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The problem of action selection has two components: what is selected and how is it selected? To
understand what is selected, it is necessary to distinguish between behavioural and mechanistic levels
of description. Animals do not choose between behaviours per se; rather, behaviour reflects
interactions among brains, bodies and environments. To understand what guides selection, it is useful
to take a normative perspective that evaluates behaviour in terms of a fitness metric. This perspective,
rooted in behavioural ecology, can be especially useful for understanding apparently irrational choice
behaviour. This paper describes a series of models that use artificial life (AL) techniques to address
the above issues. We show that successful action selection can arise from the joint activity of parallel,
loosely coupled sensorimotor processes. We define a class of AL models that help to bridge the
ecological approaches of normative modelling and agent- or individual-based modelling (IBM).
Finally, we show how an instance of apparently suboptimal decision making, the matching law, can
be accounted for by adaptation to competitive foraging environments.
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1. INTRODUCTION
Real life is all action. Bodies and brains have been shaped

by natural selection above all for the ability to produce the

right action at the right time. The neural substrates of

action selection must therefore be very general, encapsu-

lating mechanisms for perception as well as those

supporting motor movements per se, and their operations

must be understood in terms of interactions among

brains, bodies and structured environments.

How can these complex interactions be modelled?

Among biological disciplines, behavioural ecology has a

strong tradition of accounting for the role of organism–

environment interactions in behaviour (Krebs &

Davies 1997). Behavioural ecology and the related

field of optimal foraging theory (OFT; Stephens &

Krebs 1986) model animal behaviour in terms of

optimal adaptation to environmental niches. The goal

is not to test whether organisms in fact behave

optimally, but to use normative expectations to

interpret behavioural data and/or generate testable

hypotheses. For example, Richardson and Verbeek

explain the observation that crows do not always forage

for the largest clams in their environment by noting that

eating large clams requires significantly more handling

time than eating small clams; the optimal foraging

strategy in this case involved selecting a mixture of large

and small clams (Richardson & Verbeek 1987).
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Importantly, while OFT models may suggest ultimate
causes for behaviour (i.e. those that derive from
evolutionary selective pressures), they are less able to
reveal proximate causes (i.e. the underlying agent
mechanisms that generate the observed behaviours).

A common method in ecological modelling and
OFT has involved the use of state variables, which
represent properties of a population as a whole (e.g.
size, density, growth rate; Houston & McNamara
1999; Clark & Mangel 2000; McNamara & Houston
2001). Although this approach can preserve math-
ematical tractability, it makes difficult the incorpor-
ation of aspects of adaptive behaviour that depend
on the detailed dynamics of agent–agent and agent–
environment interactions (Seth 2000, 2002a; Grimm &
Railsback 2005). For example, the influence of the
spatial aggregation of foragers on resource intake
cannot be modelled in the absence of a spatially explicit
representation of the environment (Seth 2001b). Partly
in response to difficulties of this sort, ecology has
increasingly embraced agent-based or individual-based
models (ABMs, IBMs; Huston et al. 1988; DeAngelis &
Gross 1992; Grimm 1999; Grimm & Railsback 2005).
ABMs and IBMs (we use the terms interchangeably)
explicitly instantiate individual agents in order to
capture the dynamics of their interactions, and they
explicitly model the environmental structure that
scaffolds these interactions. These features allow
ABMs to represent features such as spatial inhom-
ogeneity of resources, which significantly influence
behaviour, but which may be difficult to incorporate
into state-variable models (e.g. Axtell et al. 2002;
Sellers et al. 2007). One important trade-off is that
incorporation of such features often comes at the
expense of mathematical tractability and another is that
This journal is q 2007 The Royal Society
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ABMs often lack a straightforward normative interpre-
tation as offered by OFT models.

In this paper, we explore how modelling and analysis
techniques drawn from artificial life (AL) can comp-
lement and extend ABMs, as they relate to action
selection. AL is a broad field, encompassing the study
of life via the use of human-made analogues of living
systems. Here, we focus on a subset of AL methods that
have the most relevance to the ecology of action
selection. We consider two core features offered by
the AL approach, which are as follows.

(i) The use of numerical optimization algorithms
(e.g. genetic algorithms (GAs); Holland 1992) to
optimize patterns of behaviour within the model
with respect to some fitness criterion (e.g.
maximization of resource intake).

(ii) The modelling of agent–environment and agent–
agent interactions at the level of situated percep-
tion and action, via the explicit modelling of
sensor input and motor output.

The first of these features provides a natural bridge
between OFT models (which incorporate a normative
criterion but usually use state variables) and ABMs
(which do not rely on state variables but may not
incorporate a normative component). The second
feature permits the essential distinction between
behaviour and mechanism to be realized within the
model. Here, behaviour refers to the interactions
between an agent and its environment as perceived
by an external observer, and mechanism refers,
broadly speaking, to the properties of the agent (i.e.
body, brain) that underlie these interactions (these
definitions will be sharpened in the following section).
In this view, the proper mechanistic explanatory
targets of action selection are selective mechanisms
in both sensory and motor domains that ensure the
adaptive coordination of behaviour. Models that do
not reach down into the details of sensorimotor
interactions run the risk of falsely reifying behaviours
by proposing mechanisms that incorporate as com-
ponents descriptions of the behaviours they are
intended to generate (Hallam & Malcolm 1994; Seth
2002a). Of course, this is not to say that models at
higher levels of abstraction are necessarily less
valuable. With careful interpretation of the relation-
ship between behaviour and mechanism, such models
can equally provide useful insights; we will describe
one of these models in §6 of this article.

A key challenge for normative models of behaviour
lies in accounting for apparently suboptimal
(‘irrational’) action selection. For example, many
animals behave according to Herrnstein’s matching
law, in which responses are allocated in proportion to
the reward obtained from each response option
(Herrnstein 1961). Importantly, while matching
behaviour is often optimal, it is not always so (see
also Houston et al. 2007). A useful framework for
conceiving suboptimal behaviour is ecological
rationality, the idea that cognitive mechanisms fit the
demands of particular ecological niches and may
deliver predictably suboptimal behaviour when oper-
ating outside these niches (Gigerenzer et al. 1999).
Phil. Trans. R. Soc. B (2007)
Here, we use the concept of ecological rationality to
describe some contributions of AL models to an
ecological perspective on action selection. Specifically,
we explore the possibility that matching behaviour
may result from foraging in a competitive multi-agent
environment.

The rest of this article is organized as follows.
Section 2 introduces relevant aspects of the field of AL.
Section 3 reviews a selection of previous AL models of
action selection from the perspective of explicitly
distinguishing between behaviour and mechanism. A
simple AL model is then described which explores a
minimal mechanism for action selection that depends
on the continuous and concurrent activity of multiple
sensorimotor links (Seth 1998). Using this model as a
representative example, §4 explores the methodological
potential offered by AL for bridging ABMs and OFT
(Seth 2000). Section 5 describes a second AL model
which tests the hypothesis that (potentially suboptimal)
matching behaviour may reflect foraging behaviour
adapted to a competitive group environment (Seth
2001a). Section 6 models matching behaviour at a
higher level of description, connecting more closely
with optimal foraging models that describe the
equilibrium distribution of foragers over patchy
resources (Fretwell 1972; Seth 2002b). Finally, §7
summarizes and suggests avenues for future research.
2. ARTIFICIAL LIFE
Although the roots of AL may be traced as far back as
the ‘artificial ducks’ of the eighteenth century auto-
mata-maker Jacques de Vaucanson (Fryer & Marshall
1979), the modern field arguably began with John von
Neumann’s theories of self-replicating automata and
cellular automata (von Neumann 1966). However, it
was only in the 1980s that AL became a recognizable
discipline, distinct from related fields such as artificial
intelligence and theoretical biology. Langton coined
the term ‘artificial life’ by stating that AL extended ‘the
study of life-as-we-know-it into the realm of life-
as-it-could-be’ (Langton 1989, p. 1). Presently, AL
researchers use a wide variety of computational
methods, including ABM (Axelrod & Hamilton
1981), GAs (Holland 1992), swarm intelligence
(Bonabeau et al. 1999) and artificial chemistries
(Dittrich et al. 2001). There is a prominent strand of
AL which explores ‘synthetic ecologies’ (Ray 1991;
Adami 1994; Holland 1994; Ofria & Wilke 2004),
however, because these models do not focus on
decision making by individual agents, they will not be
considered further in this article.

In any discussion of AL, it is important to
distinguish strong AL, which refers to the position that
the products of AL are as alive as their biological
inspirations, from weak AL, the view that AL comprises
a form of simulation modelling (Sober 1996). In
agreement with weak AL, this article assumes that AL
models constitute opaque thought experiments, i.e.
thought experiments in which the consequences follow
from the premises, although possibly in non-obvious
ways which may only be revealed via systematic enquiry
(Di Paolo et al. 2000). We note that there is a
considerable overlap between weak AL and research
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Figure 1. Decentralized spreading activation action selection
architecture adapted from Maes (1990). Agent behaviour is
determined by interactions among internal representations of
candidate behaviours, modulated by drives (e.g. curiosity).
Note that the internal mechanism (within the grey circle)
consists of internal correlates of behaviours.
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under the rubric ‘simulation of adaptive behaviour’
(e.g. Meyer & Wilson 1990). Here, no distinction is
drawn between the two research areas.

A key feature of AL models is their ability to explicitly
distinguish between behaviour and mechanism
(Hallam & Malcolm 1994; Hendriks-Jansen 1996;
Clark 1997; Seth 2002a). Following from the broad
definitions given in §1, behaviour is defined here as
observed ongoing agent–environment interactivity, and
mechanism is defined as the agent-side structure
subserving this interactivity. All behaviours (e.g. eating,
swimming, building-a-house) depend on continuous
patterns of interaction between agent and environment;
there can be no eating without food, no house-building
without bricks, no swimming without water. Moreover,
it is up to the external observer to decide which
segments of agent–environment interactivity warrant
which behavioural labels. Different observers may select
different junctures in observed activity, or they may
label the same segments differently. Therefore, and this
is a key point: the agent-side mechanisms underlying
the generation of behaviour should not be assumed to
consist of internal correlates, or descriptions, of the
behaviours themselves.

Another central concept for present purposes is the
GA; (Holland 1992; Mitchell 1997). A GA is a search
algorithm loosely based on natural selection in which a
population of genotypes (e.g. a string of numbers) is
decoded into phenotypes (e.g. a neural network
controller) which are assessed by a fitness function
(e.g. lifespan of the agent). The fittest individuals are
selected to go forward into a subsequent generation,
and mutation and/or recombination operators are
applied to the genotypes of these individuals. In this
paper, GAs are used to optimize behaviour within
ABMs. While other numerical algorithms may serve
this function just as well, we focus on the GA because of
its flexibility and success in a wide range of optimi-
zation problems (Mitchell 1997).

It bears emphasizing that GAs, being numerical
algorithms, cannot guarantee exactly optimal solutions.
GAs may fail to find exactly optimal solutions for a
number of reasons, including insufficient search time,
insufficient genetic diversity in the initial population
and overly rugged fitness landscapes in which there
exist many local fitness maxima and/or in which genetic
operations have widely varying fitness consequences.
However, for present purposes, it is not necessary that
GAs always find exactly optimal solutions. It is
sufficient that GAs instantiate a process of optimization
so that the resulting behaviour patterns and agent
mechanisms can be interpreted from a normative
perspective. Of course, the value of this perspective
will depend on the performance of the GA. Therefore,
independent criteria should be applied to judge the
extent to which the GA has been able to identify
solutions of high fitness. While it is beyond the present
scope to describe in detail these aspects of the GA
methodology, relevant factors include: (i) a satisfactory
performance of the behavioural task, (ii) a significant
increase in fitness when compared with the initial
random population, and (iii) a high fraction of
mutations of the fittest individual which lead to the
decreases in fitness.
Phil. Trans. R. Soc. B (2007)
3. AL MODELS OF ACTION SELECTION
Recent AL models of action selection were pioneered by

Brooks’ subsumption architecture (Brooks 1986) and

Maes’ spreading activation control architecture (Maes

1990; figure 1). Brooks decomposed an agent’s control

structure into a set of task-achieving ‘competences’

organized into layers, with higher layers subsuming the

goals of lower layers and with lower layers interrupting

higher layers. For Maes, an organism comprises a ‘set

of behaviours’ with action selection arising via

‘parallel local interactions among behaviours and

between behaviours and the environment’ (Maes

1990, pp. 238–239). These architectures can be related

to ethological principles developed more than 50 years

ago by Tinbergen and Lorenz, who considered action

selection to depend on a combination of environmental

‘sign stimuli’ and ‘action-specific energy’, activating

either specific ‘behaviour centres’ (Tinbergen 1950) or

‘fixed action patterns’ (Lorenz 1957). A key issue for

these early models was the utility of hierarchical

architectures, with some authors viewing hierarchical

structure as an essential organizing principle (Dawkins

1976), while others noted that strict hierarchies

involve the loss of information at every decision point

(Rosenblatt et al. 1989; Maes 1990).

Over the past decade, AL models of action selection

have progressively refined the notion of hierarchical

control. In a frequently cited thesis, Tyrrell revised

Maes’ spreading activation architecture to incorporate

soft-selection (Rosenblatt et al. 1989) in which competing

behaviours expressed preferences rather than entering a

winner-takes-all competition (Tyrrell 1993). At around

the same time, Blumberg incorporated inhibition and

fatigue into a hierarchical model in order to improve

the temporal sequencing of behaviour (Blumberg

1994). More recently, Bryson demonstrated that a

combination of hierarchical and reactive control out-

performed fully parallelized architectures in the action

selection task developed by Tyrrell (Bryson 2000).
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For a current perspective on hierarchical action
selection, see Botvinick (2007).

Although space limitations preclude a comprehen-
sive review of alternative modelling approaches to
action selection, it is worth noting briefly two currently
active directions. One is the incorporation of reinforce-
ment learning (Humphrys 1996; Sutton & Barto
1998), with a recent emphasis on the influences of
motivation (Dayan 2002) and uncertainty (Yu &
Dayan 2005). The second is the incorporation of
neuroanatomical constraints. Notably, Redgrave and
colleagues have proposed that the vertebrate basal
ganglia implement a winner-take-all competition
among inputs with different saliences (Redgrave et al.
1999, see also Hazy et al. 2007). We return to these
issues in a discussion of possible extensions to the
present approach (see §7).

A feature of many AL models of action selection
(hierarchical or otherwise) is that mechanisms of action
selection are assumed to arbitrate among an internal
repertoire of behaviours. We have argued above that
this assumption is conceptually wrong-headed in that
it confuses behavioural and mechanistic levels of
description. What, then, does action selection select?
To address this question, we turn now to a simple AL
model designed to show that action selection, at least
in a simple situation, need not require internal
arbitration among explicitly represented behaviours
(Seth 1998). The architecture of this model was
inspired by Pfeifer’s notion of ‘parallel, loosely coupled
processes’ (Pfeifer 1996) and Braitenberg’s elegant
series of thought experiments, which suggest that
complex behaviour can arise from surprisingly simple
internal mechanisms (Braitenberg 1984). The
simulated agent and its environment are shown in
figure 2; full details of the implementation are provided
in electronic supplementary material, S1. Briefly, the
simulated environment contains three varieties of
object: two types of food (grey and black) as well as
‘traps’ (open circles, which ‘kill’ the agent upon
contact). The closest instance of each object type can
be detected by the agent’s sensors. The agent contains
two ‘batteries’—grey and black—which correspond to
the two food types. These batteries diminish at a steady
rate and if either becomes empty, then the agent ‘dies’.
Encounter with a food item fully replenishes the
corresponding battery.

Each sensor is connected directly to the motor
output via a set of three sensorimotor links (figure 2b).
Each link transforms a sensory input signal into a
motor output signal via a transfer function, the shape of
which can be modulated by the level of one of the two
batteries (dashed lines). Left and right wheel speeds are
determined by summing motor output signals from all
the corresponding links. A GA was used to evolve the
shape of each transfer function as well as the
parameters governing battery modulation. The fitness
function rewarded agents that lived long and main-
tained a high average level in both batteries.

Figure 2c shows an example of the behaviour of an
evolved agent. The agent consumed a series of food
items of both types, displayed opportunistic behaviour
at point x by consuming a nearby grey item even
though it had just consumed another such item,
Phil. Trans. R. Soc. B (2007)
and successfully backtracked to avoid traps at points
y and z. Overall agent behaviour was evaluated by a set
of behavioural criteria for successful action selection
(table 1). Performance on these criteria was evaluated
by the analysis of behaviour within the natural
environment of the agent (e.g. figure 2c) and of
contrived ‘laboratory’ situations designed to test
specific criteria. For example, the balance between
dithering and persistence was tested by placing an
evolved agent in between a group of three grey items
and a group of three black items. These analyses
demonstrated that the evolved agents satisfied all the
relevant criteria (Seth 1998, 2000).

Examples of evolved transfer functions are shown in
figure 2d. Each of these transfer functions showed
modulation by a battery level and each set of three
functions was influenced by both batteries (e.g.
sensorimotor links sensitive to ‘grey’ food were
modulated by internal levels of both grey and black
batteries). Further analysis of the evolved transfer
functions (Seth 2000, unpublished data) showed
switching between consummatory and appetitive
modes (via a nonlinear response to distance from a
food item) and implicit prioritization (via disinhibition
of forward movement with low battery levels).

It is important to emphasize that this model is
intended as a conceptual exercise in what is selected
during action selection. Analysis of the model shows
that it is possible for a simple form of action selection to
arise from the concurrent activity of multiple sensor-
imotor processes with no clear distinctions among
sensation, internal processing or action, without
internal behavioural correlates and without any explicit
process of internal arbitration. These observations raise
the possibility that mechanisms of action selection may
not reflect behavioural categories derived by an
external observer, and, as a result, may be less complex
than supposed on this basis. They also suggest that
perceptual selective mechanisms may be as important
as motor mechanisms for successful action selection
(Cisek 2007). Having said this, it must be recognized
that the particular mechanism implemented in the
model is not reflected in biological systems and may not
deliver adaptive behaviour in more complex environ-
ments. It is possible that action selection in complex
environments will be better served by modular
mechanisms that may be more readily scalable by
virtue of having fewer interdependencies among
functional units. Modularity may also enhance evolva-
bility, the facility with which evolution is able to
discover adaptive solutions (Wagner & Altenberg
1996; Prescott et al. 1999).
4. OPTIMAL AGENT-BASED MODELS
In this section, we generalize the modelling approach of
§3 into a novel methodology which integrates ABM with
normative optimal foraging modelling (Seth 2000).

OFT assumes that behaviour can be considered to
be an optimal solution to the problem posed by an
environmental niche. Standard OFT models consist of
a decision variable, a currency and a set of constraints
(Stephens & Krebs 1986). Consider the redshank
Tringa totanus, foraging for worms of different sizes
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Figure 2. A minimal model of action selection. (a) Architecture of the simulated agent. Each wheel is connected to three sensors
which respond to distance to the nearest food item (grey and black circles) and ‘trap’ (large open circles). The agent has two
‘batteries’ which are replenished by the corresponding food types. (b) The structure of a sensorimotor link (each connection in
(a) consists of three of these links). Each link maps a sensory input value into a motor output value via a transfer function (solid
line). The ‘slope’ and the ‘offset’ of this function can be modulated by the level of one of the two batteries (dashed lines). The
transfer function and the parameters governing modulation are encoded as integer values for evolution using a genetic algorithm.
(c) Behaviour of an evolved agent (small circles depict consumed resources). The agent displayed opportunistic behaviour at
point x by consuming a nearby grey item even though it had just consumed such an item, and showed backtracking to avoid traps
at points y and z. (d ) Shapes of three example sensorimotor links following evolution (solid line shows the transfer function;
dashed and dotted lines show modulation due to low and very low battery levels, respectively).
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(Goss-Custard 1977). The decision variable captures

the type of the choice the animal is assumed to make

(e.g. whether a small worm is worth eating), the

currency specifies the quantity that the animal is

assumed to be maximizing (e.g. rate of energy intake)

and the constraints govern the relationship between the

decision variable and the currency (e.g. the ‘handling

time’ required to eat each worm and the relative

densities of different sizes of worm). Given these

components, an analytically solvable model can be

constructed which predicts how the animal should

behave in a particular environment in order to be
Phil. Trans. R. Soc. B (2007)
optimal (i.e. a foraging strategy). Critically, OFT

models do not reveal whether or not an animal

‘optimizes’, rather, discrepancies between observed

and predicted behaviour are taken to imply, either

that relevant constraints have been omitted from

the model or that the assumed currency is wrong. We

note that OFT is closely related to ‘behavioural

economics’ (McFarland & Bosser 1993) in which

animals are assumed to allocate behaviour in order to

maximize utility.

Importantly, decision variables—and the foraging

strategies that depend on them—are often framed in



Table 1. Criteria for successful action selection, drawn from Werner (1994) (see also T. Tyrrell 1993, unpublished data)

1 prioritize behaviour according to current internal requirements
2 allow contiguous behavioural sequences to be strung together
3 exhibit opportunism; for example, by diverting to a nearby ‘grey’ food item even if there is a

greater immediate need for ‘black’ food
4 balance dithering and persistence; for example, by drinking until full and then eating until

full instead of oscillating between eating and drinking
5 interrupt current behaviour; for example, by changing course to avoid the sudden

appearance of a dangerous object
6 privilege consummatory actions (i.e. those that are of immediate benefit to the agent, such as

eating) over appetitive actions (i.e. those that set up conditions in which consummatory
actions become more probable)

7 use all available information
8 support real-valued sensors and produce directly usable outputs
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terms of distinct behaviours (i.e. do behaviour X rather

than behaviour Y). This carries the assumption that

animals make decisions among entities (behaviours)

that are in fact the joint products of agents, environ-

ments and observers, and which may not be directly

reflected in agent-side mechanisms (see §2). A

consequence of this assumption is that, since beha-

vioural complexity is not necessarily reflected in the

underlying mechanisms, the complexity of an optimal

foraging strategy may be overestimated.

The problem of excessive computational and

representational demands of optimal foraging

strategies has been discussed widely. One potential

solution is to consider that animals adopt compara-

tively simple foraging strategies (‘rules of thumb’) that

approximate optimality (e.g. McNamara & Houston

1980; Iwasa et al. 1981; Houston & McNamara 1984,

1999; see also §6). However, as long as these rules
of thumb also use decision variables that mediate

among distinct behaviours, the possibility of a

mismatch between behavioural and mechanistic levels

of description remains.

An alternative approach is to dispense with

‘behavioural’ decision variables altogether. The model

described in §3 can be thought of as a type of OFT

model without a decision variable. It uses an assumed

currency (the fitness function), instantiates a set of

constraints (the structure of the agent and the

environment) and uses an optimization technique

(a GA) to generate behaviour. Note, however, that

there is no clear analogue of a decision variable. Instead

of assuming that the agent must explicitly arbitrate

among internally represented behaviours, selective

behaviour emerges from the continuous and parallel

activity of multiple sensorimotor processes. This

example suggests an alternative approach to OFT

modelling, via the construction of AL models which

explicitly instantiate internal architectures (but not

necessarily decision variables) and environmental

constraints, and which generate behaviour via the

application of optimization techniques such as GAs

(Seth 2000). We refer to these models as optimal
agent-based models (oABMs). The lower case ‘o’ is

intended to reflect a limitation of this approach, which,

as we have mentioned, is that GAs do not guarantee

exactly optimal solutions (see §2). While such

simulation-based models may lack analytical trans-
parency, they supply a number of advantages:
Phil. Trans. R. Soc. B (2007)
(i) The progressive relaxation of constraints is often
easier in a simulation model than in an
analytically solvable model. For example, rep-
resentation of non-homogeneous resource
distributions can rapidly become intractable
for analytic models.

(ii) There is no need to assume an explicit decision
variable (although such variables can be incor-
porated if deemed appropriate). Construction of
oABMs without explicit decision variables broad-
ens the space of possible internal mechanisms for
the implementation of foraging strategies, and, in
particular, facilitates the generation and evalu-
ation of hypotheses concerning comparatively
simple internal mechanisms.

(iii) oABMs are well suited to incorporate historical or
stigmergic constraints that arise from the history of
agent–environment interactions, by providing a
sufficiently rich medium in which such
interactions can create dynamical invariants
which constrain, direct, or canalise the future
dynamics of the system (Di Paolo 2001).
Examples can be found in the construction of
termite mounds or in the formation of ant
graveyards.

The above features together offer a distinct strategy
for pursuing optimality modelling of behaviour.
Standard OFT models are usually incrementally
complex. Failures in prediction are attributed to
inadequate representation of constraints, prompting a
revision of the model. However, only certain aspects of
standard OFT models—constraints and currencies—
can be incrementally revised. Others, such as the
presence of a decision variable or the absence of
situated perception and action, are much harder to
manipulate within an analytically tractable framework.
oABMs, being simulation-based, can bring into the
focus aspects of OFT models that are either explicit but
potentially unnecessary (e.g. decision variables) or
implicit and usually ignored (e.g. situated perception
and action, historical constraints). Thus, in contrast to
an incremental increase in model complexity, oABMs
offer the possibility of radically reconfiguring the
assumption structure of an optimality model.

It is important to emphasize the different role of GAs
within oABMs as compared to related approaches,
such as evolutionary simulation models (Wheeler & de
Bourcier 1995; Di Paolo et al. 2000) and synthetic
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ecologies (see §2), in which GAs are themselves the
object of analysis insofar as the models aim to provide
insight into evolutionary dynamics. In oABMs, GAs
are used only to specify behaviour and mechanism;
evolutionary dynamics per se are not studied.
5. PROBABILITY MATCHING AND
INTER-FORAGER INTERFERENCE
For the rest of this article, we will concentrate on the
problem of suboptimal action selection, via an
exploration of ‘matching’ behaviour. We first introduce
and differentiate two distinct forms of matching:
probability matching and the matching law.

In 1961, Herrnstein observed that pigeons match
the frequency of their responses to different stimuli
in proportion to the rewards obtained from each
stimulus type (Herrnstein 1961), a ‘matching law’
subsequently found to generalize to a wide range of
species (Davison & McCarthy 1988). By contrast,
probability matching describes behaviour in which
the distribution of responses is matched to the reward
probabilities, i.e. the available reward (Bitterman
1965). The difference between these two forms of
matching is well illustrated by the following simple
example. Consider two response alternatives A and B
which deliver a fixed reward with probabilities 0.7
and 0.3, respectively. Probability matching would
predict that the subject chooses A on 70% of trials
and B on 30% of trials. This allocation of responses
does not satisfy the matching law; the subject would
obtain approximately 85% of its reward from A and
approximately 15% from B. Moreover, probability
matching in this example is suboptimal. Clearly,
reward maximization would be achieved by respond-
ing exclusively to A. Optimal behaviour does,
however, satisfy the matching law, although in a
trivial manner: by choosing A on 100% of trials, it is
ensured that A is responsible for 100% of the reward
obtained. Note that matching does not guarantee
optimality: exclusive choice of B would also satisfy
the matching law.

Empirical evidence regarding probability matching
is mixed. Many studies indicate that both humans and
non-human animals show (suboptimal) probability
matching in a variety of situations (see Myers 1976;
Vulkan 2000; Erev & Barron 2005 for reviews). In
human subjects, however, substantial deviations from
probability matching have been observed (Gluck &
Bower 1988; Silberberg et al. 1991; Friedman &
Massaro 1998). According to Shanks and colleagues,
probability matching in humans can be reduced by
increasing reward incentive, providing explicit feed-
back about correct responses and allowing extensive
training (Shanks et al. 2002). Although a clear
consensus is lacking, it remains likely that probability
matching, at least in non-human animals, is a robust
phenomenon. How can this apparently irrational
behaviour be accounted for?

One possibility is that probability matching may
result from reinforcement learning (Sutton & Barto
1998) in the context of balancing exploitation and
exploration (Niv et al. 2001). Here, we explore the
different hypothesis that probability matching can
Phil. Trans. R. Soc. B (2007)
arise, in the absence of lifetime learning, as a result of
adaptation to a competitive foraging environment
(see also Houston 1986; Houston & Sumida 1987;
Houston & McNamara 1988; Thuisjman et al. 1995;
Seth 1999, 2001a). The intuition is as follows. In an
environment containing resources of different values,
foragers in the presence of conspecifics may experience
different levels of interference with respect to each
resource type, where interference refers to the
reduction in resource intake as a result of competition
among foragers (Sutherland 1983; Seth 2001b).
Maximization of overall intake may therefore require
distributing responses across resource types, as
opposed to responding exclusively to the richest
resource type.

To test this hypothesis, we extended the oABM
model described in §3 (Seth 1999, 2001a) (full
implementation details are provided in electronic
supplementary material, S2). In the extended model,
the environment contains two resource types (grey and
black) as well as a variable number of agents (figure 3a).
Each agent has a single internal ‘battery’ and each
resource type is associated with a probability that
consumption fully replenishes the battery (Pgry, Pblk).
Each agent is controlled by a simple feedforward neural
network (figure 3b) in which four input units respond to
the nearest resource of each type (grey and black) and a
fifth to the internal battery level, and in which the two
outputs control the wheels. A GA was used to evolve
parameters of the network controller, including the
weights of all the connections and the sensitivity of the
sensors to the different resource types, in two different
conditions. In the first (condition S), there was only one
agent in the environment. In the second (condition M),
there were three identical agents (i.e. each genotype in
the GA was decoded into three ‘clones’). In each
condition, agents were evolved in four different
environments reflecting different resource distri-
butions. In each environment, black food always
replenished the battery (PblkZ1.0), whereas the value
of grey food (Pgry) was chosen from the set {1.0, 0.66,
0.33, 0.0}.

According to the hypothesis, agents evolved in
condition S (S-agents) should treat each resource
type in an all-or-none manner (zero–one behaviour;
see Stephens & Krebs 1986), whereas agents evolved in
condition M (M-agents) should match their responses
to each resource type according to the value of each
resource. Results were supportive of the hypothesis.
Figure 3b shows the proportion of responses to grey
food as a function of Pgry:S-agents showed zero–one
behaviour and M-agents showed probability matching.
This suggests that, in the model, zero–one behaviour
reflects optimal foraging for an isolated agent, and that
probability matching reflects optimal foraging in the
competitive foraging environment.

To mimic laboratory tests of probability matching,
evolved agents were also tested in a ‘forced-choice’ task
in which they were repeatedly placed equidistant from a
single grey food item and a single black food item; both
S-agents and M-agents were tested in isolation.
Figure 3c shows the same pattern of results as in
figure 3b, i.e. zero–one behaviour for S-agents and
probability matching for M-agents. Importantly, in this
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Figure 3. Probability matching. (a) Schematic of the simulated environment, containing multiple agents (open circles) and two
types of food (grey and black circles). The expansion shows the internal architecture of an agent, which consists of a feedforward
neural network (for clarity only a subset of connections are shown). Four of the five input sensors respond to the two food types;
the fifth sensor input responds to the level of an internal ‘battery’ (middle). The outputs control left and right wheel speeds. (b)
Summary of behaviour when agents were tested in the environment in which they were evolved. Each column represents a set of
10 evolutionary runs with the abscissa (x -axis) showing the resource distribution, and the ordinate ( y-axis) showing the
proportion of responses to grey food. Agents evolved in isolation (S-agents) showed either indifference or exclusive choice (zero–
one behaviour), whereas agents evolved in competitive foraging environments (M-agents) showed probability matching. (c)
Summary of behaviour when evolved agents were tested in a forced-choice task (see text for details), in which probability
matching is suboptimal. As in (b), S-agents showed zero–one behaviour, whereas M-agents showed probability matching.
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case, probability matching is not optimal for Pgry!1

(optimal behaviour would be always to select black

food). This result therefore shows that suboptimal

probability matching can arise from adaptation to a

competitive foraging environment. We also note that

matching in the model is generated by simple

sensorimotor interactions during foraging, as opposed

to by any dedicated decision-making mechanism.

Further analysis of the model (Seth 2001a) showed

that probability matching arose as an adaptation to

patterns of resource instability (upon consumption, a

food item disappeared and reappeared at a different

random location). These patterns were generated by

sensorimotor interactions among agents and food items

during foraging; moreover, they represented historical

constraints in the sense that they reflected dynamical

invariants that constrained the future dynamics of the

system. Both situated agent–environment interactions

and rich historical constraints reflect key features of the

oABM modelling approach (see §4).
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6. MATCHING AND THE IDEAL FREE
DISTRIBUTION
Recall that Herrnstein’s formulation of the matching
law predicts that organisms match the frequency of
their responses to different stimuli in proportion to the
rewards obtained from each stimulus type (Herrnstein
1961). In the model described in §5, Herrnstein’s law
could only be satisfied in the trivial cases of exclusive
choice or equal response to both food types. In order to
establish a closer correspondence between Herrnstein’s
matching law and OFT, this section describes a model
that abstracts away from the details of situated
perception and action.

Herrnstein’s matching law can be written as follows:

log
BA

BB

Z logðbÞC s log
RA

RB

; ð6:1Þ

where BA and BB are the numbers of responses to
options A and B, respectively; RA and RB are the
resources obtained from options A and B, respectively;
and b and s are bias and sensitivity parameters,
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respectively, that can be tuned to account for different
data (Herrnstein 1961; Baum 1974). There is robust
experimental evidence that in many situations in which
matching and reward maximization are incompatible,
humans and other animals will behave according to the
matching law (Davison & McCarthy 1988). Herrn-
stein’s preferred explanation of matching, melioration,
proposes that the distribution of behaviour shifts
towards alternatives that have higher immediate
value, regardless of the consequences for overall
reinforcement (Herrnstein & Vaughan 1980).
However, melioration, which echoes Thorndike’s ‘law
of effect’ (Thorndike 1911), is a general principle and
not a specific mechanistic rule.

The mathematical form of the matching law is
strikingly similar to that of a central concept in OFT:
the ideal free distribution (IFD). The IFD describes the
optimal distribution offoragers (such that no forager can
profit by moving elsewhere) in a multi-‘patch’ environ-
ment, where each patch may offer different resource
levels (Fretwell 1972). For a two patch environment,
the IFD is written as follows (Fagen 1987):

log
NA

NB

Z
1

m
log

FA

FB

; ð6:2Þ

where NA and NB are the number of foragers on patches
A and B, respectively; FA and FB are the resource
densities on patches A and B, respectively; and m is an
interference constant [0–1]. Field data suggest that
many foraging populations fit the IFD (Weber 1998); an
innovative recent study also found that humans
approximated the IFD when foraging in a virtual
environment implemented by networked computers in
a psychology laboratory (Goldstone & Ashpole 2004).

The concept of the IFD allows the hypothesis of §5
to be restated with greater clarity: foraging behaviour
that leads a population of agents to the IFD may lead
individual agents to obey the matching law.

More than 20 years ago, Harley showed that a
relative pay-off sum (RPS) learning rule, according to
which the probability of a response is proportional to its
pay-off as a fraction of the total pay-off, leads individual
agents to match and leads populations to the IFD
(Harley 1981; Houston & Sumida 1987). However, it
is not surprising that the RPS rule leads to matching
since the rule itself directly reflects the matching law;
moreover, as Thuisjman et al. (1995) pointed out, the
RPS rule is computationally costly because it requires
all response probabilities to be recalculated at every
moment in time. Here, we explore the properties of an
alternative foraging strategy which we have called
u-sampling (Seth 2002b). Unlike the RPS rule,
u-sampling is a moment-to-moment foraging rule
(Charnov 1976; Krebs & Kacelnik 1991) which does
not require response probabilities to be continually
recalculated. In the context of the matching law,
u-sampling is related to strategies based on momentary
maximization which specify selection of the best
alternative at any given time (Shimp 1966; Hinson &
Staddon 1983). In a two patch environment, an
u-sampler initially selects patch A or patch B at
random. At each subsequent time-step, the other
patch is sampled with probability p, otherwise the
estimate of the current patch is compared with that of
Phil. Trans. R. Soc. B (2007)
the unselected patch, and switching occurs if the
former is the lower of the two. The estimate of the
current patch (or the sampled patch) is updated at each
time-step such that more recent rewards are rep-
resented more strongly. A formal description of
u-sampling is given in Appendix A, and full details of
the model implementation are given in electronic
supplementary material, S3.

To test the ability of u-sampling to lead a population
of agents to the IFD, we recorded the equilibrium
distribution (after 1000 time-steps) of 100 u-samplers
in a two-patch environment in which each patch
provided a reward to each agent, at each time-step, as
a function of conspecific density, interference (m in
equation (6.2)) and a patch-specific resource density.
Figure 4a shows equilibrium distributions under
various resource density distributions and with two
different levels of interference (mZ1.0, mZ0.3). The
equilibrium distributions closely match the IFD,
indicating that u-sampling supports optimal foraging
in the model.

Figure 4b shows the foraging behaviour of individual
(isolated) u-sampling agents under four different
reinforcement schedules which reflect those used in
experimental studies of matching. In the basic sche-
dule, reward rate is directly proportional to response
rate. Empirical data indicate that animals respond
exclusively to the most profitable option under this
schedule (Davison & McCarthy 1988), which maxi-
mizes reward and which also trivially satisfies the
matching law. In line with this data, u-sampling agents
also show exclusive choice.

In the VR–VR (concurrent variable ratio) schedule,
each patch must receive a (variable) number of
responses before a reward is given. Under this schedule,
reward maximization is again achieved by exclusive
choice of the most profitable option. Empirical evidence
is more equivocal in this case. As noted in the previous
section, although probability matching appears to be a
robust phenomenon, many examples of maximization
have been observed (Davison & McCarthy 1988;
Herrnstein 1997). The behaviour of u-sampling agents
reflects this evidence, showing a preponderance of
exclusive choice with occasional deviations.

In the VI–VI (concurrent variable interval) schedule,
which is widely used in matching experiments, a
(variable) time delay for each patch must elapse
between consecutive rewards. Under this schedule,
reward probabilities are non-stationary, reward rate
can be largely independent of response rate and
exclusive choice is not optimal. Importantly, matching
behaviour can be achieved with a variety of response
distributions, including (but not limited to) exclusive
choice. The behaviour of u-samplers is again in line
with empirical data in showing matching to obtained
reward, in this case without exclusive choice.

The final schedule, VI–VR, is a mixed schedule in
which one patch is rewarded according to a variable
interval schedule and the other according to a variable
ratio schedule. Unlike the previous schedules, matching
to obtained reward under VI–VR is not optimal. Never-
theless, both empirical data (Davison & McCarthy 1988;
Herrnstein 1997) and the behaviour of u-sampling
agents (figure 4b) accord with the matching law.
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Together, the above results show that a foraging
strategy (u-sampling) that leads foragers to the
optimal (equilibrium) distribution in a competitive
foraging environment (the IFD) also leads individual
foragers to obey Herrnstein’s matching law. Impor-
tantly, u-samplers obey the matching law even when
it is suboptimal to do so. We note that Thuisjman
et al. (1995) had made similar claims for a related
moment-to-moment strategy (3-sampling), in which
foragers retained only a single estimate of environ-
mental quality, as opposed to the multiple estimates
required by u-sampling. Both 3- and u-sampling are
related to momentary maximization inasmuch as both
specify choosing the best alternative at any given
time. However, a detailed comparison of the two
strategies revealed that 3-sampling failed under
certain conditions both in leading populations to
the IFD and in ensuring matching behaviour by
individual foragers. In particular, 3-sampling agents
Phil. Trans. R. Soc. B (2007)
failed to match to obtained reward under the critical
VI–VI and VI–VR schedules (Seth 2002b). Interest-
ingly, VI–VI and VI–VR schedules involve a non-
stationary component (the VI schedule) that may be a
common feature of ecological situations in which
resources are depleted by foraging and replenished by
abstinence.

A final analysis shows that the optimal foraging
ability of u-sampling generalizes beyond the two-patch
case. Figure 5 shows the distribution of 300
u-sampling agents in an environment consisting of
400 patches in which resources were distributed so as
to create three resource density peaks (figure 5a).
Agents maintained estimates of the five most recently
visited patches, and were able to move, at each time-
step, to any patch within a radius of three patches.
Figure 5b–d shows that the distribution of agents, after
500 time-steps, closely mirrored the resource distri-
bution, indicating optimal foraging.
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7. DISCUSSION
If ‘all behaviour is choice’ (Herrnstein 1970), then an
adequate understanding of action selection will require
a broad integration of many disciplines including
ecology, psychology and neuroscience. Ecology pro-
vides naturalistic behavioural data as well as a
normative perspective; neuroscience and psychology
provide controlled experimental conditions, as well as
insight into internal mechanisms. Successful modelling
of action selection will therefore require a compu-
tational lingua franca to mediate among these dis-
ciplines. In this article, we have shown how the
modelling techniques of AL can help provide such a
lingua franca. We identified a subset of AL models that
help bridge the methods of (normative) OFT and
(descriptive) ABMs. These oABMs involve explicitly
instantiated agents and structured environments
(possibly incorporating situated perception and
action), as well as a normative component provided
by GAs. We described a series of oABMs showing that
(i) successful action selection can arise from the joint
activity of parallel, loosely coupled sensorimotor
processes and (ii) an instance of apparently suboptimal
action selection (matching) can be accounted for by
adaptation to a competitive foraging environment.

Ecology has been distinguished by a long tradition of
ABM (Huston et al. 1988; DeAngelis & Gross 1992;
Phil. Trans. R. Soc. B (2007)
Judson 1994; Grimm 1999; Grimm & Railsback 2005),

and recent attention has been given to theoretical analysis

and unifying frameworks for such models (Grimm et al.
2005; Pascual 2005). Within AL, recent attention has

been given to methodological practice and interaction

with empirical data (Wheeler et al. 2002; Bryson et al.
2007). As a result, there are now many exciting

opportunities for productive interactions between AL

and ecological modelling. We end with some future

challenges in the domain of action selection:

(i) What features of functional neuroanatomy sup-

port optimal action selection? A useful approach

would be to incorporate into oABMs more

detailed internal mechanisms based, for example,

on models of the basal ganglia (Gurney et al. 2001;

Houk et al. 2007).

(ii) How do historical/stigmergic constraints affect

optimal action selection? Incorporation of situ-

atedperception and action intooABMs provides a

rich medium for the exploration of historical

constraints in a variety of action selection

situations.

(iii) How can reinforcement learning be combined

with optimality modelling in accounting for

both rational, and apparently irrational action

selection? This challenge leads into the territory of
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behavioural economics (Kahneman & Tversky
2000) and neuroeconomics (Glimcher &
Rustichini 2004).

(iv) What role do attentional mechanisms play in
action selection? oABMs phrased at the level
of situated perception and action allow
analysis of the influence of perceptual selec-
tive mechanisms on behaviour coordination.

Drs Jason Fleischer, Alasdair Houston, Emmet Spier, Joanna
Bryson and two anonymous reviewers read the manuscript and
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the Centre for Computational Neuroscience and Robotics, at
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provided by EPSRC award 96308700 and at The Neuro-
sciences Institute by the Neurosciences Research Foundation.
APPENDIX A. u-SAMPLING
Let g e [0,1] (adaptation rate), and 3 e [0,1] (sampling
rate). Let M(t) e {A,B} represent the patch selected, let
N(t) e {A,B} represent the unselected patch, and let r(t)
be the reward obtained, at time t e {1,2,3,.,T}. Let
EA(t) and EB(t) represent the estimated values of patches
A,B at time t. Define EA(1)ZEB(1)Z0.

For tR1, if M(t)ZA:

EAðt C1ÞZg EAðtÞC ð1KgÞ rðtÞ; EBðt C1ÞZEBðtÞ;

otherwise (if M(t)ZB):

EAðt C1ÞZEAðtÞ; EBðt C1ÞZg EBðtÞC ð1KgÞ rðtÞ:

Let c e [0,1] be a random number. Let A3 ,B3 denote
the behaviour of choosing patch (A,B) with probability
(1K3). The u-sampling strategy is then defined by
playing:

At tZ1 use A0.5

At tZ2 use M(1)3
At tO2,

if c!3 or EM(tK1)!EN(tK1) choose
patch N(tK1),
otherwise choose patch M(tK1).

This strategy has two free parameters: g and 3. In
Seth (2002b) a GA was used to specify values for these
parameters for each experimental condition separately.
Following evolution, mean parameter values were gZ
0.427, 3Z0.052. We note in passing that the use of a GA
for parameter setting retains in a limited fashion the
normative element of the oABM approach.
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