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Abstract

Background: Contact order is a topological descriptor that has been shown to be correlated with
several interesting protein properties such as protein folding rates and protein transition state
placements. Contact order has also been used to select for viable protein folds from ab initio
protein structure prediction programs. For proteins of known three-dimensional structure, their
contact order can be calculated directly. However, for proteins with unknown three-dimensional
structure, there is no effective prediction method currently available.

Results: In this paper, we propose several simple yet very effective methods to predict contact
order from the amino acid sequence only. One set of methods is based on a weighted linear
combination of predicted secondary structure content and amino acid composition. Depending on
the number of components used in these equations it is possible to achieve a correlation coefficient
of 0.857-0.870 between the observed and predicted contact order. A second method, based on
sequence similarity to known three-dimensional structures, is able to achieve a correlation
coefficient of 0.977. We have also developed a much more robust implementation for calculating
contact order directly from PDB coordinates that works for > 99% PDB files. All of these contact
order predictors and calculators have been implemented as a web server (see Availability and
requirements section for URL).

Conclusion: Protein contact order can be effectively predicted from the primary sequence, at the
absence of three-dimensional structure. Three factors, percentage of residues in alpha helices,
percentage of residues in beta strands, and sequence length, appear to be strongly correlated with
the absolute contact order.

Background

Considerable computational and experimental efforts
over the past three decades have been devoted to learning
about or predicting how proteins fold. Experimentally,
insights into protein folding mechanisms can be gained
by measuring bulk properties such as protein folding rates
[1,2], free energies of folding [3] or hydrogen exchange

rates [4] and correlating them with molecular properties
such as secondary structure [5], molecular topology [6]
and solvent accessibility [7]. One of the more remarkable
observations to emerge over the past decade is that pro-
tein folding rates vary over many orders of magnitude,
from microseconds [2] to hours [1]. These experimental
observations, in combination with theoretical studies,
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have led to a general agreement that protein folding
mechanisms and folding landscapes are largely deter-
mined by the topology of the native protein and are rela-
tively insensitive either to the details of the inter-atomic
interactions [6,8-11] or to the length of the protein [6].

To better quantify the topology and the stability of protein
native states, the concept of contact order (CO) was pro-
posed in 1998 [6]. Contact order is essentially a measure
of non-adjacent amino acid proximity within a folded
protein. More specifically, two distinct amino acid resi-
dues in a protein are said to form a contact when there is
a pair of heavy atoms (C, O, S or N), one from each resi-
due, whose physical (euclidean) distance is within 6 A
[11]. The absolute contact order, denoted as Abs_CO, of a
protein is defined as the average number of residues sepa-
rating the contacts inside the protein (where two sequen-
tially adjacent residues are separated by one residue). The
relative contact order, or simply the contact order, is
denoted as CO. Essentially, CO measures the average
sequence separation between contacting residues in the
native state of a protein normalized by the protein length,
and intuitively, when the portion of interacting atoms
which are far away in the protein sequence grows, CO
increases.

Both positive and negative correlations have been found
between CO and several bulk protein properties such as
protein folding rate and transition state placements [6,11-
16]. For example, previous experimental results have
shown that the logarithm of a protein's folding rate is lin-
early correlated with CO of the protein in its native state
[11]. A similar but inverse correlation between CO and
the protein folding transition state placements has also
been observed [6]. Early studies have suggested that
Abs_CO exhibited a weaker correlation with two-state
protein folding kinetics than CO does [6,9]. More
recently, Ivankov et al. [11] showed that Abs_CO is a more
appropriate parameter to predict the folding rate of pro-
teins as it actually spans a wider range of folding state
kinetics (i.e., two-state, multi-state, and short peptides)
[11]. Consequently, some of the more promising applica-
tions of CO prediction or calculation lie in the prediction
of protein folding rates, folding transition state place-
ments, and other folding properties.

In addition to its application in predicting protein folding
kinetic properties, contact order has also been shown to
have some utility in ab initio protein structure prediction
[10]. In particular, it has been observed that during the
candidate structure generation stage in ab initio structure
prediction programs, decoys with higher topological com-
plexity are more likely to be under-sampled, especially
among larger proteins. Normalizing the CO distribution
of candidate structures has been shown to alleviate such a

http://www.biomedcentral.com/1471-2105/9/255

bias, and, as a result, better protein structure predictions
were generally achieved [10]. In fact, contact order filter-
ing is now an integral part of the Rosetta protein structure
prediction package [17].

In this study, we adopted the CO definition in which two
distinct amino acid residues in a protein form a contact
when there is a pair of heavy atoms (C, O, S or N), one
from each residue, whose physical (euclidean) distance is
within 6 A [6,11]. We note that in the literature, there are
several different definitions of CO. For instances, Bon-
neau et al. suggested that two residues form a contacting
pair if and only if they are sequentially at least 3 residues
away from each other and their B-carbons are within 8 A
[10]. Yuan studied different distance thresholds (6 A, 8 A,
10 A, 12 A, 14 A) in Plaxco et al.'s definition and con-
cluded that they did not significantly affect the prediction
accuracy [18]. It has also been suggested that sequentially
adjacent residues should not be considered to be a contact
in Plaxco et al.'s definition. Note that although these vari-
ants use different parameters in defining a contact, the
underlying ideas of using CO to quantify the topology of
a protein's native state tertiary structure are similar. In the
literature, there are also several well-studied concepts
related to CO such as residue contact order [19-22], con-
tact number [18,23,24], and residue contact number [25-
28]. These quantities are largely used to characterize pro-
tein native structure, but unlike contact order, they are not
directly correlated to some global protein properties such
as protein folding rate and folding transition state place-
ments. While some researchers [14,15] have tried to pre-
dict protein folding rate from the amino acid sequence
directly, typically they only tested their methods on very
small data-sets and the results were subject to the overfit-
ting problem [29].

For proteins with solved three-dimensional structures,
their COs can be calculated exactly using the equations
given below (in Methods), according to the definition
given by Plaxco et al. [6,11]. In fact, a web server (albeit
with limited functionality) has been developed that calcu-
lates contact order when given an appropriately formatted
PDB coordinate file [30]. However, to the best of our
knowledge, there is no CO prediction method available
when the three-dimensional structure of the target protein
is unknown. Given that only a tiny fraction of protein 3D
structures are known and given the utility of contact order
in the understanding and prediction of protein folding
rates and protein folds, we decided to tackle the problem
of predicting CO for proteins with unknown three-dimen-
sional structures (i.e., predicting CO using only the amino
acid sequence as input). In addressing this problem we
wanted to develop a method that could accurately predict
or robustly calculate contact order regardless of whether
the 3D structure was known or not. Therefore, three sce-
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narios are possible: 1) the input sequence exactly matches
a known 3D structure; 2) the input sequence is homolo-
gous (> 20% sequence identity, computed as the number
of identical residues divided by the query sequence
length) to a known 3D structure and 3) the input
sequence does not match any known structure. As
described below, we have succeeded in developing a com-
bination of methods that is capable of predicting CO with
a correlation between the observed and predicted values
ranging from 0.857 (for scenario 3) to 0.977 (for scenario
2) to 1.000 (for scenario 1). Details regarding the imple-
mentation, testing and performance of these methods are
given below.

Methods

Contact order calculation

Given a protein primary sequence, let us use L to denote
its length, i.e., the number of amino acid residues in the
sequence. The i-th residue is denoted as a;. For two distinct
residues a; and a;, if there are two non-hydrogen atoms,
one from each residue, within 6 A, then 4, and a; form a
contact. L;; = |i - j| denotes the number of residues separat-
ing this contact. Assuming there are in total N contacts in
the protein, the Abs_CO of this protein is defined as

Abs_CO = % Z Ly, (1)
(a;.a;)
where the summation goes over all contacting pairs (a; 4;)
in the protein [6,11]. The relative CO, or simply CO, is
defined as

CO = %x Abs_CO. (2)

Because the relative CO is defined as Abs_CO normalized
over protein length, exactly the same prediction accuracy
can be achieved for Abs_CO as for CO. In this study, we
focus on calculating and predicting Abs_CO, from which
the corresponding CO can be trivially calculated. We
implemented a contact order calculator that determines
the Abs_CO value from the PDB coordinates of an input
protein using the methods described above. The program
was tested and validated against a large number of files for
which the Abs_CO values had been previously published.

Prediction by homology

Many protein properties, including tertiary structure, sec-
ondary structure and solvent accessibility can be predicted
via homology [31]. In other words, the properties of a
query sequence can be predicted by directly transferring
the properties or features of a homologous protein to the
query protein. Since CO is a property that is a function of
structure, we hypothesized that the calculated CO of
known 3D structures could be used to predict the CO of
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homologous proteins. In implementing this approach we
calculated the Abs_CO (using the method described in the
last "Contact order calculation" section) for 16, 499 non-
redundant proteins obtained from the PDB. These pro-
teins were selected using the PDB culling/filtering service
called PISCES [32]. Structures were initially selected using
a 95% identity sequence-redundancy cutoff and a require-
ment for better than 3 A resolution (for X-ray structures).
Structures were further processed by removing disordered
structures (secondary structure content < 10%) as well as
all membrane proteins (membrane beta barrel and trans-
membrane helix proteins). The resulting CO database
consisted of 16, 499 sequences in FASTA format with the
Abs_CO value listed in the sequence name header. A local
copy of BLAST [33] was installed which used this FASTA-
formatted CO database as the search database. For a hit to
be considered to be significant the query sequence must
exhibit more than 20% sequence identity (computed as
the number of identical residues divided by the query
sequence length) to a protein in the CO database and the
query sequence must be + 40% of the length of the match-
ing homologue. If these two criteria are met, then the con-
tact order is transferred to the query protein. If any of
these criteria is not met, then the contact order is predicted
using the method described in the next "Prediction by
regression” section. Tests through 5-fold cross validation
on the CO database were performed using a variety of
sequence identity cutoffs and sequence-length thresholds
to assess their influence on both the accuracy and the cov-
erage (coverage refers to the percentage of query
sequences that could be predicted by this homology-
based method). Overall, the 20% sequence identity cutoff
and the 40% length threshold provided the best accuracy-
to-coverage tradeoff.

Prediction by regression

In order to deal with the situation where no homologue
can be found to predict the CO value (the last "Prediction
by homology" section) we developed and tested a regres-
sion-based approach that permits accurate prediction of
CO for any water-soluble protein. Let p( ) denote the per-
centage of residues in alpha-helices and p(f) denote the
percentage of residues in beta strands in the protein. We
observed that Abs_CO correlates well with a linear combi-
nation of p(), p(f), and the protein length L. Given this
observation we decided to use linear regression to opti-
mize the correlation between Abs_CO and the protein pri-
mary and secondary structures, as follows:

Abs CO=x - p(@+1 P(A)+25- L+c (3)

where y;, i = 1, 2, 3, are the coefficients of the three factors
p(a), p(B), and L, and ¢ is a constant value in the linear
regression. Note that for proteins with unknown three-
dimensional structure, their secondary structures are also
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Table I: SCOP classification of the 933 training monomeric
proteins

SCOP label Quantity
All alpha proteins 83
All beta proteins 89
Alpha and beta proteins 750
Peptides 10
unstructured |

The SCOP classification of the 933 monomeric proteins used for
regression.

unknown. Therefore, as part of the linear regression proc-
ess as specified in Formula (3), we predict their secondary
structure content using Proteus [31]. Proteus is a second-
ary structure predictor that uses sequence alignment to
achieve highly accurate predictions (Q3 accuracy score of
81.3% or greater), where homologs are identified using an
E-value of < 0.01 and the secondary structures derived
from VADAR [34] and the PPT-Database [35].

Using a large dataset of 933 high resolution three-dimen-
sional protein structures (see Results section), the param-
eters in Formula (3) localize at y, = -6.8968, y, = 7.6216,
23=0.0612, and ¢ = 8.0397.

Subsequently, given any query protein, we may use Pro-
teus again to predict p( ) and p(f) values, and then report
its Abs_CO as

Abs_CO =-6.8968p(a) + 7.6216p(f3) + 0.0612L + 8.0397.
(4)

In the Results section, we will demonstrate the effective-
ness of this stunningly simple prediction method.

In addition to this 3-factor CO predictor (Formula (4),
and denoted as F3-LR), which has been implemented on
our web server, we also developed other linear equations
that considered more factors that might be strongly corre-
lated to Abs_CO. For example, we added four other fac-
tors to F3-LR to create a 7-factor linear regression formula.
These four factors are 1) the number of beta hairpins (two
adjacent beta-strand segments form a hairpin if they are
separated by 2 to 5 residues), 2) the number of distant
beta strands (two adjacent beta-strand segments are con-
sidered "distant" if they are separated by at least 5 resi-
dues), 3) the number of Cysteine residues (C), and 4) the
number of hydrophobic amino acid residues (V, I, L, M, F,
W, C). Among these four factors, the latter two are
obtained from the primary sequence, while the former
two are extracted from the secondary structures predicted
using Proteus. This method is denoted as F7-LR. The third
method known as F27-LR considers 27 factors. These 27
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The length distribution of the 933 monomeric pro-
teins used for regression.

factors include the first 5 factors in the F7-LR method, (the
other two factors in the F7-LR method, the number of
Cysteine residues and the number of hydrophobic amino
acid residues, are replaced by) 19 amino acid frequencies
of the 20 ones in the target protein, and 3 hydrophobicity
frequencies defined as follows. For each amino acid type,
its frequency in the target protein is defined as the number
of occurrences divided by L, the length of the protein.
Since the sum of all 20 such frequencies is 1, only 19 of
them are included in the regression (to avoid redun-
dancy). Next, for each residue in the target sequence, the
hydrophobicity information of both the preceding and
the succeeding residues are recorded. As a result, every res-
idue, except the first and the last, is associated with one of
the four labels: "HH", "HP", "PH", and "PP", where 'H'
denotes hydrophobic and 'P' denotes hydrophilic. The fre-
quency of "HH" is defined as the number of residues
labeled with "HH" divided by L - 2. The other three fre-
quencies are similarly defined, and their sum is exactly 1.
For the same reason, only 3 of them are included in the
regression.

We also tested two other regression methods: Support
Vector Regression (SVR) [36] and Neural Network (NN)
[37]. Combining these two regression methods, we have
F3-SVR, F7-SVR, F27-SVR, and F3-NN, F7-NN, F27-NN.
Performance of these nine different regression methods
was assessed using a number of criteria to identify the best
performing approach (see Results).

Public web server

We have implemented the above contact order calculator,
the homology-based contact order predictor, and the lin-
ear regression based contact order predictors as a public
web server [38]. The input to the server can be either a
three-dimensional structure (either uploading the PDB
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Scatter plot of the actual Abs_CO values of the 742
out of 1, 000 testing sequences versus the predicted
Abs_CO values based on the top homology hit,
where the 742 were obtained by setting the length
difference threshold at 40% and the sequence iden-
tity threshold at 20%.

file or key in the PDB id), or the primary sequence of the
query protein. When the input is a sequence, our server
will first use BLAST to identify sequences that are either
identical or homologous to those in our CO database.
There are three possible scenarios: 1) If the input is a 3D
structure, or the input sequence exactly matches a known
structure in our database, our server will calculate its
Abs_CO directly using Formula (1); 2) If the input is a
sequence and the BLAST search finds a homolog that is
not an exact match but satisfies the criteria described in
the "Prediction by homology" section, the pre-computed
Abs_CO of the homologue is used as the predicted
Abs_CO of the query sequence; 3) If the input is a
sequence and has no BLAST match that falls into the sec-
ond scenario, our server will call Proteus to predict the sec-
ondary structure content for the query protein, and then
report its Abs_CO using Formula (4). Average calculation
times are around 35 seconds for the CO calculator and
about 27 seconds for the CO predictor.

Results and Discussion

All regression-based Abs_CO prediction methods were
trained and tested on a set of 933 monomeric proteins
with an X-ray resolution less than 1.5 A, extracted from
PDB [39]. The SCOP [40] classification and the length dis-
tribution of these 933 proteins are shown in Table 1 and
Figure 1, respectively. Table 1 and Figure 1 show that these
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Scatter plot for the sequence homology-based
method, showing percent correct versus sequence
identity for the 742 pairs of testing sequences and
their corresponding homologs. A 5-fold cross-validation
was performed with 5 samples of 200 sequences each, and
the combined results for all of the 742 sequences with
homologs are plotted here. Sequence identity was computed
as the number of identical residues divided by the query
sequence length.

proteins come from a wide variety of structure categories
and their lengths range from ~40 to ~1, 000 residues.

Contact order calculation

We implemented an absolute contact order calculator
based on Formula (1) in the web server [38]. We tested
our server using the monomeric protein dataset
(described in the above "Prediction by homology" sec-
tion) and compared it with a previously published contact
order calculation server [30]. The two servers returned
nearly identical contact order values with a correlation
coefficient of 0.999. However, the other server failed
(tested on May 2, 2007) to recognize 61% of the input
PDB files while our server successfully processed all of the
PDB files. As to the runtime, we observed no noticeable
difference between the two servers.

Results on homology-based prediction

To test the accuracy of homology-based contact order pre-
diction, a modified 5-fold cross-validation was performed
with a random sample of 1, 000 sequences. Each set of
200 out of the 1, 000 proteins was separately removed
from the non-redundant sequence database to form the
testing dataset, and each sequence in the testing dataset
was queried against the remaining database (the training
dataset) using BLAST. The known absolute contact order
of each query was compared to the absolute contact order
of the top-scoring BLAST hit. These top-scoring hits were
subsequently filtered based on the 20% sequence identity
threshold and 40% length threshold described above. On
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Scatter plot for the sequence homology-based
method, showing percent correct versus RMSD
between the structure of the query protein and the
structure of the homologous protein. The experiment
setting is the same as for generating Figure 3. In the plot, the
red crosses show the average percent correct for their
nearby points within + 0.5 A.

average 74.2% (+ 2.2% standard deviation) of sample
sequences found homologs in the database. The scatter
plot of these 742 pairs of true absolute contact order and
the predicted absolute contact order is shown in Figure 2,
and the mean accuracy of these 742 predictions (meas-
ured as the average percent correct, defined for each predic-

tion as min{%,%} where a is the true Abs_CO value of
the query and b is the Abs_CO of the homolog), at inter-
vals of 5% sequence identity, are plotted in Figure 3. Pre-
diction of contact order by sequence homology turns out
to be a surprisingly accurate prediction method, with a
correlation coefficient of 0.977 between the 742 pairs of
true absolute contact order and predicted absolute contact
values. Abs_CO predictions are on average 93.4% correct
(£ 0.5% standard deviation), and are even strong at
sequence identities as low as 20-30%, where they are on
average over 86% correct (Figure 3). We also plot the per-
cent correct versus the structure similarity, measured in
RMSD, between the structure of the query protein and the
structure of the homolog, in Figure 4, where we used CE
[41], a protein structure comparison method, to compute
the RMSD. From the figure, one can see that Abs_CO pre-
dictions are on average over 91% correct even when the
structure similarity is larger than 3 A. The 74 2% coverage
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Figure 5

Scatter plot of the actual versus the predicted
Abs_CO values by F3-LR (under the 5-fold cross vali-
dation scheme).

we achieved with this test provides a good indication that
CO prediction by homology can provide reliable answers
for a significant number of queries. Obviously, a key lim-
itation of a homology-based approach is that it cannot
predict CO values if the query protein has no significant
homologue. This is why the regression-based prediction is
needed as a complement to the homology-based route.

Results on regression-based prediction

In assessing the performance of our regression-based pre-
dictors we treated each protein in our monomeric protein
dataset as a novel protein and applied each of the three
linear regression based methods to predict its contact
order. To train our contact order predictors, we extracted
the primary sequences from the previously described data-
base of 933 monomeric proteins, and used Proteus [31] to
predict their secondary structure contents. The true
Abs_CO value for each protein was calculated using its
three-dimensional structure via Formula (1). We used a 5-
fold cross validation scheme to avoid data over-fitting. We
measured the prediction performance by calculating the
correlation coefficient and the average prediction percent
correct between the predicted Abs_CO values and the true
Abs_CO values. The average percent correct is defined the

same as in the last section (min { % , %} where a is the true

value and b is the predicted value), averaged over all 933
proteins. Both the correlation coefficients and the average
percent correct values for the three linear regression based
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Table 2: Performances of all 9 regression-based Abs_CO prediction methods

Correlation Coefficient

Average Percent Correct Standard Deviation

Method LR SVR NN LR SVR NN LR SVR NN

Method | (F3) 0.8571 0.8583 0.8513 0.8630 0.8659 0.8543 0.1099 0.1060 0.1445
Method | (F7) 0.8603 0.8543 0.8737 0.8636 0.8681 0.8656 0.1091 0.1094 0.1110
Method | (F27) 0.8702 0.8658 0.7713 0.8659 0.8717 0.8086 0.1060 0.1291 1.2222
Method 2 (F3) 0.8477 0.8440 0.8680 0.8577 0.8664 0.8612 0.1179 0.1129 0.1073
Method 2 (F7) 0.8499 0.8455 0.8667 0.8570 0.8669 0.8656 0.1161 0.1142 0.1110
Method 2 (F27) 0.8662 0.8550 0.8233 0.8620 0.8714 0.7016 0.1105 0.1167 3.3827
Method 3 (F3) 0.8375 0.8378 0.8439 0.8542 0.8647 0.8560 0.1200 0.1168 0.1103
Method 3 (F7) 0.8421 0.8381 0.8636 0.8537 0.8637 0.8648 0.1192 0.1165 0.1156
Method 3 (F27) 0.8625 0.8512 0.7706 0.8605 0.8695 0.8106 0.1126 0.1194 0.3662

The correlation coefficients, the average percent correct values, and the standard deviations of the percent correct values for all 9 regression-based
Abs_CO prediction methods. The first set of results (rows 3-5) are for Method | in which the percentage of residues in alpha helices, p(), and

beta strands, p(/), are used as two factors. In particular, the F3-LR regression formula is Abs_CO = -6.8968p(c) + 7.6216p(f) + 0.0612L + 8.0397.
The second set of results (rows 6-8) are for Method 2 in which the numbers of residues in alpha helices, (), and beta strands, q(/), are used as
two factors. In particular, the F3-LR regression formula is Abs_CO = -0.0591q(«) + 0.0789L + 8.3774. The third set of results (rows 9-11) are for
Method 3 in which the numbers of alpha helices, n(), and beta strands, n(f), are used as two factors. In particular, the F3-LR regression formula is

Abs_CO =-0.4184n(a) + 0.1992n(p) + 0.061 IL + 8.647.

prediction methods are listed in rows 3-5 in Table 2, Col-
umns 2 and 5.

From Table 2 (rows 3-5), we see that while the use of
more factors improves the correlation coefficient by a
small amount, the simplest regression model (F3-LR)
actually performed remarkably well. In fact, this 3-param-
eter approach yielded a correlation coefficient of 0.8571.
Using 4 more factors, the F7-LR model improved the cor-
relation coefficient by only 0.0032. Not unexpectedly,
F27-LR had the best performance in terms of both correla-
tion coefficient and average prediction percent correct.
Due to the simplicity of the F3-LR model, it was chosen as
the default method for our web server (the other two
approaches are also available). The scatter plots of the pre-
dicted versus actual Abs_CO values using F3-LR and F27-
LR are shown in Figures 5 and 6. As one can see from these
plots, F27-LR slightly outperformed F3-LR, especially
when the actual Abs_CO values are smaller than 10 or
greater than 40.

Rows 6-11 in Table 2 summarize the correlation coeffi-
cients and the average percent correct values when the per-
centage of residues in alpha helices and beta strands (p( )
and p(f), Method 1) are substituted by the numbers of
residues in alpha helices and beta strands (q( &) and q(5),
Method 2), as well as by the numbers of alpha helices and
beta strands (n(«) and n(f), Method 3), respectively, for
all 9 regression based prediction methods. The three
explicit three-factor linear regression formulae are also
included in the caption. Two interesting observations are:
1) The coefficient for the term "number of residues in beta
strands”, q(f), is 0 in the second regression; 2) Using the
percentage of residues in alpha helices and beta strands

90 T T T T T T T T
80 r 1

60

40

Predicted by F27-LR

10

0 10 20 30 40 50 60 70 80 90
Actual

Figure 6

Scatter plot of the actual versus the predicted
Abs_CO values by F27-LR (under the 5-fold cross val-
idation scheme).

gave the best correlation coefficient, while using the other
two sets of parameters on secondary structure content per-
formed comparably well though slightly worse.

Conclusion

In this paper, we proposed a simple yet very effective
method to predict protein contact order from primary
sequences. We discovered three factors (i.e., percentage of
residues in alpha helices, percentage of residues in beta
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strands, and sequence length) that appear to be strongly
correlated with the absolute contact order. Tests using a
large dataset of high resolution monomeric proteins
showed that our method achieved a correlation coeffi-
cient between the predicted and the actual absolute con-
tact orders of 0.857-0.870. Several other factors were also
identified and shown to correlate with the absolute con-
tact order, including amino acid composition and adja-
cent residue hydrophobicity. In addition, we have also
shown that it is possible to use sequence homology to
accurately predict the contact order for proteins for which
no 3D structure exists. This latter approach, which is
extremely fast (less than a second) and accurate (correla-
tion coefficient 0.977), avoids the need to have to gener-
ate and refine an accurate 3D homology model or to use
extensive computer resources to calculate the contact
order. Therefore, using a combination of homology-based
prediction and regression-based prediction, we have
shown that it is possible to rapidly and accurately predict
the contact order of any water-soluble protein for which
the sequence is known. All of these methods for CO pre-
diction and calculation are freely available through the
web server [38].

Availability and requirements

Web server: http://www.copredictor.ca.
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