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Abstract
We previously generated genome-wide expression data (microarray) from children with septic shock
having the potential to lead the field into novel areas of investigation. Herein we seek to validate our
data through a bioinformatic approach centered on a validation patient cohort. Forty-two children
with a clinical diagnosis of septic shock and 15 normal controls served as the training data set, while
30 separate children with septic shock and 14 separate normal controls served as the test data set.
Class prediction modeling using the training data set and the previously reported genome-wide
expression signature of pediatric septic shock correctly identified 95 to 100% of controls and septic
shock patients in the test data set, depending on the class prediction algorithm and the gene selection
method. Subjecting the test data set to an identical filtering strategy as that used for the training data
set, demonstrated 75% concordance between the two gene lists. Subjecting the test data set to a purely
statistical filtering strategy, with highly stringent correction for multiple comparisons, demonstrated
less than 50% concordance with the previous gene filtering strategy. However, functional analysis
of this statistics-based gene list demonstrated similar functional annotations and signaling pathways
as that seen in the training data set. In particular, we validated that pediatric septic shock is
characterized by large scale repression of genes related to zinc homeostasis and lymphocyte function.
These data demonstrate that the previously reported genome-wide expression signature of pediatric
septic shock is applicable to a validation cohort of patients.
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INTRODUCTION
The application of high throughput technologies, such as microarray, affords unprecedented
opportunities to generate novel hypothesis and to gain a more comprehensive understanding
of human diseases. We have suggested that complex and heterogeneous phenotypes, such as
pediatric septic shock, are particularly amenable to this discovery-oriented approach (15,18).
Septic shock continues to be an important child health problem with significant morbidity and
mortality (14,16). In an ongoing translational research program focused on pediatric septic
shock, we have begun to identify the genome-level expression signature of this syndrome
through the application of microarray technology (13,18,19). The initial data generated through
this discovery-oriented approach suggest that altered zinc homeostasis and lymphocyte
dysfunction are prevalent problems in children with septic shock, and thus potentially direct
the field toward new investigative paradigms given the direct biological links between zinc
homeostasis and lymphocyte function (12).

Our current enthusiasm surrounding the genome-wide expression data in pediatric septic shock
is tempered by the intricacies and nuances surrounding microarray data analysis, a
methodology still in evolution (1,5,10,17). There are currently no definitive, absolute standard
statistical approaches for analyzing microarray data. The shear volume of typical microarray
data, leading to simultaneous testing of tens of thousands of transcripts, has the potential to
produce hundreds of false positive results depending on the statistical approach. Accordingly,
the particular statistical and filtering approaches that are applied to a given microarray data set
can yield markedly different results (10,17). Thus, the possibility exists that our previous
observations involving gene expression profiling in pediatric septic shock are merely
epiphenomena of the bioinformatic approaches used in those initial studies.

Prospective validation of microarray data represents one potential approach for addressing
these complex analytical issues. The ultimate goal of validation is to strengthen the initial
conclusions derived from microarray data sets, as we have done with selected portions of our
previous data (13,18,19). Validation of microarray data can be achieved by a variety of
strategies (1,10,17). For example, real time-polymerase chain reaction can be used for
confirmation of differentially expressed gene probes. Proteomics can also be used for data
validation and has the advantage of providing gene product information beyond the level of
transcripts. An alternative validation strategy involves the use of a “validation” or “test” data
set representing an entirely different set of samples from that used for derivation of the original
microarray data set.

This paper addresses two equally important and related questions: 1) are the original
observations that we reported in children with septic shock also operative in a validation
cohort?; and 2) are these observations dependent on the bioinformatic approaches used to
analyze the expression data? Herein we have directly addressed these questions by employing
a training data set (our original microarray data) and a test data set consisting of an entirely
new cohort of patients. We have prospectively applied validation procedures, including the use
of statistical approaches that are distinct to that of our previous reports, as a means of assessing
the authenticity of our initial observations.

METHODS
Patients

The multi-institutional genomic and clinical database supporting this translational research
program has been previously described in detail (13,19). Briefly, the study protocol was
approved by the individual Institutional Review Boards of each participating institution.
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Children < 10 years of age admitted to the pediatric intensive care unit (PICU) and meeting
published, pediatric-specific criteria for septic shock were eligible for the study (7). Normal
control patients were recruited from the participating institutions using the following exclusion
criteria: a recent febrile illness (within 2 weeks), recent use of anti-inflammatory medications
(within 2 weeks), or any history of chronic or acute disease associated with inflammation.

Sample and data collection
After informed consent, blood samples for RNA isolation were obtained within 24 hours of
admission to the PICU, heretofore referred to as “day 1” of septic shock. Severity of illness at
study entry was calculated using the PRISM III score in the patients with septic shock (11).
Clinical and laboratory data were collected daily while in the PICU. Clinical, laboratory, and
biological data were entered and stored using a locally developed, web-based database.

RNA extraction and microarray hybridization
The data and protocols described in this manuscript are deposited in the NCBI Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/). The training data set and the test data set
can be found under GEO Series accession numbers GSE4607 and GSE9692, respectively.

Total RNA was isolated from whole blood samples using the PaxGene™ Blood RNA System
(PreAnalytiX, Qiagen/Becton Dickson, Valencia, CA) according the manufacturer’s
specifications. Microarray hybridization was performed by the Affymetrix Gene Chip Core
facility at Cincinnati Children’s Hospital Research Foundation as previously described
(Human Genome U133 Plus 2.0 GeneChip, Affymetrix, Santa Clara, CA) (13,19).

Data analysis
Analyses were performed using one patient sample per chip. Image files were captured using
an Affymetrix GeneChip Scanner 3000. CEL files were subsequently preprocessed using
Robust Multiple-Array Average (RMA) normalization using GeneSpring GX 7.3 software
(Agilent Technologies, Palo Alto, CA) (9). All signal intensity-based data were used after RMA
normalization, which specifically suppresses all but significant variation among lower intensity
probe sets. All chips were then normalized to the respective median values of controls.

Differences in mRNA abundance between patient samples and controls were determined using
GeneSpring GX 7.3. All statistical analyses used corrections for multiple comparisons. Cross
validation procedures and class prediction modeling were also performed using GeneSpring
GX 7.3 using the default parameters of the software. Further details regarding derivation of
differentially regulated gene lists, cross validation, class prediction modeling and statistical
analyses will be provided in the Results section.

Gene lists of differentially expressed genes were analyzed using D.A.V.I.D. (Database for
Annotation, Visualization and Integrated Discovery) and the Ingenuity Pathways Analysis
application (IPA, Ingenuity Systems, Redwood City, CA). D.A.V.I.D. allows public access to
relational databases of functional gene annotations (6). In the D.A.V.I.D. analytical output,
“category” refers to the original database or resource from which the annotations are derived,
and “term” refers to the enriched annotation terms associated with the given gene list. The IPA
application provides a tool for discovery of signaling pathways within the uploaded gene lists
(4,13,19). The D.A.V.I.D. and IPA applications are both based on the established biomedical
literature and use specific approaches to estimate significance (p values) based on non-
redundant representations of the microarray chip and to convert the uploaded gene lists to gene
lists containing a single value per gene. The p values for a given functional annotation or
signaling pathway provide an estimate of the probability that a given annotation is enriched in
a given gene list by chance alone. Because of there is no clear consensus as to the most

Cvijanovich et al. Page 3

Physiol Genomics. Author manuscript; available in PMC 2009 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.ncbi.nlm.nih.gov/geo/


appropriate bioinformatic approach to use for these types of data sets, we consistently used the
default parameters in GeneSpring, D.A.V.I.D., and the IPA application, unless otherwise
specified.

RESULTS
General information for the training and test data sets

The training data set (42 children with septic shock and 15 controls) has been previously
reported (19). The test data set consisted of 30 separate children with septic shock and 14
separate control subjects that have not been previously reported. The patients for the test data
set were selected based on sequential order of enrollment into the database, with an enrollment
classification of septic shock or control, but without regard to demographic, clinical, or
microbiologic variables.

Summary demographic, clinical, and microbiologic data for the subjects in the test data set are
provided in Tables 1 and 2. A total of 44 individual microarray chips, representing 14 individual
controls and 30 individual patients with septic shock (test data set), were used for analysis. The
microarray data represent the gene expression profiles of “day 1” of septic shock (i.e. within
24 hour of presentation to the PICU). The patients with septic shock in the test data set were
similar to the controls, and the training data set (19) with regard to age, race, and gender. In
addition, the patients with septic shock in the test data set had a similar severity of illness
(PRISM score) as that of the training data set (19). Among the patients in the test data set there
were 14 having positive identification of an infecting organism (47%) and 6 deaths (20%
mortality). In comparison, the training data set had 67% of the patients with a positively
identified infecting organism and 21% mortality (19). Finally, Table 2 demonstrates that the
test data set had less heterogeneity of infecting organisms and higher representation of infection
with gram-positive bacteria compared to that of the training data set (19).

Table 3 provides the total white blood cell counts and the absolute leukocyte subpopulation
counts for the training and test data sets. The median total white blood cell counts, the median
absolute neutrophils counts, and the median absolute monocyte counts were similar between
the patients in the training and test data sets. In contrast, patients in the test data set had a
significantly lower median absolute lymphocyte count compared to that of the patients in the
training data set.

Class prediction modeling based on training and test data sets
The initial approach to validating our microarray data involved class prediction modeling using
the previously reported cohort of patients as the training data set, the new cohort of patients
described above as the test data set, and the previously published genomic signature of pediatric
septic shock (i.e. the list of 2,482 gene probes found to be differentially regulated between
patients with septic shock in the training data set and controls (19)). As previously described,
the 2,482 gene list was generated by sequential statistical and expression filters as shown in
Table 4. For the sake of clarity we will heretofore refer to this 2,482 gene list as “gene list A.”

We first conducted cross validation procedures on the training data set. Two distinct class
prediction algorithms were used for this analysis: K-Nearest Neighbors (KNN) and Support
Vector Machines (SVM) (3,20). The class options for cross validation were either “septic
shock” or “control.” Table 5 demonstrates that cross validation of the training data set, based
on the KNN algorithm, correctly identified 93 to 95% of the subjects in the training data set,
depending on the gene selection method. Table 5 also demonstrates that cross validation of the
training data set, based on the SVM algorithm, correctly identified 95 to 96% of the subjects
in the training data set, depending on the gene selection method.

Cvijanovich et al. Page 4

Physiol Genomics. Author manuscript; available in PMC 2009 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We next applied class prediction modeling to the test data set, again using both the KNN and
SVM class prediction algorithms and all possible gene selection methods, as shown in Table
6. All possible combinations of gene selection methods and class prediction algorithms
correctly predicted ≥95% of the subjects (controls and septic shock) in the test data set. Using
the 50 predictor genes derived from the Golub method of gene selection (derived from the cross
validation procedures described above), the KNN algorithm correctly identified 100% of the
subjects (controls and septic shock) in the test data set. In a similar manner, using all of the
genes in gene list A, the SVM algorithm correctly identified 100% of the subjects in the test
data set.

We further tested the relevance of gene list A, to the test data set, by calculating how many of
these genes were differentially regulated among the patients with septic shock and the controls
in the test data set. We conducted a two group ANOVA (Benjamini-Hochberg false discovery
rate of 5%) using controls and patients with septic shock in the test data set as the comparison
groups, and gene list A. This analysis demonstrated that 2,386 of the 2,482 genes (96%) were
differentially regulated between the controls and the patients with septic shock in the test data
set.

Collectively, these data demonstrate that the genome-wide expression signature originally
reported for children with septic shock (i.e. gene list A) can accurately identify a separate test
cohort of children with septic shock and controls with a high degree of sensitivity and
specificity. The strength of this observation is further supported by the application of multiple
combinations of class prediction algorithms and gene selection methods.

Functional analysis of predictor genes
As shown in Tables 5 and 6, the Golub method of gene selection appeared to be the most robust
method for class prediction in that it was able to predict 100% of the septic shock patients and
the controls in the test data set, based on the KNN class prediction algorithm. Accordingly, we
uploaded the 50 predictor genes derived from the Golub-based class prediction (see
Supplementary Data for complete 50 predictor gene list) to the IPA application to determine
if the gene list corresponded to any specific signaling pathways. Table 7 demonstrates the top
5 signaling pathways represented within the list of 50 predictor genes. All of these signaling
pathways are consistent with our current paradigms surrounding the pathobiology of septic
shock, thus supporting the biological plausibility of this 50 predictor gene list.

Comparison of training and data set gene lists
The next validation step involved the generation of a list of differentially regulated genes
between the patients with septic shock and controls in the test data set. In order to make a direct
comparison to our previously published data, we applied an identical filtering approach as that
used to derive the original gene list A (19). We conducted a two group ANOVA (Benjamini-
Hochberg false discovery rate of 5%) using controls and patients with septic shock in the test
data set as the comparison groups, and all gene probes within the microarray (54,681 gene
probes). This statistical filter yielded a working list of 21,517 gene probes that were
differentially regulated between controls and patients with septic shock. To further refine this
21,517 gene list, we next applied an expression filter that selected only the genes, within the
above 21,517 gene list, having at least 2-fold expression difference in at least 50% of the
patients with septic shock, compared to the median of the controls. This expression filter
yielded a final working list of 3,296 gene probes that were differentially regulated between
patients with septic shock in the test data set and controls (Table 4, gene list B).

Figure 1 depicts a Venn analysis comparing gene lists A and B. Seventy-five percent of the
genes in the training data set (gene list A) were present in the test data set (gene list B). These
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data demonstrate that the application of an identical filtering strategy, to two separate cohorts
of controls and children with septic shock, identifies a relatively similar number (> 50%) of
differentially regulated gene transcripts. These data further support the existence of an
identifiable, characteristic genome-wide expression signature in children with septic shock.

Alternative gene list derivation strategy in the test data set
As previously stated, the particular statistical and filtering approaches that are applied to a
given microarray data set can yield markedly different results (10,17). Our original report of
differentially regulated genes between controls and patients with septic shock was based on
sequential statistical and expression filters that used the default parameters in the analysis
software (Table 4, gene list A) (19). Furthermore, the statistical filter used in the initial report
conducted multiple testing corrections by way of the Benjamini and Hochberg False Discovery
Rate.

In this analysis, we generated a list of differentially regulated genes between controls and the
patients with septic shock in the test data set by applying only a statistical filter (ANOVA) and
conducted multiple testing corrections by way of Bonferroni. In comparison to the Benjamini
and Hochberg False Discovery Rate, Bonferroni-based multiple testing correction has a much
higher degree of stringency in the context of microarray data, and is generally regarded as being
overly stringent for analyzing microarray data (10,17). Nevertheless, we applied this stringent
statistical test to the test data set as another form of validation.

Using this purely statistical approach (i.e. without an additional expression filter), we generated
a list of 2,104 gene probes that were differentially regulated between controls and patients with
septic shock in the test data set (Table 4, gene list C). Figure 2 depicts a Venn analysis of gene
lists B and C. Forty-one percent of the genes in gene list B were present in gene list C. These
data illustrate how the particular filtering approach that is applied to a given set of microarray
data can profoundly affect the derivation of putative differentially regulated genes.

Functional analysis of the test data set
Having demonstrated the impact of different filtering approaches on gene list derivation in our
test data set, we next conducted functional analyses of the test data set to determine if the
functional analyses would differ significantly from our original observations (13,19). All
analyses in this section are based on gene list C and were conducted in an analogous manner
to that of our previous reports.

To derive biological meaning from gene list C, we uploaded the individual lists of upregulated
and downregulated genes, respectively, to both the D.A.V.I.D. database and the IPA
application (4,6,13,19). As shown in Tables 8 and 9, the D.A.V.I.D.-dependent analyses
yielded several biological relevant functional annotations within both gene lists. Table 8,
representing the 846 upregulated genes, is notable for multiple functional annotations related
to host defense responses similar to that of our previous data (13,19). Table 9, representing the
1,258 downregulated genes, is notable for the prevalence of zinc- and metal binding-related
ontologies (see Supplementary Data for gene lists corresponding to zinc-related functional
annotations), a principal observation of our previous data (13,19).

As shown in Tables 10 and 11, the IPA-dependent analyses yielded several biologically
relevant signaling pathways within both gene lists. Table 10, representing the 846 upregulated
genes, is dominated by inflammation-and immunity-related signaling pathways (see
Supplementary Data for gene lists corresponding to individual signaling pathways). This
observation is consistent with the established literature focused on septic shock, and our
previous data (2, 8, 13, 14, 19). Table 11, representing the 1,258 downregulated genes, is most
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notable for repression of genes corresponding to natural killer cell signaling, T cell receptor
signaling, and antigen presentation (see Supplementary Data for gene lists corresponding to
individual signaling pathways), which is the other principal observation of our previous data
(13, 19).

Collectively, these functional analyses demonstrate that gene list C, derived in a completely
different manner to that of our previous data, and representing a test cohort of patients, contains
a large number of genes relevant to the pathobiology of septic shock and validate our previous
observations.

DISCUSSION
Our initial reports involving the genome-level expression profiles of pediatric septic shock
were primarily highlighted by three observations (13,18,19): 1) pediatric septic shock is
characterized by large scale repression of genes that either depend on normal zinc homeostasis
for normal function or directly participate in zinc homeostasis and this observation is associated
with abnormally low serum zinc concentrations in nonsurvivors of septic shock; 2) pediatric
septic shock is also characterized by large scale repression of genes corresponding to adaptive
immunity, T cell function in particular; and 3) longitudinal studies demonstrated that both of
these gene repression patterns persist over the first 3 days of illness. While interesting and
holding the potential to change our current paradigms regarding the pathobiology of pediatric
septic shock, these observations require validation at several levels. In an ongoing approach
we are currently seeking functional validation of these observations by conducting laboratory-
based experiments focused on altered zinc homeostasis in the context of experimental septic
shock and are also conducting functional studies of lymphocyte function in children with septic
shock. In the current work, have attempted to complement our efforts at validation through a
bioinformatics approach.

The focal point of our bioinformatic approach to validation was a test data set. The test data
set consisted of an entirely new set of children with a clinical diagnosis of septic shock and an
entirely new set of controls. The test data set patients were similar to the patients in our original
report with respect to age and illness severity. In contrast, the test data set appeared to be more
homogenous than the original cohort of patients with respect to class of infecting organisms.
In addition, the patients with septic shock in the test data set had lower median absolute
lymphocyte counts than the patients in the training data set. These potentially confounding
factors were the result of our strategy to select patients for the test data set based on chronology
of enrollment into the data base. Despite these potentially confounding factors, the key aspects
of our original data were validated in the test data set.

One of the major strategies used to validate our previous data involved cross validation
procedures on the training data set, then subsequently conducting class prediction procedures
on the test data set. The intent of this strategy is not to gain the ability to identify normal versus
septic shock in the clinical setting, which can be readily achieved by basic clinical examination
and laboratory parameters. Rather, these procedures were conducted as a primary test of the
validity of our original data. Using multiple combinations of class prediction algorithms and
gene selection methods, we were able to accurately identify ≥95% of the subjects in the test
data set, depending on the class prediction algorithm and the gene selection method. In fact,
using the KNN algorithm and the 50 predictor genes derived from the Golub method of gene
selection, we were able to accurately identify all controls and patients with septic shock in the
test data set. One hundred percent prediction accuracy was also achieved using the SVM
algorithm and all genes from the training data set (gene list A). In keeping with these
observations, the majority of genes in the previously reported gene list were differentially
regulated in the test data set as determined by direct statistical analysis of these genes in the

Cvijanovich et al. Page 7

Physiol Genomics. Author manuscript; available in PMC 2009 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



context of the test data set. Finally, the 50 predictor genes derived from class prediction
modeling correspond to biologically relevant signaling pathways in the context of septic shock.
In combination, these data indicate that the previously reported genome-wide expression
signature of pediatric septic are applicable to a test data set of children with septic shock and
therefore speak to the validity of the original data.

Our current data also well illustrate how different filtering approaches can impact the derivation
of differentially regulated gene lists. Using two different filtering strategies (i.e. gene lists B
and C) we generated two putative lists of genes in the test data set that were differentially
regulated between controls and patients with septic shock in the test data set. Comparison of
these two gene lists demonstrated < 50% concordance, thus raising questions of
trustworthiness. Accordingly, we submitted the gene list having the least concordance with our
previous data (i.e. gene list C) for derivation of functional annotations and signaling pathway
associations. These analyses yielded the majority of the key functional annotations and
signaling pathways that were previously reported (13,18,19). Thus, elucidation and discovery
of the key genes coordinately regulated in the context of pediatric septic shock (i.e. the genes
that contribute most to enrichment of functional annotations and signaling pathways) may not
be highly dependent on the filtering approach. Consequently, these data strongly support the
observations made in our previous reports.

The main limitation of our current work is the reliance on whole blood-derived RNA for gene
expression profiling, as previously discussed at length (13,19). Whole blood-derived RNA
reflects a mixed population of white blood cells, which has the potential to profoundly confound
the resulting microarray data. Our previous data, however, indicate that whole blood-derived
RNA can yield consistent and biologically plausible microarray data in children with septic
shock. For example, we have previously demonstrated that variation in the absolute number
of lymphocytes does not account for the wide spread repression of genes related to adaptive
immunity that we have reported in children with septic shock (13).

The potential limitations of using whole blood-derived RNA are now further mitigated by the
current data focused on validation in a test data set. For example, the ability to identify controls
and patients with septic shock in the current test data set, with 100% accuracy, well supports
the concept that whole blood-derived RNA can yield biologically plausible and consistent data
in pediatric septic shock. In addition, the ability to derive functional annotations and signaling
pathways in the test data set, which are analogous to that of our previous reports, further
supports the assertion that using whole blood-derived RNA is a valid approach. Importantly,
these functional annotation and signaling pathway data were generated in the context of two
potentially strong negative confounders: 1) the data were based on a potentially overly stringent
statistical approach (i.e. Bonferroni correction for multiple comparisons), and 2) the patients
with septic shock in the test data set had lower median lymphocyte counts than that of the
training data set.

In conclusion, we have demonstrated that the previously reported genome-wide expression
signature of pediatric septic shock is applicable to a test cohort of children with septic shock
at multiple levels. We have also validated, through an entirely different filtering approach, that
day 1 of pediatric septic shock is characterized by large scale repression of zinc- and
lymphocyte-related genes. Given the importance of zinc homeostasis to normal lymphocyte
function, these data have formed a hypothesis surrounding altered zinc homeostasis leading to
altered lymphocyte function in children with septic shock as previously proposed (18). This
hypothesis is readily testable at the translational and experimental levels.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Venn analysis comparing gene lists A and B. See Table 4 and text for gene list derivation.
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Figure 2.
Venn analysis comparing gene lists B and C. See Table 4 and text for gene list derivation.
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Table 1
Clinical and demographic data for all subjects in test data set.

Controls Septic Shock

No. of individual subjects 14 30
Mean age (years) ± S.D.1 2.7 ± 2.4 3.2 ± 2.9
Mean PRISM Score ± S.D. 1 n/a 18.9 ± 12.3
Gender (Male/Female) 1 8/6 16/14
Race (no.) 1 A.A./Black (3) A.A./Black (2)

White (10) White (26)
Asian (1) Unreported (2)

1
p > 0.05
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Table 2
Microbiology data for test data set patients with septic shock.

Organism (no.) Primary source of positive culture (no.)

Staphylococcus aureus (5) Blood (10)
Streptococcus pyogenes (2) Lung (1)
Streptococcus agalactiae (2) Cerebral spinal fluid (1)
Neisseria meningitidis (2) Other (2)
Streptococcus pneumoniae (2)
Adenovirus (1)
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Table 3
Median absolute white blood cell (WBC) counts for patients with septic shock in the training and test data sets (×
103 per mm3; IQR).

Training Data Set Test Data Set

Total WBC 11.6 (4.1 – 22.6) 6.4 (3.5 – 16.9)
Neutrophils (Mature + Immature) 7.1 (2.6 – 16.5) 4.5 (1.7 – 11.7)
Lymphocytes1 1.8 (1.3 – 3.1) 0.9 (0.6 – 1.3)
Monocytes 0.4 (0.1 – 1.4) 0.2 (0.1 – 0.7)

1
p < 0.05 by Mann-Whitney Rank Sum Test.

Physiol Genomics. Author manuscript; available in PMC 2009 June 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Cvijanovich et al. Page 16
Ta

bl
e 

4
G

en
e 

lis
t d

es
ig

na
tio

n 
an

d 
de

riv
at

io
n.

G
en

e 
lis

t
# 

of
 g

en
es

D
at

a 
se

t
St

at
is

tic
al

 fi
lte

r
E

xp
re

ss
io

n 
fil

te
r

A
2,

48
2

Tr
ai

ni
ng

A
N

O
V

A
, t

-te
st

 B
en

ja
m

in
i-H

oc
hb

er
g 

Fa
ls

e 
D

is
co

ve
ry

R
at

e 
(5

%
)

≥2
 fo

ld
 e

xp
re

ss
io

n 
di

ff
er

en
ce

 b
et

w
ee

n 
th

e 
m

ed
ia

n 
of

co
nt

ro
ls

 a
nd

 a
 le

as
t 5

0%
 o

f t
he

 p
at

ie
nt

s w
ith

 se
pt

ic
 sh

oc
k

B
3,

29
6

Te
st

Sa
m

e 
as

 g
en

e 
lis

t A
Sa

m
e 

as
 g

en
e 

lis
t A

C
2,

10
4

Te
st

A
N

O
V

A
, t

-te
st

 B
on

fe
rr

on
i c

or
re

ct
io

n 
fo

r m
ul

tip
le

co
m

pa
ris

on
s (

p 
= 

0.
05

)
N

on
e

Physiol Genomics. Author manuscript; available in PMC 2009 June 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Cvijanovich et al. Page 17

Table 5
Results of cross validation of training data set based gene list A, and on K-Nearest
Neighbors (KNN) or Support Vector Machines (SVM) algorithms1.

Gene selection
method (algorithm)

# correct predictions # incorrect predictions # not predicted

Fisher’s exact test2
 KNN 53 1 (SS predicted as C) 3 (2 SS; 1 C)
 SVM 54 3 (3 C predicted as SS) 100% Sensitivity 80%

Specificity
n/a

Golub method3
 KNN 54 1 (1 C predicted as SS) 2 (2 SS)
 SVM 54 3 (3 C predicted as SS) 100% Sensitivity 80%

Specificity
n/a

All genes in list4
 KNN 53 1 (1 SS predicted as C) 3 (3 SS)
 SVM 55 2 (2 C predicted as SS) 100% Sensitivity 87%

Specificity
n/a

1
The class options for the model were “septic shock” (SS) or “control” (C).

2
GeneSpring parameters (default): 50 predictor genes, 10 neighbors, 0.2 decision cutoff for p-value ratio.

3
GeneSpring parameters (default): 50 predictor genes, 10 neighbors, 0.2 decision cutoff for p-value ratio.

4
GeneSpring parameters (default): 10 neighbors, 0.2 decision cutoff for p-value ratio.
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Table 6
Class prediction modeling of test data set based on cross validation results (Table
5), and K-Nearest Neighbors (KNN) and Support Vector Machines (SVM)
algorithms1.

Gene selection method
(algorithm)

# correct predictions # incorrect predictions # not predicted

Fisher’s exact test2
 KNN 43 1 (SS predicted as C) 0
 SVM 42 2 (2 C predicted as SS) 100% Sensitivity 86%

Specificity
n/a

Golub method3
 KNN 44 0 0
 SVM 42 2 (2 C predicted as SS) 100% Sensitivity 86%

Specificity
n/a

All genes in list4
 KNN 42 1 (SS predicted as C) 1 (SS)
 SVM 44 0 100% Sensitivity 100% Specificity n/a

1
The class options for the model were “septic shock” (SS) or “control” (C).

2
GeneSpring parameters (default): 50 predictor genes, 10 neighbors, 0.2 decision cutoff for p-value ratio.

3
GeneSpring parameters (default): 50 predictor genes, 10 neighbors, 0.2 decision cutoff for p-value ratio.

4
GeneSpring parameters (default): 10 neighbors, 0.2 decision cutoff for p-value ratio.
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Table 7
Signaling pathways among 50 predictor genes derived from class prediction modeling and the Golub method of gene
selection (see text for details). The analysis is derived from the Ingenuity Pathways Analysis default parameters and
the signaling pathways represent the top 5 most significant p values (listed in descending order).

Signaling Pathway # of genes p-value

NF-κB signaling 3 6.2E-3
Leukocyte extravasation signaling 3 1.3E-2
Liver X receptor/Retinoid X receptor signaling 2 1.3E-2
T cell receptor signaling 2 2.6E-2
p38 MAP kinase signaling 2 2.6E-2
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Table 8
Top 20 functional annotations among 846 upregulated genes in gene list C (based on p value and listed in descending
order). The analysis is based on the default parameters in D.A.V.I.D. “Category” refers to the original database or
resource from which the annotations were derived, and “Term” refers to the enriched annotation terms associated with
the gene list.

Category Term # of genes p-value

SP_PIR_KEYWORDS membrane 164 2.9E-16
GOTERM_BP_ALL response to other organism 52 7.7E-12
GOTERM_BP_ALL response to external stimulus 47 1.9E-11
GOTERM_BP_ALL response to pest/pathogen/parasite 49 3.3E-11
SP_PIR_KEYWORDS glycoprotein 136 7.9E-11
GOTERM_BP_ALL response to wounding 38 5.3E-10
SP_PIR_KEYWORDS lipoprotein 40 5.6E-10
SP_PIR_KEYWORDS Direct protein sequencing 94 6.9E-10
SP_PIR_KEYWORDS phosphorylation 87 2.4E-9
GOTERM_BP_ALL inflammatory response 24 6.9E-8
SP_PIR_KEYWORDS signal 101 7.4E-8
GOTERM_BP_ALL response to stress 65 1.1E-7
SP_PIR_KEYWORDS transmembrane 134 1.3E-7
GOTERM_BP_ALL response to biotic stimulus 73 1.5E-7
GOTERM_CC_ALL membrane 216 3.0E-7
GOTERM_BP_ALL intracellular signaling cascade 63 9.2E-7
SP_PIR_KEYWORDS alternative splicing 130 1.4E-6
GOTERM_MF_ALL catalytic activity 208 1.6E-6
GOTERM_BP_ALL immune response 63 1.7E-6
SP_PIR_KEYWORDS transferase 60 1.9E-6
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Table 9
Top 20 functional annotations among 1,258 downregulated genes in gene list C (based on p value and listed in
descending order). The analysis is based on the default parameters in D.A.V.I.D. “Category” refers to the original
database or resource from which the annotations were derived, and “Term” refers to the enriched annotation terms
associated with the gene list.

Category Term # of genes p-value

SP_PIR_KEYWORDS zinc-finger 137 2.7E-29
SP_PIR_KEYWORDS nuclear protein 209 2.6E-26
SP_PIR_KEYWORDS zinc 144 4.0E-24
SP_PIR_KEYWORDS transcription 124 1.1E-22
SP_PIR_KEYWORDS transcription regulation 122 5.0E-21
SP_PIR_KEYWORDS DNA binding 119 2.7E-19
GOTERM_MF_ALL zind ion binding 161 4.7E-19
SP_PIR_KEYWORDS metal-binding 149 3.2E-17
GOTERM_MF_ALL transition metal binding 174 7.9E-16
GOTERM_BP_ALL transcription 171 9.4E-16
GOTERM_BP_ALL regulation of transcription 163 7.1E-15
GOTERM_MF_AL nucleic acid binding 218 1.3E-14
GOTERM_BP_ALL regulation of biological process 225 3.8E-13
GOTERM_BP_ALL regulation of cellular process 214 4.4E-13
GOTERM_BP_ALL regulation of cellular metabolism 165 6.8E-13
GOTERM_BP_ALL regulation of metabolism 168 9.1E-13
GOTERM_CC_ALL nucleus 239 9.0E-12
GOTERM_MF_AL cation binding 196 2.6E-9
GOTERM_MF_ALL ion binding 201 5.1E-8
GOTERM_MF_AL metal ion binding 201 5.1E-8
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Table 10
Signaling pathways among 846 upregulated genes in gene list C. The analysis is derived from the Ingenuity Pathways
Analysis default parameters and the signaling pathways represent the top 10 most significant p values (listed in
descending order).

Signaling Pathway # of genes p-value

Toll-like receptor signaling 10 2.6E-6
Interleukin-10 signaling 10 2.8E-5
NF-κB signaling 17 3.6E-4
Acute phase response signaling 14 1.6E-3
p38 MAP kinase signaling 9 5.2E-3
Complement system 5 5.4E-3
Hepatic cholestasis 11 5.5E-3
LXR/RXRα activation 7 6.8E-3
Interleukin-6 signaling 8 9.6E-3
PPARα/RXRα activation 12 1.2E-2
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Table 11
Signaling pathways among the 1,258 downregulated genes in gene list C. The analysis is derived from the Ingenuity
Pathways Analysis default parameters and the signaling pathways represent the top 5 most significant p values (listed
in descending order).

Signaling Pathway # of genes p-value

Natural killer cell signaling 18 1.0E-7
T-cell receptor signaling 15 3.0E-6
Antigen presentation pathway 7 4.6E-4
Interleukin-4 signaling 8 3.7E-3
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