formed

when aliphatic carbon atoms of two side chains come to

within 0.54 nm of each other. It can be seen from Table 1 that

all native and fibril contacts are populated in both the trans
and cis predicted equilibrium structures, with formation time

probabilities varying between 4% and 21%. This result, along

with previous analysis, indicates that neither peptide displays

a strong preference for the fibril or the native state. Interest-

ingly, there is very little variation in the surface-accessible

area of each amino acid in both cis and trans equilibrium

structures (see Data S1, Fig. S2), indicating that neither

species is more aggregation-prone than the other by exposing

more hydrophobic groups and main-chain amide and car-

bonyl groups. We cannot therefore explain the preference for

the trans conformation in the K3 fibril at the monomeric

level, and simulations of higher order species such as dimers

and trimers are required.

DISCUSSION AND CONCLUSIONS

Replica exchange molecular dynamics simulations based on

64 replicas, each of 82 ns, reveal that the K3 peptide exists as

an ensemble of heterogeneous conformations at low pH, in-

dependently of the cis/trans character of the His31-Pro32

peptide bond. This conformational variability is in qualitative

agreement with our current structural knowledge of most

FIGURE 6 Probability distribution of the Ca28-Ca33 distance for the

trans- and cis-K3 peptides.

FIGURE 5 Centers of the first five most-populated structures of the trans-

and cis-K3 peptides. Boltzmann population at 298 K is given in parentheses.
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amyloid-forming peptides in solution, such as Ab(10–35)

and Ab(1–40). Our simulations clearly indicate that the

isomerization state of the His31-Pro32 peptide bond leads to

two distinct ensemble averages, with only 1% of the confor-

mations being in common. Both peptides display a 10–20%

b-strand content at positions Asn21-Val27 and Asp34-Leu40,

where the b-strands forms in both the K3 fibril and the native

full-length b2m protein, but overall both peptides are essen-

tially random coil in character.

The trans-K3 peptide is found to be much more flexible

than its cis-counterpart, which is reflected by a larger number

of clusters and a larger free energy landscape. The landscapes

differ because the cis His31-Pro32 peptide bond affects the

dimensions of the chain locally, leading to a decreased av-

erage distance between Ser28 and Ser33. This effect of cis
isomerization on the probability distribution of the Ca28-

Ca33 distance is fully consistent with recent all-atom simu-

lations of the proline-containing (Ser)3-Pro-(Ser)3 peptide,

which show, using a hard-sphere model, that cis prolyl iso-

mers has a largely restricted conformational space and shorter

end-to-end distances compared to trans isomers (31). The

probability distribution of the number of side-chain-side-

chain atomic contacts within the Ser28-Ser33 region (Data S1,

Fig. S3) indicates stronger steric effects in the loop region of

the cis isomer than that of the trans isomer, reducing the

conformational space of the cis-K3 peptide.

Although the trans- and cis-K3 isomers adopt distinct

conformations in solution, neither isomer is found to be more

aggregation-prone than the other, indicating that the prefer-

ence for trans conformation in the K3 fibril results from in-

termolecular interactions. While our simulations on the fibrils

are rather short, they clearly show a better packing in the

trans model than in the cis model. Note that the proline’s cis
conformation in the native state of full-length b2m is ex-

plained by the NMR solution study of the mutant P32G b2m,

which shows that trans Pro32 impacts the native edge

b-strands A and D, favoring aggregation (7).

We also find that although the trans and cis isomers dis-

play rather different energy landscapes, they both visit a

minority of structures with a b-strand-loop-b-strand topol-

ogy as observed in the native full-length b2m protein and in

the K3 fibril, albeit with a very small probability, only 0.3 ;

0.5% at 298 K. While small, this value cannot be considered

as totally negligible. For example, Radford et al. (7) reported

that the population of the amyloidogenic full-length b2m

precursor is ;3%. Similar studies on the prion protein report

an intermediate monomeric species with a population of 1%

(32). We emphasize that the b-strand-loop-b-strand confor-

mation does not need to be strictly identical to that observed

in the fibril structure to be a related precursor. In addition, the

strand-loop-strand topology may not be required to acceler-

ate fibrillization. It was shown experimentally by Meredith

et al. (33) that enforcing loop formation by a lactam bridge

suffices to increase Ab40 aggregation rate by three orders of

magnitude.

MD simulations of the Ab(10–35) peptide in explicit

solvent under acid pH condition show that the probability of a

b-strand-loop-b-strand structure is 21% at 300 K (17). This

runs in contrast with the present results of the K3 peptide at

low pH, which indicates that the b-strand-loop-b-strand

conformation is not encoded at the monomeric level (popu-

lation of 0.5%). The high probability of Ab(10–35) for

b-strand-loop-b-strand might be due to an intrinsic propen-

sity of the region Asp22-Lys28 to form a loop (34). The dif-

ferent probabilities for this conformation in the monomers of

Ab(10–35) and K3 peptides might therefore result from the

existence/absence of favorable electrostatic interactions to

stabilize the turn. In Ab(10–35), there are three charged

residues within the loop: Asp22�, Glu23�, and Lys281. In the

K3 peptide, however, there is only one charged residue,

His311, within the loop. This suggests that the biases toward

aggregation leading to the b-strand-loop-b-strand confor-

mation in fibrils are sequence-dependent.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.
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TABLE 1 The formation time probabilities of the

side-chain-side-chain contacts present in the trans- and

cis-K3 peptides with respect to those in the native structure

of the full-length b2m protein and the K3 fibril

trans-K3 cis-K3

Native contact

1 L23-L39 21% 17%

2 C25-V37 5% 10%

3 V27-I35 4% 7%

4 C25-L39 12% 12%

5 V27-V37 4% 5%

Fibril contact

1 F22-L39 18% 12%

2 N24-V37 6% 9%

3 Y26-I35 8% 10%

4 F22-V37 19% 17%

5 N24-I35 7% 6%

6 Y26-F30 21% 24%
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