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Abstract
This note concerns the construction of bootstrap simultaneous confidence intervals (SCI) for m
parameters. Given B bootstrap samples, we suggest an algorithm with complexity of O(mB log(B)).
We apply our algorithm to construct a confidence region for time dependent probabilities of
progression in multiple sclerosis and for coefficients in a logistic regression analysis. Alternative
normal based simultaneous confidence intervals are presented and compared to the bootstrap
intervals.
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1 Introduction
In this note, we consider the problem of constructing simultaneous (1 − α)-bootstrap confidence
intervals given data X. In particular, we look for a confidence region for m parameters θ =
(θ1, θ2, …, θm) of the form , where for each j,  is a
confidence interval for θj with a simultaneous coverage level of 1 − α:

(1.1)

Although such confidence regions are usually inefficient for formal testing purposes [4], they
can be easily drawn in two dimensions and provide clues for model deviations, hence are very
useful for graphical testing [3]. Theoretical merits of simultaneous bootstrap confidence
regions are discussed in bootstrap textbooks [3,8] along with comparison to normal based
confidence regions. However, an algorithm for constructing a rectangular region such as in
(1.1) does not seem to exist in the literature. Davison and Hinkley [3] do provide an algorithm
to a related simpler problem of calculating the overall coverage of simultaneous confidence
intervals (SCI) (see [3] Page 154). Their algorithm counts the number of bootstrap samples
that fall outside the confidence region. In order to calculate SCI of a pre-specified level 1 −
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α, one can repeat their algorithm for several values until obtaining the target coverage.
However, this trial and error method is inefficient and a direct algorithm that first assigns ranks
to the bootstrap samples and then specifies the SCI according to the quantiles of the ranks is
provided here. The suggested algorithm takes into account the multivariate nature of the
problem and the possibility that a bootstrap sample has large ranks in several coordinates and
small ranks in others.

In Section 2 we present our algorithm. As for any bootstrap method, the algorithm is computer
intensive and requires some programming and computer time. For comparison purposes, we
present also two normal based SCI that are computationally simpler. The first uses the maxima
of a multivariate normal vector and the second is based on Efron’s multiple testing approach
[5]. These SCI, however, depend on the accuracy of the normal approximation for the
distribution of (θ ̂1, …, θ ̂m), the estimator of the parameters, which may be poor, especially in
the tails. Section 3 describes a study of progression of multiple sclerosis and illustrates
calculation of the different SCI methods. Section 4 demonstrates the use of SCI in a logistic
regression analysis. Section 5 completes the paper with a discussion.

2 Construction of SCI
2.1 Bootstrap SCI

Suppose that the data X were generated by a law F and we are interested in SCI for (θ1, …,
θm) = (θ1(F), …, θm(F)). In this section, we present an algorithm for construction of SCI for
(θ1, …, θm) with a simultaneous coverage of 1 − α based on B bootstrap samples. The algorithm
ranks each bootstrap estimate according to the coordinate which is most discrepant from the
pointwise medians and then uses these ranks to define the SCI. For pedagogical reasons, a
simpler version of the algorithm that in several cases is too conservative is presented first, then
later extended. The algorithm derives the upper limit of the SCI with level 1 − α (construction
of the lower limit is analogous):

Algorithm 1
1. Generate B bootstrap samples from F̂, an estimate of F. For each sample, Xb, calculate

the estimates .

2. For each coordinate j, order the bootstrap estimates and denote them by

. Define r(b, j) to be the rank of θ̃bj, i.e., .

3. Define the sample-b rank r(b) = maxj r(b, j) to be the largest rank associated with the
b’th bootstrap estimate.

4. Calculate r1−α/2, the 1 − α/2 percentile of r(b).

5. Take the upper limits of the SCI to be .

By construction, at most α/2 of the bootstrap estimates have a coordinate with value larger than
the upper limit of the SCI. Moreover, when the probability of ties is small, one can make the
proportion of bootstrap estimates with a coordinate larger than the upper limit close to α/2 by
increasing B. The lower limit is constructed in the same way. Letting A1 be the event that at
least one coordinate of a bootstrap sample lies below the lower limits and A2 be the event that
at least one coordinate lies above the upper limit, it follows that

, and the SCI have the declared coverage probability. The first
inequality in the last formula signifies that a realization can be below the SCI at some
coordinates and above it at others. Such a realization is counted twice in the above construction
and makes the SCI too conservative. Although these realizations should occur infrequently,
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they can be handled by a simple modification of Algorithm 1 through use of relative ranks
rather than the ranks themselves:

Algorithm 2
1. Repeat Steps 1 and 2 of Algorithm 1.

2. Define the relative ranks r*(b, j) = ∣{r(b, j)−(B+1)/2}∣ and their signs s*(b, j) = sign
{r(b, j)−(B + 1)/2}. Thus, a high r*(b, j) means an extreme estimate of θj, either small
s*(b, j) = −1 or large s*(b, j) = 1.

3. Define r*(b) = maxj r*(b, j) to be the largest relative rank of the b’th bootstrap estimate
and let s*(b) be the associated sign. It is possible that the maximum is obtained at
several j’s. r*(b) is well defined in such cases but the corresponding sign may not. If
this is the case, choose s*(b) arbitrarily.

4. Let r(b) = (B + 1)/2 + r*(b)s*(b) be the original rank corresponding to the most
discrepant coordinate of the b’th sample.

5. For all j and all b, replace θ̃bj with θ̃(r(b)j). This yields one rank for each bootstrap
estimate with a possibility of ties, i.e., the new estimates are comparable with respect
to the relation >.

6. Apply Algorithm 1 on the new values generated in Step 5.

In practice, instead of Step 6 one can determine the SCI directly from the percentiles of r*(b),
i.e., define the SCI by the estimate θ̃b which corresponds to r*(b)’s that are greater than the
chosen percentile.

It is straightforward to check that the coverage of the SCI calculated by the algorithm of [3] is
1 − α, which is the target level.

Algorithms 1 and 2 implicitly assume that there are no ties. In the case of ties, we recommend
that the maximum rank of tied observations (instead of the mean rank) be assigned to large
values (greater than the median) and the minimum rank be assigned to ties of small values.
This procedure works well when the number of tied values is relatively small. A large number
of ties, especially near the limits of the interval, requires an ad hoc solution such as replacing
the two-sided intervals with one-sided ones or constructing the SCI for part of θ only.

2.2 Normal-based SCI
We next provide two normal based SCI that demand much less computational expense, but
rely on the accuracy of the normal approximation. These intervals are compared to the bootstrap
SCI in the next sections. Suppose that

(2.1)

where ,  and ϒ is the asymptotic correlation matrix of θ ̂.
A typical normal based SCI region is of the form

(2.2)

where c(α) is chosen to satisfy (1.1). The familiar pointwise and Bonferroni confidence
intervals use c(α) = Φ−1(1 − α/2) and c(α) = Φ−1{1 − α/(2m)}, where Φ denotes the standard
normal cumulative distribution function. In our context, we seek SCI that exploit (2.1), and an
obvious choice is the 1 − α quantile of the maximum of a normal vector, i.e., the c that solves
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(2.3)

where (Z1, …, Zm) ~ N (0, ϒ). SCI that are based on (2.3) will be referred to as “normal exact”
SCI. The critical value c = c(α) can be found by simulation; the Cholesky factorization of ϒ is
first calculated and then used to generate the correlated normal vector.

The normal exact SCI can be calculated in almost all statistical software packages without
much programming, still require some computational effort. Instead, bounds for the maximum
of a correlated normal vector used by Efron [5] for the problem of simultaneous hypothesis
testing can be utilized. Efron’s work is based on improved Bonferroni bounds for a union of
events developed independently by Hunter [9] and Worsley [13], and is slightly more robust
than (2.3) to the assumption (2.1). Let ϕ denote the density function of a standard normal
variable and let Lj = arccos(∣ρj∣), where ρj = corr(θ ̂j, θ ̂j−1). Efron’s method for simultaneous
testing is inverted for SCI estimation by using as c(α) the c that solves

(2.4)

It can be shown that the left hand side of (2.4) decreases with c for c > 0 and hence c(α) can
be found by a simple bisection search, starting from the pointwise value Φ−1(1−α/2) and the
Bonferroni value Φ−1{1−α/(2m)}. (In certain situations, Efron’s bound is less than α/2 at the
Bonferroni critical value and hence is useless, i.e., the Bonferroni method provides shorter
intervals.) We point out that the intervals can be further improved by pairing the estimates in

an optimal way and by calculating  exactly using numerical integration
(see [5] for details and references), but this involves more computational eαort and sacrifices
the advantage of simplicity of this approach.

3 Illustration I - Progression of Multiple Sclerosis
3.1 Data and Model

CLIMB is a large natural history study of Multiple Sclerosis (MS) ongoing at the Partners MS
Center in Boston [6]. It aims at understanding the development of the disease in the current
era of available treatments. The data analyzed here were collected during the years 2000-2005
and contain semiannual evaluations of disability for 267 MS patients of type relapsing-
remitting as measured on the expanded disability status scale (EDSS). The patients enrolled in
the study are in the first stage of their disease most having minimal or no disability. One
important aim of the study is estimation of time dependent probabilities of progression defined
by having an EDSS of three or higher. This corresponds to a moderate disability in at least one
of seven functional systems. The EDSS values were grouped as EDSS≤1.5, coded as 1 (no
disability), EDSS of 2 or 2.5, coded as 2 (minimal disability) and EDSS of 3+, coded as 3
(moderate to severe disability). In a previous paper ([12], hereafter MGGWB), a Markov model
was fitted to the sequence of EDSS values and a method to construct probability curves for
time to progression and pointwise confidence intervals was presented. The pointwise
confidence intervals are not satisfactory as aforementioned, and here we show how to construct
SCI for such curves. Simulation studies revealed that normal based confidence intervals may
perform poorly for short term prediction when certain transition probabilities are small (being
either anti-conservative or too conservative; see MGGWB, Section 4.4), hence bootstrap
methods seem more appropriate.

MGGWB analyzed the data using a first-order Markov model. They contrasted their model
with a second-order Markov model using a goodness-of-fit test, and this favored the latter. A
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second-order assumption is reasonable because of the relapsing remitting nature of MS, where
increase of EDSS in one visit may be related to a transient event. Here we reanalyze the data
using a second-order Markov model and estimate time dependent probabilities of progression
defined by reaching state (3,3), i.e., two consecutive visits with EDSS of three or more (see
also [7]). The definition of the endpoint event by two consecutive visits uses the same reasoning
as the choice of the second-order model. Increase of EDSS may be a transient event due to a
relapse, and increase observed in two consecutive visits is regarded as sustained progression
which is of much more interest. Most clinical and observational studies in MS use this reasoning
(e.g., [2]).

Due to staggered entry, our 267 patients have different number of visits with a total of 1364
visits. For the second-order Markov model, triplets of consecutive visits are needed, where the
first two visits are considered as the initial state or the baseline value. Forty eight visits are
missing and the data comprise of 726 complete triplets and 104 triplets with a missing
coordinate (to ease estimation, we dropped out seven patients after their second missed visit).
Because of small numbers, the EDSS histories of (1,3) and (2,3), and (2,1) and (3,1) were
combined. In terms of modelling, this means that the transition probabilities from state (1,3)
are assumed equal to those from state (2,3), and similarly the transition probabilities from state
(2,1) and (3,1) are assumed equal. Biologically it means that transition probabilities are
determined by the current disability status and whether it has been improved or worsened from
the previous visit (but the exact value then is unimportant). This is a reasonable model for
relapsing remitting diseases and it is similar to the model of Albert [1] who studied experimental
allergic encephalomyelitis which is an animal model of MS. Table 1 summarizes the complete
transitions and the estimated transition probabilities as described below.

3.2 Estimation
3.2.1 Estimating the transition matrix—Maximum likelihood estimation is conducted
under the assumption of missing completely at random. Let Yji be the EDSS at visit j of subject
i, (i = 1, …, N; j = 1, …, mi), and denote by p(k,l)r = P(Yji = r∣Y(j−2)i = k, Y(j−1)i = l) and π(k,l)
= P(Y0i = k, Y1i = l) the transition probabilities and the baseline probabilities, respectively, then
the likelihood is

(3.1)

where Ωi is the set of possible values that subject i can take. For example, for a subject with
no missing visits, Ωi = {(y0i, y1i, …, ym,i)}, where yji is the realization of Yji in the sample, for
a subject whose second visit is missing,

Ωi = {(y0i, 1, y2i, …, ymi), (y0i, 2, y2i, …, ymi), (y0i, 3, y2i, …, ymi)}, and so forth. In our example,
at most one visit is missing for each subject and estimation could be carried out by direct
maximization of (3.1). Table 1 presents the maximum likelihood estimate (MLE) of the
transition matrix.

3.2.2 Estimating time to event—Let P̂ be an estimator of the transition matrix P of a
Markov chain having s states. In the current example s = 9 and the state space is defined by
{(k, l) : k, l = 1, 2, 3}. Let Q be as P, but the last row replaced with all elements zero except
the last one which is 1. Thus, Q changes the state (3, 3) to be an absorbing state. The (i, 9)’th
cell in the j’th power of Q ̂, the estimator of Q, contains our estimator of θj which is the
probability of progression during j visits for a subject whose baseline EDSS is i.
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Asymptotically, the estimators have a normal law [12]. To be more explicit, denote by vec
(Q) the vector representation of Q that stacks the rows of Q one on the other. Then the
transformation vec(Q) → vec(Qj) has the s2 × s2 Jacobian matrix Dj whose (k − 1)s + l’th
column is

(3.2)

where Δkl is an s × s matrix whose elements are all zeros except the (k, l) cell which is one,
and Q0 is the identity matrix with dimension s. Thus, given that

, then  and an
asymptotic pointwise confidence interval for θj can be constructed by plugging estimates of
Q ̂ in (3.2).

To construct SCI, the results of MGGWB should be extended to the law of all of the
transformations Qj (j = 1, …, m) together. The estimator of all transition probabilities in the

m steps,  has an asymptotic normal distribution with
covariance-variance matrix given by

The covariance of  with  is in the (k − 1)s + l row and (k − 1)s + l column of 

where  is the (k, l)’th element of Q ̂j. This matrix is used for calculation of the normal-based
SCI described in Section 2.2.

3.3 Results
The bootstrap and the normal based SCI are displayed in Figure 1. The SCI are for the
probabilities of visiting state (3,3) at or before visit j (j = 3, …, 12) starting from state (1,1)
(left panel) or (2,2) (right panel). The construction of the normal based SCI deviated slightly
from (2.2). The SCI defined in (2.2) are symmetric around the point estimates and may include
values outside the parameter space. An alternative that is frequently used to calculate the
variance of the Kaplan-Meier estimator is to apply the log(− log) transformation (e.g., [10]).
A comparison of confidence intervals with and without the log(-log) transform revealed that
the former performed better. Thus, the SCI’s for log(− log(θ)) were calculated, as described in
Section 2, and then the inverse transformation was applied to obtain the SCI’s of Figure 1.

Since several of the cells in Table 1 are small, the validity of the normal approximation (2.1)
is questionable. As an alternative, a parametric bootstrap SCI were calculated conditionally on
the number of visits of each subject and the data on the first two visits. Specifically, the
parameters used were the MLEs of πk,l and p(k,l)r. For each subject, an initial state was generated
giving his data on EDSS at the first two visits (in particular, for subjects without missing values
the observed states were used), and then the remaining transitions were generated with the total
number of visits and the structure of missing visits fixed at the observed values. This process
was repeated B = 5, 000 times, with the remaining steps following Algorithm 2.

All calculations were performed on a PC with 1.2 GHz processor and 1 GB of RAM. We used
SAS version 9.1 to generate the 5000 samples and to estimate the parameters of the Markov
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model (we used nlmixed procedure with the default dual quasi-Newton optimization
algorithm). We used R version 1.9.1 to estimate θ̃b = (θ̃b1, …, θ̃bm) from the Markov model
results, and to generate the bootstrap and normal based SCI.

Several interesting features appear in Figure 1. First, the bootstrap intervals have smaller limits
than the normal based intervals, but still have similar lengths. Thus, the normal approach seems
to overestimate θ (this is even more pronounced when not applying the log(− log)
transformation). Second, the difference is larger on the left panel which shows progression of
patients with normal neurological exam (initial state (1,1)). The estimated transition probability
from state (1,1) to state (1,3) is very small (only 0.05), which probably results in a less accurate
normal approximation for the distribution of θ ̂ in the left panel as compared to the right panel.
Third, the two normal SCI are very similar even though the method due to Efron uses a bound
for the exact value.

4 Illustration II - Logistic Regression
In this section we apply the method to parameters of a logistic regression. Replacing pointwise
with simultaneous confidence intervals is beneficial as it deals with multivariate comparisons,
but still give interpretable information on each of the parameters. Table 2 presents confidence
intervals for coefficients of the logistic model of Table 5.10 of Hosmer and Lemeshow [11].
This is part of a study on the efficacy of treatment approach for drug abusers, where the
dichotomous outcome is the return to drug use. There are ten covariates and 575 individuals,
which is usually sufficient for normal approximation. For a detailed description of the study
and covariates see [11] Sections 1.6.4 and 4.2.

The pointwise and Bonferroni intervals are presented together with the Efron and bootstrap
intervals for a comparison. As there is no obvious indexing of the parameters in this example,
the maximal spanning tree with squared correlations as weights was used to optimally pair the
estimators for the Efron method [13]. The normal-exact intervals are very similar to the Efron
ones (having c(0.05) = 2.768 compared to 2.790 for Efron), hence are not shown. The Efron
confidence intervals are shorter than Bonferroni’s but the improvement is quite small. This is
because correlations among the estimators are not as large as in the previous example. The
bootstrap intervals agree with the Efron and Bonferroni intervals in most coordinates, but
deviate in few. A simulation study revealed that their coverage is somewhat less than the target
95% while the Efron intervals are quite accurate. Recentering the bootstrap intervals as
discussed in the next section resulted in conservative coverage.

This example shows that the application of simultaneous confidence intervals in general and
the bootstrap method in particular is not limited to discrete survival estimates. However, when
the normal approximation is good, the bootstrap method is not really needed. Moreover, the
example indicates that the simple Bonferroni correction method is satisfactory when the
correlations are small.

5 Discussion
We have derived an algorithm to construct simultaneous confidence intervals by assigning
ranks to the bootstrap samples and basing the SCI on the quantiles of the ranks. We compared
the bootstrap SCI to two normal based SCI and showed that the bootstrap SCI requires more
programming effort, but relies on fewer assumptions than the normal based approaches. The
algorithm is based on the simple percentile bootstrap method which does not always work well
(see [3] Section 5.3). Extension of the algorithm to adjusted percentile methods ([3] Section
5.3.2) is not straightforward and requires further investigation. However, one can shift the
intervals by using for θj the interval
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(5.1)

(see Equation (5.6) of [3]). A small simulation study that compared the percentile intervals

 to (5.1) using the logistic regression model discussed in Section 4, revealed that
the latter is more conservative. Similar modifications can be used to calculate simultaneous
studentized bootstrap confidence intervals.

The complexity of Step 1 of Algorithm 1 depends on the problem at hand, i.e., the time it takes
to generate a bootstrap sample and to compute (θ ̂1, …, θ ̂m). In the simplest problems it is of
order O(nmB), where n is the size of X. Among the remaining steps, Step 2 is most demanding;
it requires sorting of all coordinates and has an average complexity of O(mB log(B)). In the
MS example of Section 3, Step 1 of Algorithm 1 was quite complicated and was comprised of
three steps: generating bootstrap samples, estimating the second order Markov model, and
calculating the probabilities θ̃b = (θ̃b1, …, θ̃bm). It took more than four hours to accomplish it.
The time it took to run Algorithm 2 excluding Step 1 of Algorithm 1 was only two seconds.
However, the time can be considerably longer when there are tied observations (or if the
algorithm automatically checks and deals with ties). In our problem of B = 5000 and m = 10,
checking for tied observations and assigning the maximum rank increased the running time to
27 seconds, still quite fast and much faster than Step 1.

When using normal based SCI, the bound due to [5] gives very close results to the normal exact
method. This was also found in other simulated and real data sets that we have analyzed. Since
the Efron SCI is easier to calculate than the normal exact method, we recommend its use when
the normal approximation can be trusted. In cases where the correlations among the estimators
are low, as in the logistic regression example of Section 4, the Bonferroni intervals are quite
accurate.
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Figure 1.
Probabilities (bullets) and 95% SCI (bars) of two consecutive visits with moderate to severe
disability given initial state is (1,1) (left panel) and (2,2) (right panel). The confidence intervals
are, from left to right, bootstrap, normal exact, Efron.
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Table 1
Transitions between EDSS scores. Frequency for the complete data (left) and maximum likelihood estimates using all
the data (right).

current EDSS score current EDSS score
Previous EDSS scores 1 2 3 1 2 3

(1,1) 366 33 2 .906 .089 .005
(1,2) 29 18 3 .578 .369 .053

(1,3)+(2,3) 3 11 14 .120 .397 .484
(2,1)+(3,1) 48 18 3 .698 .261 .041

(2,2) 20 63 11 .207 .684 .109
(3,2) 2 9 10 .084 .416 .500
(3,3) 1 12 50 .017 .183 .800
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Table 2
Pointwise and simultaneous confidence intervals for the logistic regression model of Hosmer and Lemeshow’s (2000)
Table 5.10

Variable Pointwise Bonferroni Efron bootstrap

Intercept [-9.234,-4.454] [-10.304,-3.384] [-10.245,-3.442] [-11.071,-3.693]
Age [0.060,0.173] [0.035,0.199] [0.036,0.197] [0.039,0.209]
NDRGFP1 [0.871,2.467] [0.514,2.824] [0.533,2.805] [0.607,3.120]
NDRGFP2 [0.205,0.663] [0.102,0.765] [0.108,0.760] [0.124,0.818]
IVHX2 [-1.220,-0.049] [-1.482,0.213] [-1.468,0.199] [-1.481,0.156]
IVHX3 [-1.218,-0.192] [-1.447,0.037] [-1.435,0.025] [-1.517,0.024]
Race [0.166,1.202] [-0.065,1.434] [-0.053,1.421] [-0.047,1.448]
Treat [0.036,0.834] [-0.143,1.013] [-0.134,1.003] [-0.149,1.035]
Site [0.017,1.016] [-0.207,1.239] [-0.195,1.227] [-0.244,1.219]
Age*NDRGFP1 [-0.027,-0.003] [-0.032,0.002] [-0.032,0.002] [-0.035,0.001]
Race*Site [-2.468,-0.391] [-2.933,0.074] [-2.907,0.049] [-3.398,-0.065]
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