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Abstract
The worst performance rule for cognitive tasks [Coyle, T.R. (2003). IQ, the worst performance rule,
and Spearman’s law: A reanalysis and extension. Intelligence, 31, 567–587] in which reaction time
is measured is the result that IQ scores correlate better with longer (i.e., 0.7 and 0.9 quantile) reaction
times than shorter (i.e., 0.1 and 0.3 quantile) reaction times. We show that this pattern of correlations
can be predicted by the diffusion model [Ratcliff, R. (1978). A theory of memory retrieval.
Psychological Review, 85, 59–108], in two ways: either assuming that the rate of accumulation of
information toward a decision is higher for higher IQ subjects or assuming that the criterial amounts
of information they require before a decision are lower. Importantly, the model explains both reaction
times and accuracy, so the two possibilities can be distinguished.
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In 2003, Coyle summarized evidence for the worst performance rule (Coyle, 2003). This rule
describes the empirical finding that in a variety of cognitive tasks, trials on which performance
is worst better predict general intelligence or IQ scores than trials on which performance is
best. For reaction time (RT) studies, IQ scores usually correlate better with the slowest
responses than the fastest responses, that is, better with higher quantile RTs than lower quantile
RTs (Baumeister & Kellas, 1968; Diascro & Brody, 1993; Jensen, 1982; Kranzler, 1992;
Larson & Alderton, 1990; but see Salthouse, 1998).

Although a number of explanations have been considered for the worst performance rule for
RT, no investigations have examined predictions from a cognitive processing model that is
designed to account for both accuracy and RT, including RT distribution shape, for both correct
and error responses. The model examined in this article is the diffusion model for two-choice
decisions (Ratcliff, 1978, 2002; Ratcliff & Rouder, 1998; Ratcliff, Van Zandt, & McKoon,
1999). This model has several advantages: first, the model explicitly fits RT distributions and
so it can predict RT quantiles. Second, individual differences can be explicitly examined, and
the model has been used extensively to do so. Third, the model allows two hypotheses to be
evaluated about the locus of IQ effects: IQ is related to the quality of evidence extracted from
a stimulus, or IQ is related to how conservatively decision criteria are set.

Fig. 1 illustrates the diffusion model. The model assumes that noisy information is accumulated
over time toward one of two decision criteria. Three simulated paths are shown in Panel A.

* Corresponding author. Department of Psychology, Ohio State University, 1835 Neil Avenue, Columbus, Ohio 43210, United States.

NIH Public Access
Author Manuscript
Intelligence. Author manuscript; available in PMC 2008 June 26.

Published in final edited form as:
Intelligence. 2008 ; 36(1): 10–17. doi:10.1016/j.intell.2006.12.002.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The rate of accumulation of information is termed the drift rate (v) and it is a function of the
quality of stimulus information in perceptual judgments, the quality of match between a test
item and memory in memory judgments, and so on. The decision process is assumed to start
at a point z and accumulate evidence until a criterion at a or a criterion at 0 is reached. Variability
with a trial gives rise to variability in RTs and allows the process to hit the wrong boundary
giving rise to errors (the three jagged lines in Panel A). Panel B presents 40 simulated processes
with drift rate driving the processes towards the top boundary. The paths are irregular and some
hit the bottom boundary by mistake. The processes mainly finish quickly, they are bunched up
to the left, but some finish more slowly, and this illustrates how variability in the model
produces the right skewed RT distributions that are generally found in experimental results
from two-choice tasks.

In addition to the decision process, the total RT includes other processes, such as stimulus
encoding, memory access, and response output (illustrated in Panel C). These are combined
and have a mean duration Ter.

Fig. 1, Panel D illustrates how RT distribution shape changes with stimulus difficulty, i.e., drift
rate. The two processes on the left represent the fastest processes and those on the right, the
slowest processes. If the drift rates for each of these are reduced by an amount “X”, the fastest
responses increase by an amount “Y” and the slowest responses increase by an amount “Z”
where Z is much larger than Y. This means that as drift rate changes, there is a small change
in the leading edge of the RT distribution and a larger change in the tail.

It is assumed that the three main components of the model, namely, drift rate, boundary
separation, and nondecision components of processing, have variability from trial to trial. The
original motivation for this assumption (Ratcliff, 1978) was that it is unlikely that a subject
can accurately hold components of processing constant from one trial to the next, or encode
the same stimulus in exactly the same way on different trials. The assumption of trial to trial
variability has the important consequence that the model can account for the behavior of error
RTs relative to correct RTs including their distributions (Ratcliff & Rouder, 1998; Ratcliff &
Smith, 2004; Ratcliff et al., 1999). Specifically, ηis the SD in normally distributed drift rates
across trials (mean v), sz is the range of a uniform distribution of starting points (mean z), and
st is the range of a uniform distribution of times for the duration of nondecision components
of processing (mean Ter). For further discussion of these assumptions, see Ratcliff and
Tuerlinckx (2002).

There are explicit expressions for accuracy and the RT distribution probability density for the
diffusion model, though the probability density involves an infinite sum of products of
exponential and sine terms (Ratcliff & Smith, 2004, Eqs. A2 and A3) that requires numerical
solutions. However there are no explicit or simple expressions when the drift rate, starting
point, and nondecision components vary from trial to trial. To obtain predictions, three nested
integrations must be performed over the infinite sum. This can be done by numerical methods,
taking no more than a minute or two to fit the model to a standard set of data with, for example,
6 conditions (see Ratcliff & Tuerlinckx, 2002, Appendix B).

1. IQ and the diffusion model
To model how IQ affects RT, we examined how IQ might be related to one or more processing
components of the diffusion model. If IQ were related to drift rate, an obvious possibility,
people with higher IQ’s would extract higher quality evidence from stimuli, memory, and so
on. If IQ were related to boundary separation, a perhaps less likely possibility, people with
higher IQ might adjust their decision criteria to require less evidence before making a decision.
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To examine these two possibilities, it was assumed that there is variability from one individual
to another in their drift rates and boundary separations. Simulated data were generated for 1000
subjects with 200 observations per simulated subject. The correlations between the subjects’
drift rates and the quantiles of their RT distributions, as well as their accuracy, were examined.
Likewise, the correlations between the subjects’ boundary separations and their data were
examined. The main question was whether, with either source of across subject variability, the
diffusion model would generate data that conformed to the worst performance rule. In other
words, would the subjects’ drift rates or boundary separations correlate with RT quantiles, and
would the correlation be stronger for the higher quantiles.

The simulated data were generated using parameter values typical of previous fits to data from
experiments that examined the effects of aging on cognitive processing (e.g., recognition
memory, lexical decision, perceptual tasks; Ratcliff, Thapar, Gomez, & McKoon, 2004;
Ratcliff, Thapar, & McKoon, 2001, 2003, 2004; Thapar, Ratcliff, & McKoon, 2003). Drift
rates (values of v) for individual subjects were selected from a normal distribution with mean
v=0.4 and SD sv =0.1 (in all but one simulation). Thus, this across trial variability in drift rates
for the simulated subjects produced a range of values from about 0.2 to about 0.6 (2 SD’s on
either side of v=0.4). Boundary separations (values of a) for individual subjects were selected
from a normal distribution with mean 0.1 and SD (across subjects) either sa =0.02 or 0.04, and
nondecision components of processing for individual subjects were selected from a normal
distribution with mean 0.4 and SD (across subjects) either sTer =0.05 or 0.10. These values of
SD across subjects in boundary separation and nondecision components of processing span
the range observed in experimental data.

2. Results
2.1. Drift rate and the worst performance rule

Table 1 shows results for nine sets of simulated data (1000 subjects per set). For the first three,
the across trial variability parameters of the model (η, sz, and st) were set to near 0.0 (0.001).
In row 1 of the table, when there was no across subject variability in boundary separation (sa
=0) or the nondecision components (sTer =0), then drift rate correlated strongly positively with
accuracy, and strongly negatively with mean RT and the five RT quantiles (the 0.1, 0.3, 0.5,
0.7, and 0.9 quantiles). The correlation increased and then decreased from the lower to the
higher quantiles, forming a shallow inverted U. It might appear that this inverted U pattern is
the result of a ceiling effect because the correlations were near 1, but row 2 of the table shows
the same pattern when the correlations were not near ceiling. With the SD in drift across subjects
reduced from 0.1 to 0.01, the correlation of drift rate with the 0.1 quantile was −0.06, rising to
−0.22, and then decreasing to −0.19, again forming an inverted U shaped function.

For the results in the third row of Table 1, across subject variability in boundary separation
and the non-decision components were added. With sa =0.02 and sTer =0.05, the correlations
between drift rate and accuracy and RTs were 0.63 for accuracy, −0.26 for mean RT, and −0.09
to −0.51 for the RT quantiles. The increase in the correlations from the lowest to the highest
quantiles was almost linear, and so produced the worst performance rule.

The next six rows show what happens when across trial variability in drift rate, starting point,
and the nondecision components was introduced (η, sz, and st). When the across subject
variability in sa and sTer was zero, the correlations between drift rate and the RT quantiles
showed the inverted U pattern (rows 4 and 7, Table 1). As the values of across subject variability
in a and Ter increased, the correlations were reduced, but they were reduced more for the lower
than for the higher quantiles, leading to a roughly linear increase. The correlations followed
the worst performance rule in every case for which the across subject variability in a and Ter
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was greater than zero: the correlations increased approximately linearly from the 0.1 to the 0.9
quantile.

The first conclusion is that the diffusion model can produce correlations consistent with the
worst performance rule. The correlations between drift rate and RT quantiles are negative and
they increase from the lower to the higher quantiles. Second, while the correlations between
drift rate and the quantiles are negative, the correlations with accuracy are positive. These
conclusions hold as long as there is variability across subjects in a and Ter. Given that such
variability is always obtained when the model is fit to large sets of data from individual subjects,
the model automatically produces the worst performance rule.

2.2. Boundary separation and the worst performance rule
Although boundary separation might be a less plausible correlate of IQ than drift rate, it is
important to understand what components of the model can give rise to the worst performance
rule. Table 2 shows results for six sets of simulated data (1000 subjects per set). The across
subject SD in boundary separation (sa) was 0.01, 0.02, or 0.04, the across subject SD in drift
rate (sv) was 0.0 or 0.1, and the across subject SD in Ter (sTe) was 0.0, 0.05 or 0.10. The across
trial variability parameters (η, sz, and st) were set near 0.0 for the data in the first two rows of
the table and then increased for the other rows. When the across subjects variability parameters
(sv and sTer) were zero or near zero (the first row of the table), the correlation of quantile RTs
with boundary separation decreased slightly with increasing quantiles, the opposite of the worst
performance rule. But in all the other rows, the worst performance rule was obtained. Note that
the correlations with the RT quantiles and accuracy were both positive, unlike the correlations
with drift rate in which the correlations were of the opposite sign.

3. Discussion
The results in Tables 1 and 2 show that the diffusion model generates data consistent with the
worst performance rule if IQ is correlated with drift rate or if IQ is correlated with boundary
separation, but only when other components of processing vary across subjects.

The two possibilities can be discriminated because the correlations between drift rate and data
pattern differently than the correlations between boundary separation and data. For drift rate,
the correlation with accuracy is positive and the correlation with RT quantiles is negative. For
boundary separation, the correlations with both accuracy and RT quantiles are positive. In other
words, if the difference between higher and lower IQ subjects is a drift rate difference, then
the higher IQ subjects will be more accurate and faster than the lower IQ subjects. If it is a
boundary separation difference with higher IQ subjects having lower boundary separation, then
higher IQ subjects will be less accurate but faster. This provides a clear test of the locus of IQ
effects and it does so because the diffusion model provides a way of relating RT and accuracy.

Parenthetically, it should be noted that there are correlations between parameter values across
subjects. For example, if drift rate is high for a particular subject, then variability in drift is
also high (see Ratcliff et al., 2001, 2003, 2004; Thapar et al., 2003). However, these correlations
do not alter any predictions relevant to the worst performance rule pattern of data.

Fig. 2 illustrates how the worst performance rule comes about from the diffusion model. For
the illustrations in Fig. 2, variation across subjects in IQ was assumed to be realized by variation
across subjects in drift rate, so that the three graphs in each of A and B each represent a subject
with a different drift rate or IQ. The horizontal bars represent the variability in the values of
the quantiles that would arise from repeated replications of a simulation or an experiment (due
to within trial variability in drift rate and also, in the general case, across trial variability in
drift rate, starting point, and/or the nondecision components). The simulated data in Fig. 1
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Panel B show why the 0.1 quantiles have less variability than the 0.9 quantiles: the fastest
responses are bunched at the leading edge with little variability, while the slowest responses
are spread through the tail and where they terminate is highly variable from set of data (either
simulated or real) to another.

Panel A of Fig. 2 illustrates the situation with no across subject variability in boundary
separation or the nondecision components of processing. Data simulated from the model do
not conform to the worst performance rule (e.g., Table 1, row 1). The decrease from the high
to the medium to the low drift rates is associated with increases in RTs and increases in each
of the quantile values. Increases in the average 0.1 quantile from high to medium to low values
of drift rate (the dashed line) relative to the variability in the quantiles, the horizontal bars, are
a little smaller than for the average 0.9 quantile (the dotted line) relative to its variability in
quantiles. This results in a slightly lower correlation between drift rate and the 0.1 quantile
than between drift rate the 0.9 quantile; −0.72 and −0.88 respectively, for the simulated data
in the first row of Table 1.

In Panel B, across subject variability in boundary separation and across subject variability the
nondecision components are added. With these additions, data generated from the model do
conform to the worst performance rule. The across subject variability in boundary separation
and the nondecision components increase the variability in both the 0.1 and 0.9 quantiles for
all levels of drift rate. The important point concerns how much variability is added to the
quantiles relative to the shift in the quantiles across drift rates. The increase in variability in
the 0.1 quantiles from Panel A to Panel B is a relatively large proportion of their Panel A
variability, whereas the increase in variability in the 0.9 quantiles from Panel A to Panel B is
a smaller proportion of their Panel A variability. This difference means that, in Panel B, the
variability in the 0.1 quantiles is significantly larger relative to the shift in the 0.1 quantile
across drift rates, while the variability in the 0.9 quantiles relative to their shift is much smaller.
This is illustrated by the width of the horizontal bars and the lines through them; for the 0.1
quantiles, the bars for the high, medium, and low drift rates overlap vertically (the dashed line)
while for the 0.9 quantiles, they do not (the dotted line). This means that the correlation between
drift rate and quantiles is much lower for the 0.1 quantile than the 0.9 quantiles producing the
worst performance rule (e.g., −0.23 and −0.59 for row 5 of Table 1).

To put it colloquially, adding variability in boundary separation and the nondecision
components messes up the regularity in the shifts in the 0.1 quantiles (reducing the correlation),
but because the shifts in the 0.9 quantiles are much larger, they are not messed up as much (and
therefore reducing the correlation by less than for the 0.1 quantile).

3.1. Nondecision components of processing and the worst performance rule
The inspection time task has been used to study the effects of IQ on speed of processing (e.g.,
Deary, 2000; Grudnik & Kranzler, 2001; Kranzler & Jensen, 1989; Nettelbeck, 1987; Vickers
& Smith, 1986). In this paradigm, two lines are displayed and then masked, and subjects have
to decide which line is longer. The stimulus duration at some criterial level of accuracy is
defined as inspection time. Findings that individual differences in performance on this task are
related to intelligence suggest that IQ might correlated with the nondecision components of
processing in the diffusion model. However, even if the duration of the nondecision
components was correlated with IQ, then it alone does not produce the worst performance rule,
in fact, it produces the opposite. This is because changes in Ter produces equal size shifts in
all quantiles, thus, the shift in the 0.1 and 0.3 quantiles will be larger relative to their variability
than the shift in the 0.7 and 0.9 quantiles relative to their variability. This results in the inverse
of the worst performance rule (correlations decreasing from the 0.9 to the 0.1 quantiles) and a
correlation of Ter with accuracy of zero.
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4. Conclusions
The worst performance rule refers to the empirical finding that when IQ is correlated with RT,
the correlation is larger for the slower than the faster responses. The simulations presented in
this article show that the diffusion model predicts the worst performance rule if IQ is manifested
in drift rate or if it is manifested in boundary separation. The key for the success of the model
is variability in the values of components of processing across subjects. The simulations that
demonstrated this result used values of the model parameters and values of variability across
subjects in the parameters consistent with those from successful fits of the model to individual
subject data (Ratcliff et al., 2001, 2003, 2004; Thapar et al., 2003). Furthermore, because the
model also predicts accuracy, it demands that correlations be obtained between IQ and accuracy
as well as RT quantiles. If IQ is manifested in drift rate, then the correlation between IQ and
accuracy will be positive and the correlation between IQ and quantile RTs negative. If IQ is
manifested in boundary separation, then both correlations will be negative with IQ (positive
with boundary separation). This provides a way of discriminating between these two
alternatives, but only because the diffusion model jointly accounts for RT and accuracy.

It should be stressed that there are patterns of parameter values for the diffusion model that
would not produce the worst performance rule. For example, if IQ were not related to drift rate
or boundary separation, but instead to the nondecision components of processing, the worst
performance rule would not be observed. Also, it might be that other components of processing,
such as across trial variability parameters vary across subjects in such a way that they correlate
with IQ. For example, it might be that the higher the IQ, the lower the variability in drift rate.
Hypotheses like these could be examined easily with simulations.

Schmiedek, Oberauer, Wilhelm, Süβ, and Wittmann (in press) linked the worst performance
rule to RT distributions through an ex-Gaussian analysis (Luce, 1986; Ratcliff, 1979; Ratcliff
& Murdock, 1976). For the ex-Gaussian, longer RTs are represented by an exponential
parameter (τ), reflecting the tail of the RT distribution. Schmiedek et al. found that the estimates
of τ for several RT tasks were strongly related to working memory and intelligence. Schmiedek
et al. suggested that the diffusion model might provide a more parsimonious account of their
findings than the usual explanation, that the worst performance rule arises from attentional
lapses.

Other sequential sampling models (e.g., LaBerge, 1962; Ratcliff & Smith, 2004; Smith & Van
Zandt, 2000; Smith & Vickers, 1988; Usher & McClelland, 2001) would likely produce similar
results to those presented here. It would be relatively straightforward to simulate these models
and check that the worst performance rule is obtained if IQ is assumed to be related to the rate
at which information is accumulated or inversely related to decision boundary settings.
However, this would be difficult because few of the models have been fit to data other than
group data or to data from more than two or three individual subjects, partly because for some
of the models, it can take upwards of 5 to 10 hours to adequately fit a single subject’s data.

In the framework of the diffusion model, the worst performance rule for RT quantiles as a
function of drift rate or boundary separation is a natural consequence of across subject
variability. To evaluate applications of the diffusion model, what is needed is first, to fit the
model to data from real subjects individually, and second, to examine whether the values of
the model parameters that best fit the data show the appropriate correlations between IQ and
accuracy, mean RT, and RT quantiles.
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Fig. 1.
An illustration of the diffusion model. Panel A shows 3 simulated paths with drift rate v,
boundary separation a, and starting point z. Panel B shows 40 diffusion processes simulated
by a simple random walk — the discrete analog of the diffusion process. The starting point is
at 10 and the top boundary at 20. There is a 0.58 probability of the process taking a step towards
the top boundary. Panel C shows encoding (u), decision (d), and response output (w) processes
with the nondecision components (mean=Ter) the sum of u and w. Panel D shows fast and slow
processes from two drift rates which illustrate how an equal size slow down in drift rate (X)
produces a small shift in the leading edge of the RT distribution (Y) and a larger shift in the
tail (Z). Note that the components of processing are variable across trials with, ηrepresenting
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SD in drift across trials, sz representing range of the distribution of starting point (z) across
trials, and st representing range of the distribution of nondecision times across trials.
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Fig. 2.
This illustrates how the worst performance rule could be obtained within the diffusion model
framework. The two panels show RT distributions for three drift rates with horizontal error
bars placed on the 0.1 and 0.9 quantile RTs. Panel A shows how the quantiles shift with
decreasing drift rate, with relatively small error bars relative to the shift. Panel B shows that
the error bars are much larger relative to the shift for the 0.1 quantiles than for the 0.9 quantiles
when variability across subjects in boundary separation and the nondecision components of
processing are added ro represents the correlation of the .1 quantiles with drift rate and rx
represents the correlations of the .9 quantiles with drift rate.
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