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A basic question, intimately tied to the problem of action selection, is that of how actions are
assembled into organized sequences. Theories of routine sequential behaviour have long acknowl-
edged that it must rely not only on environmental cues but also on some internal representation of
temporal or task context. It is assumed, in most theories, that such internal representations must be
organized into a strict hierarchy, mirroring the hierarchical structure of naturalistic sequential
behaviour. This article reviews an alternative computational account, which asserts that the
representations underlying naturalistic sequential behaviour need not, and arguably cannot, assume a
strictly hierarchical form. One apparent liability of this theory is that it seems to contradict
neuroscientific evidence indicating that different levels of sequential structure in behaviour are
represented at different levels in a hierarchy of cortical areas. New simulations, reported here, show
not only that the original computational account can be reconciled with this alignment between
behavioural and neural organization, but also that it gives rise to a novel explanation for how this
alignment might develop through learning.
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1. INTRODUCTION
In both psychology and neuroscience, the problem of
action selection has often been characterized at the
level of single actions. Although this approach has
obviously been quite fruitful, it ultimately runs up

against the fact that in everyday human behaviour
worthwhile outcomes can rarely be attained with a
single action. Instead, adaptive behaviour typically
requires the selection of coherent sequences of action.

Any comprehensive account of action selection must,
therefore, grapple with the question of how action
sequences are initiated and executed.

To some extent, the generation of routine sequential
action can be explained on the basis of a perception–

action cycle (see Fuster 1990) within which each action
leads to a new percept, which in turn provides the basis
for the subsequent action. However, although such a
feedback loop undoubtedly plays a role, it has been

recognized at least since the pioneering comments of
Lashley (1951) that simple associations between
perceptual inputs and actions, or between actions
themselves, cannot explain the mass of human
sequential behaviour. As Lashley (1951) noted, the

current perceptual context and the identity of the
preceding action are often inadequate cues to support
action selection. One needs only to consider the
situation of a pianist in the middle of a piece, for

whom the last note played is generally not sufficient to
indicate which note comes next. Instead, what is needed
for the production of organized sequential action is an
tribution of 15 to a Theme Issue ‘Modelling natural action
’.
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internal representation of temporal or task context,
which—at a minimum—can span periods during which
the environment provides an indeterminate cue (Fuster
1990, 1997, 2001; Botvinick & Plaut 2002).

An additional characteristic of human action, which
has often been emphasized in theories of sequential
behaviour, is that it tends to assume a roughly
hierarchical structure. Such hierarchical structure is
evident, for example, in the everyday tasks of tea- and
coffee-making, tasks that have become to some extent
canonical in the cognitive neuropsychological literature
on naturalistic sequential action (figure 1). Here, as in
many other cases, an overall task, separable from
surrounding behaviour, is composed of discrete
subtasks (e.g. adding sugar and adding cream), which
themselves are composed of more unitary actions.
A key question is how representations of temporal or
task context are structured and updated over time so as
to support hierarchically structured action sequences of
this kind.

In recent work, the author and his colleagues have
put forth a computational model of the mechanisms
underlying routine sequential action production, which
provides an account of how context information is
maintained and exploited in the context of hierarchi-
cally structured tasks (Botvinick & Plaut 2002, 2004,
2006a; Botvinick & Bylsma 2005). As this paper shall
review, the model builds directly on the idea of the
perception–action cycle, but adds to it the simple
assumption that the influence of perception on action is
mediated by internal representations that have their
own intrinsic dynamics. An important goal has been to
implement this basic idea in a form that can be
mapped, in a general way, onto neural circuitry.
According to the resulting framework, routine
This journal is q 2007 The Royal Society
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Figure 1. A hierarchical representation of the task of making tea. Adapted with permission from Humphreys & Forde (1998).
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sequential action arises from a massively parallel neural

system that maps from perceptual inputs to action

outputs via learned and distributed internal represen-

tations. It is assumed that this system is further

characterized by extensive recurrent connectivity,

which allows information about temporal or task

context to be preserved and updated over time.

The first objective of this article is to review this

computational proposal and the simulations and

empirical data supporting it. The second objective is

to relate this work to a set of empirical findings that

may, at the first glance, appear to challenge it. As

reviewed in what follows, a critical claim of the

proposed computational framework, which differ-

entiates it strongly from some competing accounts, is

that the representations underlying hierarchically

structured behaviour need not, and arguably cannot,

themselves assume a strictly hierarchical form, a claim

that has been emphasized by the use of a neural

network architecture that is not itself hierarchically

structured. In apparent contradiction to this stance, a

growing body of evidence from cognitive neuroscience

has led to the idea that there may be a link between the

organization of the cerebral cortex and the hierarchical

structure of action sequences, such that different levels

of task structure are represented at different levels

within a hierarchy of cortical areas. As reviewed further

below, this idea has been most systematically developed

by Fuster (1990, 1997, 2001, 2004) on the basis of

neurophysiological work, but it has also received

convergent support from neuroimaging work by

Koechlin et al. (2003), Courtney (2004) and others.

This article, after reviewing the basic computational

theory in its original formulation, presents new

simulations that demonstrate how the claims of the

theory about the role of hierarchy can be reconciled

with such neuroscientific data. The basic approach in

these simulations is to investigate the consequences of

introducing hierarchical structure into the original

processing architecture. In addition to allowing some

important points to be made concerning the compu-

tational basis of sequential action, this enterprise had

an additional and equally significant outcome, in that it
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yielded an insight into how hierarchical structure at the
level of cortical connectivity might give rise to regional
specialization in the representation of temporal or
task context.
2. A MODEL OF ROUTINE SEQUENTIAL
BEHAVIOUR
Botvinick and Plaut (2004, henceforth BP04) reported
a set of computer simulations articulating and validat-
ing a theory of naturalistic routine sequential action. As
noted above, the implementation took the form of a
recurrent neural network, and a primary question
addressed in the simulations was whether the model,
which did not assume an explicitly hierarchical
structure, could nonetheless learn to perform hier-
archically structured sequential tasks. An additional set
of questions related to errors in routine sequential
behaviour. In particular, it was asked whether the
model could account for key properties of everyday
slips of action, and for patterns of error seen in patients
with action disorganization syndrome (ADS), a type of
apraxia affecting performance in sequential routines
(Schwartz et al. 1998).

(a) Model architecture and task domain

The structure of the model is diagrammed in figure 2.
Like all connectionist-style neural network models, it is
composed of simple processing units, each with a scalar
activation value. These excite or inhibit one another
through adjustable, weighted connections. In the BP04
model, units are organized into three groups. A group
of input units serves to represent the perceptual
features of objects in the environment. These units
connect to an internal or ‘hidden’ group, which itself
connects to an output group whose units represent
simple actions (e.g. ‘pick-up’, ‘pour’ or ‘locate-spoon’).
In order to capture the fact that actions affect
perceptual inputs, the model communicates with a
simulated environment, which updates inputs to the
network contingent on selected actions.

A crucial feature of the model is that there are
reciprocal connections between each pair of units in its
internal layer. The presence of these ‘recurrent’



drink

cream

cream

pack

sugar
grounds

bowl

pack

pack

steep-tea

sugar

sugar

bowl

bowl

drink

Figure 3. Structure of the coffee and tea tasks used by
Botvinick & Plaut (2004). Sugar could be added by either of
the two means, and sugar and cream could be added in either
order. Each labelled segment corresponds to a sequence
containing between 5 and 11 individual actions. Adapted
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Figure 2. Architecture of the model used by Botvinick & Plaut
(2004). Arrows indicate all-to-all connections. The input
layer contained 39 input units, each coding for an object
descriptor. Multiple units were activated in this layer to
describe the currently viewed and held objects (e.g. ‘packet,’
‘paper’ and ‘torn’). The output layer contained 19 units, each
representing an action (e.g. ‘pour’ or ‘fixate-spoon’). The
hidden layer contained 50 units.
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connections means that activation can flow over circuits
within the network, allowing information to be pre-
served and transformed over multiple steps of proces-
sing. It also has important implications for the role of the
model’s internal units. Given their overall pattern of
connectivity, these units play two roles. First, they serve
as an intermediate stage in the stimulus–response
mapping performed on each processing step. Second,
because they carry all the information that will be
conducted over the network’s recurrent connections—
and thus all the information that will be carried over to
the next time-step—they are responsible for carrying the
model’s representation of temporal context.

A number of studies have demonstrated the ability of
recurrent networks to address aspects of human
behaviour in the domains of language (e.g. Elman
1990), implicit learning (e.g. Cleeremans 1993) and
memory (e.g. Botvinick & Plaut 2006). Our simulations
investigated whether similar computational principles
could be used to account for human behaviour in
everyday, goal-oriented tasks involving the manipu-
lation of objects. In order to facilitate comparison with
another recent computational model, discussed below
(Cooper & Shallice 2000), the task modelled was that of
making a cup of instant coffee. Our implementation of
the task is shown schematically in figure 3. It comprises
four subtasks, each containing between 5 and 11
actions: (i) adding coffee grounds, (ii) adding cream,
(iii) adding sugar (by one of two methods), and (iv)
drinking. For reasons that will become clear in later
discussion, the training corpus also contained a second
task, tea-making. The model was trained to perform
these tasks using a version of the back-propagation
learning algorithm (Williams & Zipser 1995). The
training was analogous to observing and attempting to
predict the sequence of actions of a skilled individual
repeatedly carrying out specific versions of each task.
Testing involved successively presenting the trained
model with perceptual input and using its generated
Phil. Trans. R. Soc. B (2007)
action to modify the environment (and, hence, the
model’s subsequent perceptual input).
(b) Behaviour of the model

As noted earlier, our simulations were designed to
address behavioural data from three domains:
(i) normal, error-free performance in hierarchically
structured tasks, (ii) everyday ‘slips of action’, and
(iii) action disorganization syndrome. In our
simulations of normal performance, we asked simply
whether the model could learn to perform the target
tasks, since some action researchers had expressed
doubt concerning the ability of recurrent networks to
deal with tasks that are hierarchically structured
(Houghton & Hartley 1995). Consistent with earlier
studies applying recurrent networks in hierarchical
domains, the model proved quite capable of learning
the target sequences and producing them autono-
mously following training. Our simulations of action
slips and ADS were based on the assumption that both
stem from disruptions to representations of temporal or
task context. In our model, as noted above, such
context information is carried by the hidden units.
With this in mind, context information was degraded
by randomly perturbing the activation values in the
hidden layer on each cycle of processing. When this was
done mildly, the model produced errors resembling
human slips of action. In line with empirical obser-
vations concerning slips (Norman 1981; Reason
1990), the model made errors at decision points,
behavioural ‘forks in the road’ where the actions just
completed bear associations with multiple lines of
subsequent behaviour. Also like typical human slips,
the model’s errors took the form of subtask sequences
performed correctly, but in the wrong context. The
model’s errors fell into the same category as human
slips: omissions, repetitions and lapses from one task
into another. With increasingly severe disruption to the
model’s context representations, the model’s behaviour
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Figure 4. Multidimensional scaling analysis of the internal
representations arising during performance of the sugarpack
subtask, either in the context of coffee-making (solid lines)
or tea-making (dotted lines). Adapted from Botvinick &
Plaut (2002).
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became gradually more fragmented, coming to
resemble the performance of ADS patients as charac-
terized in relevant empirical studies (e.g. Schwartz et al.
1998; Humphreys et al. 2000).

(c) Internal representations
In order to understand how the model works, and why
it makes the errors that it does, it is necessary to
consider how the model represents task context within
its internal or hidden layer. We now turn to a discussion
of this issue.

Whether the model is used to simulate normal
performance or errors, its behaviour is linked directly to
the patterns of activation over the units in its internal
layer. As noted above, these units play two roles. First,
because they lie between input and output layers, they
are responsible for facilitating the stimulus–response
mapping being performed on each time-step. Second,
because the internal units transmit information
from one time-step to the next, via their recurrent
connections, they also must serve to represent the
current behavioural context. On each time-step, the
information carried in this layer is integrated with
information about external inputs to determine the
context-appropriate action. Note that every unit in the
hidden layer participates in each context represen-
tation. Unlike some competing models of action
(described below) which use single units to represent
entire task contexts, the present model employs
distributed representations (Hinton et al. 1986);
information is represented by an entire population of
processing units, within which each unit participates in
representing a variety of contexts. In order to under-
stand the implications of the model’s way of represent-
ing context, a spatial metaphor may be adopted. The
model’s internal layer contains 50 units, each of which
carries an activation between zero and one. If these
activations are thought of as spatial coordinates, then
each pattern of activation (context representation) can
be thought of as specifying a point in a 50-dimensional
representational space. As the model steps through
an action sequence, the successive patterns in its
internal layer can be thought of as tracing out a
trajectory in this space. Although it is impossible to
visualize such trajectories in their original 50 dimen-
sions, one can gain a sense of them using the technique
of multidimensional scaling (MDS). This allows
trajectories in high-dimensional space to be rep-
resented in two dimensions, while preserving as
much information as possible about the original
pattern (Kruskal & Wish 1978). Perhaps the most
important aspect of the results yielded by MDS is that
they carry information about the similarities among
the model’s internal representations. Such information
is conveyed through the proximities of points within
the diagram. To a first approximation, points located
near to one another correspond to patterns of
activation that are similar, while those located distant
from one another correspond to more dissimilar
patterns of activation.

An example of the model’s internal representations,
visualized with MDS, is shown in figure 4. The plot
shows two trajectories, both representing the sequence
of internal states produced by the model as it stepped
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through the 11 actions of the sugar-adding subtask (the
solid trace corresponds to the patterns produced when
performing the subtask in the context of coffee-making,
the dotted trace when performing it during tea-
making). To be clear, this plot was created by recording
the 50-element hidden-layer activation vectors arising
during the relevant steps of processing, and entering all
22 of these vectors into a single MDS analysis.

The first thing to note is that the two trajectories are
similar in shape. This indicates that the series of internal
representations the model uses when adding sugar
to coffee are similar to those it uses when adding sugar
to tea, an arrangement that makes sense since
sugar-adding involves the same sequence of actions
regardless of the overall task context. Note, however,
that the two trajectories are not precisely identical. The
minor differences between the two reflect the difference
in overall task context; the model’s internal represen-
tations on each step differ slightly according to whether
it is coffee- or tea-making that is being performed. As
earlier studies of recurrent networks (e.g. Servan-
Schreiber et al. 1991) have expressed it, the network
‘shades’ its internal representations to reflect differences
in context. It is in this way that the model manages to
maintain important information about temporal con-
text, while at the same time dealing with immediate
stimulus–response mappings.
(d) Comparison with strict hierarchical models

The computational model of routine sequential
behaviour just described differs in subtle but import-
ant ways from most other accounts. The majority of
previous models take as foundational the observation
that routine sequential action displays multiple levels
of sequential structure (see figure 1). In response to
this, such models begin with the assumption that the
processing system underlying routine sequential
behaviour is itself strictly and constitutively hierarch-
ical in structure. Numerous influential models of
sequential action have shared this assumption,
both in the psychological literature (Estes 1972;
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Rumelhart & Norman 1982; Grossberg 1986a,b;

Norman & Shallice 1986; Houghton 1990) and in
the work on ethology (as reviewed by Tyrrell 1993;

Seth 2007). The most recent, and arguably the most

sophisticated, version of the hierarchical approach is
by Cooper and Shallice (Cooper & Shallice 2000,

2006; Cooper 2003, in press; Cooper et al. 2005).
Here, the processing system is composed of basic

elements, referred to as schema nodes, which are
arranged into an associative tree, with nodes repre-

senting simple actions making up the terminal leaves

of the tree, and nodes representing higher levels of
sequential structure (entire subtasks and tasks) at

corresponding levels above.
The BP04 model differs from this and other

hierarchical models in that it is not founded on the

assumption that the processing system underlying
routine sequential behaviour is strictly hierarchical.

Instead, the model begins with large, unstructured and
highly flexible representational space and dynamics,

which are shaped by experience with specific task
repertoires. Where distinctions between levels of

structure are needed for successful control, the model

is entirely capable of developing internal representations
that capture them, as illustrated by the MDS data in

figure 4. However, the model’s internal representations
are not constrained to be strictly hierarchical, and this

allows them to respond to two other pervasive features of

naturalistic human behaviour that pose problems for
strict hierarchical accounts.

The first of these features is context-sensitivity. It is
often the case that the way a subroutine is performed

depends on the larger task context in which it occurs
(Agre 1988). For example, the routine of adding sugar

to a beverage may be performed differently, involving

different amounts of sugar, depending on whether the
beverage is coffee or tea. In order to see why such

context-sensitivity raises a problem for strict hierarch-
ical accounts, consider how this sugar-adding example

would be implemented within the Cooper & Shallice

(2000) model. The following question inevitably arises:
should sugar-adding be represented by one schema

node or two? Using one node leaves it unclear how the
execution of this subtask is to vary with the higher-level

task context. The other option, introducing two
schema nodes, one for adding sugar to coffee and the

other for adding sugar to tea, ignores the fact that these

different versions of sugar-adding are likely to share a
great deal of structure.

This example raises the second relevant charac-
teristic of naturalistic sequential action, which is that

different tasks often overlap in their details. Consider

the interrelations among routines like spreading jam,
spreading peanut butter, spreading sauerkraut on a hot

dog, spreading icing on a cake, spreading wax on the
floor, using a squeegee on a window, raking the lawn

and so on. It seems likely that such routines are

represented in a fashion that acknowledges and
capitalizes upon their shared structure (Schank &

Abelson 1977). Given the complex ways in which
naturalistic tasks overlap, it is hard to see how a strictly

hierarchical representational regime, where entire tasks
and subtasks are represented in a discrete, unitary
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fashion, could satisfy this description (for further
discussion of this point, see Botvinick & Plaut 2002).

The characteristics of context-sensitivity and struc-
tural overlap mean that naturalistic behaviour is, in
fact, not strictly hierarchical, but might be better
described as quasi-hierarchical. Unlike strict hierarch-
ical accounts, the BP04 framework can accommodate
this kind of structure. The internal representations it
posits are not constrained to be strictly hierarchical and
thus retain sufficient flexibility to allow for context-
sensitivity and information-sharing between tasks (for
demonstrative simulations, see Botvinick & Plaut 2002,
2004, 2006a). The system’s representational flexibility
also allows it to avoid other common pitfalls of strict
hierarchical accounts, allowing it in principle to
concurrently represent multiple, interacting contextual
constraints (e.g. ‘close the door’ plus ‘do not wake the
baby’; see Tyrrell 1993) and to balance the general
need to inhibit completed actions against the
occasional need to repeat actions.

In addition to these theoretical considerations,
empirical evidence can be marshalled to support the
BP04 account. To begin with, there is an obvious
parallel between the massively recurrent connectivity
involved in the BP04 model and the feedback loops
connecting cerebral cortex with basal ganglia and
thalamus (Middleton & Strick 2000), loops that have
been proposed to play a critical role in guiding
sequential action (Houk & Wise 1995; Redgrave
et al. 1999; Tanji 2001). On a more specific level,
there is neuroscientific support for the assertion that
actions are represented in a context-dependent
fashion: Aldridge & Berridge (1998) observed in rats
that the set of basal ganglia neurons active during
specific grooming movements differed dramatically
depending on whether the relevant movement was
executed inside or outside the context of the animal’s
grooming sequence (see also Salinas 2004). Finally,
Botvinick & Bylsma (2005) tested and confirmed a
counter-intuitive prediction of the BP04 model
concerning the impact of momentary distraction on
slips of action, and presented arguments for why the
findings they obtained would be difficult to explain on
the basis of a strictly hierarchical account of routine
sequential behaviour.
3. TAKING ACCOUNT OF HIERARCHICAL
STRUCTURE IN CEREBRAL CORTEX
To recap, a central point demonstrated by the BP04
model is that despite the evidently hierarchical
structure of everyday sequential behaviour, the rep-
resentations underlying such behaviour need not be,
and indeed are unlikely to be, strictly hierarchical.
Instead, like the detailed structure of everyday
behaviour itself, those representations are more likely
to be quasi-hierarchical, capturing the distinctions
between separable levels of sequential structure, while
also allowing information to be shared across those
levels and between interrelated task sequences. Having
marshalled both computational observations and
empirical evidence in support of this proposal, we
now turn to address a set of findings that may appear, at
first glance, to contradict it.
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(a) Fuster’s hierarchy

Drawing on neuroanatomical data, Fuster (1990,

1997, 2001, 2004) has characterized the system of

cortical regions mapping from perceptual inputs to

motor outputs as forming a ladder-like structure, with

primary sensory and motor cortices at its base and

prefrontal cortex (PFC) at its apex (figure 5).

According to Fuster, this structural hierarchy also
contains a parallel functional hierarchy. Specifically, as

one rises through the levels from the periphery to the

PFC, successive levels play a smaller role in coding for

immediate perceptual inputs and motor outputs, and a

greater role in the representation of temporal context.

According to Fuster’s account, the PFC, lying at one

extreme of this continuum, plays a functional role

defined largely by its contribution to the ‘temporal

integration’ of behaviour (Fuster 2004).

Consistent with Fuster’s proposal, other researchers

have suggested that different levels of sequential

structure are represented at different levels of a cortical
hierarchy culminating in the PFC. This has been

proposed, for example, by Koechlin et al. (2003) on the

basis of neuroimaging findings, and a similar account

has also been put forth by Courtney (2004). Although

the PFC is often associated with non-routine action, it

is also believed to play a critical role in the coordination

of routine sequential behaviour (Sirigu et al. 1995;

Fuster 2001; Zalla et al. 2003), and Grafman (1995,

2002) has put forth an account of the representation of

routine sequential behaviours that specifically proposes

that different levels of task structure are represented at

different levels of the neocortical hierarchy.
Returning to Fuster’s version of this theory, it is

worth noting that it is, in some regards, quite well

aligned with the computational framework proposed by

BP04. Specifically, these two share the basic idea that

sequential behaviour arises from an elaborated percep-

tion–action cycle, within which a mediating role is

played by internal representations capable of maintain-

ing information about temporal or task context (see, in

particular, Fuster 1990, 2004). Nevertheless, the

emphasis on hierarchical structure in Fuster’s and

related accounts may appear to contradict the BP04

theory. It is true that the BP04 model was constructed
in a pointedly non-hierarchical fashion. However, it is
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important to separate this implementational choice,
which was made for the sake of simplicity and
theoretical clarity, from the fundamental assertions of
the account with regard to hierarchical structure. As
has been noted, these are: (i) that the mechanisms
underlying routine sequential action do not require that
the processing system itself assumes a hierarchical
form, and (ii) that the representations underlying
sequential action do not relate to one another in a strict
hierarchical fashion. Thus, in principle, there is no
reason for the basic mechanisms at work in the BP04
model not to operate within a system displaying
hierarchical structure, particularly if this structure
were present at a level far above that of individual
representational elements.

In order to substantiate this point, we implemented
a neural network model based on the BP04 framework,
but assuming a structure based on Fuster’s hierarchy,
and trained this on a task requiring the preservation of
temporal context information. The results of this
simulation study not only served to establish how the
BP04 model can be reconciled with Fuster’s and
related accounts, but also suggested how the functional
hierarchy Fuster described—and the special role of the
PFC within it—might arise through learning.

(b) Simulation 1: modelling Fuster’s hierarchy

In this simulation study, we constructed a recurrent
neural network model that was similar to the one
proposed by BP04, in that it mapped from perceptual
inputs to action outputs via recurrently connected
hidden units. However, unlike BP04, the model
incorporated a pattern of connectivity resembling the
ladder-like structure described by Fuster (1997). At the
base of the ladder was a group that received external
inputs representing environmental stimuli, and an
output group representing motor commands. Con-
nected to these were two internal unit groups,
occupying an intermediate position. And connected
to these was a final group of units, occupying the apex
of the hierarchy, a position analogous to that of PFC in
Fuster’s hierarchy.

As explained below, this network was trained on a
task that required both immediate input–output
mappings and maintenance of context information
over time. The question of interest was whether
learning would result in the different unit groups
serving different computational roles. Specifically, it
was asked whether the ‘prefrontal’ group at the apex of
the hierarchy would assume a special role in represent-
ing context information.

(i) Simulation methods
Network architecture
The model architecture is diagrammed in figure 6. The
input group contained 13 units, the output group 10
units and the remaining groups 15 units. Connections
between groups were all-to-all and bidirectional. Each
of the three internal groups was also internally
connected, again in an all-to-all manner. All units in
the network also received input from a bias unit with
tonic activation of one.

Units assumed activation values between zero and
one, based on their inputs. The net input of each unit
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was computed as

netjðtÞZ ð1KtÞnetjðtK1ÞCt
X

i

aiðtÞwij ; ð3:1Þ

where ai is the activation of unit i, wij is the weight of the
connection from unit i to unit j, and the time constant t
was set equal to 0.2. Unit activations were based on the
logistic function

ajðtÞZ
1

1CeKnetj ðtÞ
: ð3:2Þ

External inputs to the input group were modelled by
adding a value of either one or zero to the net input of
the receiving unit.

Task and representations
The task was chosen in order to allow a direct
assessment of the degree to which units in the model
coded for immediate inputs and outputs versus
temporal context information. Specifically, we trained
the model on the store-ignore-recall (SIR) task
described by O’Reilly & Munakata (2000a). This
involves presentation of an extended series of individual
Arabic numerals. If the numeral presented is shown in
black, the task is simply to read it aloud (‘ignore’ trials).
If the numeral is shown in red (‘store’ trials), it is not only
to be read aloud, but also to be held in memory until the
appearance—following a variable number of interven-
ing numerals—of a recall cue, in response to which the
stored number is to be reported (‘recall’ trials). In order
to simulate this task, the numerals zero to nine were
represented using individual input units. The three
remaining input units indicated the trial-type, with one
unit indicating a black ‘ignore’ numeral, one indicating a
red ‘store’ numeral and one representing the ‘recall’ cue.
The output units were identified with the verbal
responses ‘zero’ to ‘nine’. Stimulus sequences were
randomly generated, except for the constraints that each
recall trial was separated from the preceding store trial
by between one and four ignore trials, and each store
trial was separated from the preceding recall trial by
between zero and two ignore trials.

Training
Each trial lasted 25 time-steps. On each trial, an input
of one was applied to the input units representing the
appropriate numeral and the appropriate trial-type cue,
and target values were identified for both input and
output units (the model was trained not only to
produce the correct response, but also to send
activation to the input layer consistent with the present
input). For output units, targets were one for the
Phil. Trans. R. Soc. B (2007)
correct output and zero for all other units. Target values

for input units were one for the correct numeral and
cue units and zero otherwise, except on recall trials

where no targets were applied to the numeral units.
Activations at the beginning of each trial were simply

those resulting from the last cycle of processing on the
preceding trial. Prior to the first trial of training, all unit

activations were set to 0.5.
Weights were initialized to random values between

K0.6 and 0.6. Training was then conducted using
recurrent back-propagation through time, as detailed

in Williams & Zipser (1995), using sum-squared error
as the error metric. A target radius of 0.1 was imposed,

meaning that no error was incurred for activations

within 0.1 of the current target value. A grace period of
10 time-steps was used, i.e. no error was incurred for

the first two intervals after a change in input. Error
back-propagation covered the interval from the end of

each recall trial back to the end of the previous recall
trial. The learning rate parameter was set to 0.001.

Response accuracy on each trial was judged by
determining whether the target unit in the output

group was the most active unit at the end of the trial. In
initial simulations, training proceeded until the model

produced perfect performance for a series of 10
consecutive recall trials. This criterion was typically

reached by approximately 2 million training trials, and
this duration of training was used in testing the model.

Testing and analysis
Our interest was not so much in the model’s overt
performance, but rather in the representations under-

lying it. In particular, we wished to evaluate the degree
to which each group of units in the model was involved in

representing stored context information, as opposed to

representing immediate inputs and outputs. To this end,
we recorded the activation of each unit during

processing of a set of ignore trials occurring between
encode and recall trials. Twenty specific sequences were

tested, including S(0)/I(1)/I(x)� and S(x)/I(1)/
I(0)�, where S($) indicates a store trial, I($) an ignore

trial, x ranged from 0 to 9, and the asterisk indicates the
trial on which unit activations were recorded. Hidden

unit activations were recorded on the final time-step of
the relevant step. Based on the activations obtained,

we evaluated the degree to which each unit’s activity
varied depending on: (i) the identity of the current

‘ignore’ numeral, and (ii) the identity of the earlier
‘store’ numeral, by measuring its standard deviation

across the appropriate subset of trials (S(0)/I(1)/
I(x)� for the former case, S(x)/I(1)/I(0)� for the

latter). Both standard deviations were averaged across
units within each unit group, and the mean for the

second set of standard deviations was divided by the

mean for the first set. The resulting measure, which
we refer to as the coding ratio, provided an index of the

degree to which units were involved in storing context
information. The coding ratio was computed for each

unit group, across 10 training runs. The higher the
coding ratio, the more strongly the units in the

relevant group coded for context information (i.e.
the identity of stored items) relative to information

about immediate input–output mappings.
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(ii) Results
As shown in figure 7, the coding ratio was found to vary
rather widely across groups, growing progressively
larger with each step up in the architectural hierarchy.
The largest coding ratio was observed in the group of
units at the top of the hierarchy. Thus, the model
developed through learning a regional differentiation
of function like the one described by Fuster (1990,
1997, 2001, 2004), with processing structures at
higher levels of the hierarchy—and in particular at its
apex—coding preferentially for temporal context
information. This division of labour was apparent in
the behaviour of the model as well. When the units in
the apical group were lesioned (i.e. inactivated), the
model’s performance changed dramatically. Although
outputs remained correct on store and ignore trials,
response accuracy on recall trials fell to chance levels.
Lesioning the apex group also had a dramatic effect on
the coding ratio for the groups lower in the hierarchy.
As shown in figure 7, coding ratios in all of the
remaining groups fell. This change in behaviour and
internal representations indicates that the apex group,
analogous to the PFC in Fuster’s hierarchy, played an
important functional role in maintaining information
about temporal context and communicating it to lower
levels of the hierarchy.
(iii) Discussion
A central point asserted with the BP04 model was that
hierarchically structured behaviour need not require a
hierarchically structured processing system and that
certain aspects of human action can be better
accommodated by an account that does not assume
strict architectural hierarchy. However, as we have
discussed, there is mounting evidence for a relationship
between the hierarchical organization of the cerebral
cortex and the representation of levels of task structure,
with portions of cortex higher in the hierarchy
representing successively higher levels of task structure.
The present simulation provides an indication of how
the computational framework discussed by BP04 can
be reconciled with such neuroscientific evidence.

It is important to note that a hierarchical architecture
is not required for performance of the SIR task. As
shown by O’Reilly & Munakata (2000b), a non-
hierarchical recurrent network almost identical in form
to the BP04 model can learn to perform the task without
error. However, we have shown here that when a
hierarchical structure is present, a graded division of
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labour emerges, according to which unit groups higher

in the hierarchy take on a disproportionate role in
maintaining information about the temporal context.

The resulting mechanism is not the same as that

proposed in strict hierarchical models of sequential
action, since context information is represented to some

degree at all levels of the hierarchy. Instead, despite the
presence of a hierarchical structure, the functioning of

the network bears a closer relationship to the BP04
model. Indeed, considered as a group, the three upper

layers of the present model perform precisely the same

function as the hidden layer in the BP04 model.
Perhaps more important than what the model shows

about the relationship between the BP04 model and
hierarchical accounts is what it suggests about the

origins of regional specialization in the cerebral cortex.

Specifically, the network suggests a possible causal
relationship between cortical connectivity and the

regional division of labour increasingly thought to
support hierarchically structured behaviour. It is

important to emphasize, in this regard, that the division
of labour illustrated in figure 7 emerged quite

spontaneously as a result of learning. There was

nothing in the construction of the model that prevented
context information from being handled entirely at

lower levels of the hierarchy. The emergence of the
division of labour in the model appears to reflect

differing pressures on unit groups during learning, as a

function of their synaptic distance from the periphery.
The groups directly connected to the input and output

layers are immediately responsible for generating the
correct pattern of activation in those layers, and are

thus under pressure to strongly represent the current
inputs and outputs. With immediate input–output

mappings handled by lower-level groups, groups

further from the periphery are freed up to represent
context information. Indeed, it makes sense to

represent such information away from the periphery,
since there are many steps in the task during which

context information is irrelevant to response selection.

Despite its simplicity, this simulation reveals an
interesting possibility concerning the relationship

between the function of the PFC and its connectivity
with other parts of the brain. Fuster (1997) stressed, on

the one hand, the involvement of the PFC in
representing temporal context and, on the other, the

position of the PFC at the apex of a hierarchy of cortical

areas. Our simulation provides a motivation for the
hypothesis that these two aspects of PFC are causally

related: the connectivity of the PFC may itself provide
part of the explanation for why this brain region comes to

assume a role in representing temporal context.

To be sure, there are other distinctive characteristics
of the PFC that may contribute to its assumption of this

functional role. In particular, the PFC has been
proposed to have ion channel properties, recurrent

connectivity and a neuromodulatory environment

conferring on it a special capacity to store information
over time and in the face of distraction (Lisman et al.
1998; O’Reilly et al. 1999; Durstewitz et al. 2000;
O’Reilly & Frank 2006). The present simulation

introduces another possible explanation for the PFC’s
special role in context representation and temporal
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integration, not mutually exclusive with a contribution

from these other factors.

Given the important role that learning plays in our

theory, it must be asked to what extent the specific kind

of learning involved in our simulations might corre-

spond to learning in the brain. Our use of back-

propagation, in particular, raises issues, since certain

aspects of this learning algorithm have not yet been

linked to known biological mechanisms. It is important

to note that previous research (e.g. Zipser & Anderson

1988) has demonstrated that back-propagation can

give rise to patterns of activity closely resembling those

observed in actual neural systems. Indeed, this has

been repeatedly shown in studies addressing prefrontal

function (Zipser 1991; Zipser et al. 1993; Moody et al.
1998). Furthermore, there do exist biologically

plausible learning algorithms operating in a manner

very similar to back-propagation and which yield

comparable results (Xiaohui & Seung 2003). Never-

theless, back-propagation through time is essentially

the only currently available neural-network learning

algorithm that is capable of robustly learning to

preserve context information over time, and it is this

consideration that necessitated the use of back-

propagation in the present work. The question of how

this problem is solved in the brain is a topic of active

research (O’Reilly & Frank 2006; Hazy et al. 2006),

and as answers take shape it will be interesting to

investigate whether the relevant algorithms give rise to

the same relationship between hierarchical connectivity

and functional specialization that emerged within the

present simulations.

Of interest in this regard are convergent results

recently reported by Paine & Tani (2005). This work

employed a genetic algorithm to train a hierarchically

structured neural network on a task requiring

preservation of context information. Consistent with

the findings we obtained using back-propagation,

Paine & Tani (2005) found that the set of connection

weights that evolved in their simulations gave rise to a

division of labour across the levels of the network, with
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higher levels playing a more central role in represent-
ing context. The close resemblance between the
results obtained by Paine & Tani (2005), using a
genetic algorithm, and our own results, using direct
gradient-descent learning, suggests that the effect of
interest does not depend on idiosyncratic properties of
any specific training regime, but may instead show a
considerable generality.
(c) Simulation 2: application to naturalistic

action

For clarity, simulation 1 addressed a relatively simple
laboratory task, rather than the sort of naturalistic action
sequences considered by BP04. In order to show how
the results of simulation 1 might translate into the latter
context, we performed a second simulation, investi-
gating the effect of including a minimal architectural
hierarchy in the BP04 model. The procedure was, in
most regards, identical to that detailed in Botvinick &
Plaut (2004). The only change was that an additional
group of units was added to the original BP04 model, as
shown in figure 8a. This group connected only to the
original hidden layer and was thus at a greater synaptic
distance from the periphery (input and output layers)
than the latter. As in simulation 1, the question was
whether units further from the periphery, i.e. those in
this new layer, would assume a special role in
representing task context. In order to evaluate this, the
model was trained on the coffee and tea tasks, following
the procedure used by BP04. Unit activations were then
measured in each hidden layer during the performance
of the sugarpack subtask. Sensitivity to immediate
input–output mappings was measured in terms of the
change in each hidden layer’s pattern of activation
with successive steps in the subtask (figure 8b, top).
Sensitivity to task context was measured in terms of the
degree to which the pattern of activation on each step of
the subtask differed depending on the task context
(coffee or tea; figure 8b, bottom). As in simulation 1, the
unit group furthest from the periphery was found to
code preferentially for context information.
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4. SUMMARY AND CONCLUSION
A critical question pertaining to human action selection
is that of how actions are composed into sequences.
The answer to this question turns in large part on the
related problem of how temporal or task context is
represented. This article has reviewed recent work
proposing a computational account of naturalistic,
routine sequential action selection. According to this
account, implemented in the form of a recurrent neural
network, familiar everyday tasks are accomplished by a
system that maps from perceptual inputs to motor
outputs via internal representations that maintain and
integrate information concerning temporal or task
context. A distinctive aspect of this account, empha-
sized in the present paper, is that it does not adopt the
traditional assumption that the representations under-
lying sequential action, and the processing architecture
within which they adhere, are strictly and constitutively
hierarchical. This confers the advantage that the
resulting model can capture stratified sequential
structure, while at the same time supporting context-
sensitive behaviour and capitalizing on task overlap.
However, it also begs the question of how the model
relates to neuroscientific data indicating the presence of
hierarchical structure in the system of cortical areas
supporting routine sequential behaviour. In order to
clarify the relationship between the proposed compu-
tational framework and this empirical data, the original
neural network model was reimplemented so as to
incorporate a pattern of connectivity based on the
neuroanatomic hierarchy described by Fuster. When
the model was trained on a task that required it both to
accomplish immediate input–output mappings and to
maintain context information over time, it spon-
taneously developed a graded division of labour over
its internal unit-groups, with groups further from
periphery taking a larger role in context representation.
The simulation results indicated how the original
computational framework can be reconciled with the
presence of a hierarchical arrangement of cortical
regions, by showing how a regional division of labour
might coexist with the same sorts of graded, distributed
representations that defined the original computational
model. Perhaps more important was the finding that
this regional division of labour arose spontaneously as a
result of learning within a hierarchically structured
system. In view of this, the simulation results presented
here provide a possible account for how different levels
of temporal structure in behaviour may come to be
represented at different levels within the hierarchy of
cortical areas, and in particular how the PFC comes to
assume its distinctive role in the representation of
temporal or task context.

Given our initial assertion that such a spatial
division of labour is not computationally necessary
for the emergence of hierarchically structured
behaviour, the question arises whether there might
nonetheless be some advantage associated with it,
which might have favoured its evolution. One
possibility is that a hierarchical pattern of connectivity
may facilitate learning of tasks with multiple levels of
structure. Consistent with this, in their work using a
genetic algorithm, Paine & Tani (2005) found that
a hierarchically structured network learned to perform
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a multilevel task more efficiently than did a fully

connected (i.e. non-hierarchical) network. Another

possible advantage of a spatial division of labour

relates to the top-down control of behaviour. Many

theories of action selection assume that executive

systems (Norman & Shallice 1986; Miller & Cohen

2001) and/or motivational systems (Tyrrell 1993;
Joel & Weiner 1994; Redgrave et al. 1999; Haber

et al. 2000; Cooper & Shallice 2006) provide top-down

input to action-selection mechanisms. Logically speak-

ing, such input is likely to be more relevant to action

selection at relatively high levels of the task hierarchy,

and this is indeed where it is imposed in most theories.

To the extent that higher levels of the task hierarchy

are represented in a spatially segregated manner, this

may allow for more targeted input from executive and
motivational systems (for related comments, see

Cooper & Shallice 2006). Finally, a graded segregation

of context information from lower-level codes may

allow targeted input from neuromodulatory systems,

in particular the dopaminergic system, which, as noted

earlier, has been proposed to regulate the storage and

release of action-relevant context information.

The present work was supported by National Institute of
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