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The leaky competing accumulator (LCA) is a biologically inspired model of choice. It describes the
processes of leaky accumulation and competition observed in neuronal populations during choice
tasks and it accounts for reaction time distributions observed in psychophysical experiments. This
paper discusses recent analyses and extensions of the LCA model. First, it reviews the dynamics and
examines the conditions that make the model achieve optimal performance. Second, it shows that
nonlinearities of the type present in biological neurons improve performance when the number of
choice alternatives increases. Third, the model is extended to value-based choice, where it is shown
that nonlinearities in the value function explain risk aversion in risky choice and preference reversals
in choice between alternatives characterized across multiple dimensions.
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1. INTRODUCTION
Making choices is a ubiquitous and central element of

human and animal life, which has been studied

extensively in experimental psychology. Within the last

half-century, mathematical models of choice reaction

times have been proposed which assume that, during the

choice process, noisy evidence supporting the alterna-

tives is accumulated (Stone 1960; Laming 1968;

Vickers 1970; Ratcliff 1978). Within the last decade,

data from neurobiological experiments have shed

further light on the neural bases of such choice. For

example, it has been reported that while a monkey

decides which of two stimuli is presented, certain

neuronal populations gradually increase their firing

rate, thereby accumulating evidence supporting the

alternatives (Schall 2001; Shadlen & Newsome 2001;

Gold & Shadlen 2002). Recently, a series of neurocom-

putational models have offered an explanation of the

neural mechanism underlying both psychological

measures like reaction times and neurophysiological

data of choice. One such model is the leaky competing

accumulator (LCA; Usher & McClelland 2001), which

is sufficiently simple to allow a detailed mathematical

analysis. As we will discuss in the following sections, this

model can, for certain values of its parameters,

approximate the same computations carried out by a

series of mathematical models of choice (Vickers 1970;

Ratcliff 1978; Busemeyer & Townsend 1993; Shadlen &

Newsome 2001; Wang 2002).
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Since its original publication, the LCA model
(Usher & McClelland 2001) has been analysed
mathematically and extended in a number of
directions (Brown & Holmes 2001; Brown et al.
2005; McMillen & Holmes 2006; Bogacz et al.
2006). In particular, it has been investigated for
which values of parameters it achieves an optimal
performance. In this paper, we will use the term
‘optimal’ to describe the theoretically best possible
performance. This is important, because if ‘we expect
natural selection to produce rational behaviour’, as
discussed by Houston et al. (2007), then the optimal
values of parameters should be found in the neural
networks mediating choice processes. In some cases,
decision networks cannot achieve optimal performance
due to biological constraints; however, it is still of
interest to investigate which parameters give the best
performance within the constraints considered—we
use the term ‘optimized’ to refer to such performance.

It has been shown that, for choices between two
alternatives, the LCA model achieves optimal per-
formance for particular values of parameters when its
processing is linear (Bogacz et al. 2006) or remains in a
linear range (Brown et al. 2005; the precise meaning of
these conditions will be reviewed later). However, it is
known that information processing in biological
neurons is nonlinear and two questions remain open:
(i) is linear processing also optimal for choice between
multiple alternatives? and (ii) what are the parameters
of the nonlinear LCA model that optimize its
performance?

This paper has two aims. First, it reviews the
biological mechanisms assumed in the LCA model,
and reviews an analysis of the dynamics and per-
formance of the linear and nonlinear LCA models (§2).
Second, it presents new developed extensions related to
This journal is q 2007 The Royal Society
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the introduction of nonlinearities. In §3, we show that
nonlinearities (of the type present in biological
neurons) may improve performance in choice between
multiple alternatives. In §4, we discuss how to optimize
the performance of a nonlinear LCA model for two
alternatives. Finally, in §5, we show how nonlinearities
in the LCA model also explain counter-intuitive results
from choice experiments involving multiple goals or
stimulus dimensions.
2. REVIEW OF THE LEAKY COMPETING
ACCUMULATOR MODEL
In this section, we briefly review the experimental data
on neurophysiology of choice and models proposed to
describe them, focusing on the LCA model. We
examine the linear and nonlinear versions of this
model and analyse its dynamics and performance.

(a) Neurophysiology of choice

The neurophysiology of choice processes has been the
subject of a number of recent reviews (Schall 2001;
Sugrue et al. 2005). We start by describing a typical task
used to study perceptual choice, which makes use of
three important processes: representation of noisy
evidence, integration of evidence, and meeting a
decision criterion.

In a typical experiment used to study neural bases of
perceptual choice, animals are presented with a cloud of
moving dots on a computer screen (Britten et al. 1993).
On each trial, a proportion of the dots are moving
coherently in one direction, while the remaining dots are
moving randomly. The animal has to indicate the
direction of prevalent movement by making a saccade
in the corresponding direction. There are two versions of
this task. The first one is the free-response paradigm, in
which the participants are allowed to respond at any
moment of time. The second one is the interrogation (or
response signal) paradigm, in which the participants are
required to continuously observe the stimulus until a
particular signal (whose delay is controlled) is provided
that prompts an immediate response.

During the choice process, sensory areas (e.g.
medial temporal (MT) area involved in motion
processing) provide noisy evidence supporting the
alternatives, which is represented in the firing rates of
motion-sensitive neurons tuned to specific directions
(Britten et al. 1993; Schall 2001). Let us denote the
mean activity of the population providing evidence
supporting alternative i by Ii. The perceptual choice
problem may be formulated simply as finding which Ii
is the highest. However, this question is not trivial as
the activity levels of these input neurons are noisy
(Britten et al. 1993), and hence answering this question
requires sampling the inputs for a certain period.

It has been observed that in this task neurons in
certain cortical regions, including the lateral intrapar-
ietal (LIP) area and the frontal eye field gradually
increase their firing rates (Schall 2001; Shadlen &
Newsome 2001). Furthermore, because the easier the
task, the faster the rate of this increase (Shadlen &
Newsome 2001), it has been suggested that these
neurons integrate the evidence from sensory neurons
over time (Schall 2001; Shadlen & Newsome 2001).
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This integration averages out the noise present in
sensory neurons allowing the accuracy of the choice to
increase with time. Moreover, since (in the free-
response paradigm) the firing rate, just before the
saccade, does not differ between difficulty levels of
the task (Roitman & Shadlen 2002), it is believed that
the choice is made when activity of the neuronal
population representing one of the alternatives reaches
a decision threshold.

(b) Biologically inspired models of perceptual

choice

A number of computational models have been
proposed to describe the choice process outlined
previously, and their architectures are shown in figure 1
for the case of two alternatives (Usher & McClelland
2001; Wang 2002; Mazurek et al. 2003). All of these
models include two units (bottom circles in figure 1)
corresponding to neuronal populations providing noisy
evidence, and two accumulator units (denoted by y1

and y2 in figure 1) integrating the evidence. The models
differ in the way inhibition affects the integration
process: in the LCA model (figure 1a), the accumula-
tors inhibit each other; in the Mazurek et al. (2003)
model (figure 1b), the accumulators receive inhibition
from the other inputs; and in the Wang (2002) model
(figure 1c), the accumulators inhibit each other via a
population of inhibitory interneurons. It has been
shown that for certain values of their parameters, these
models become computationally equivalent, as they all
implement the same optimal algorithm for decision
between two alternatives (Bogacz et al. 2006). In this
paper, we thus focus on the LCA model and review its
optimality (analogous analysis of the other two models
is described in Bogacz et al. (2006)).

(c) Linear LCA model

Figure 1a shows the architecture of the LCA model for
the two alternative choice tasks (Usher & McClelland
2001). The accumulator units are modelled as leaky
integrators with activity levels denoted by y1 and y2.
Each accumulator unit integrates evidence from an
input unit with mean activity Ii and independent white
noise fluctuations, dWi, of amplitude ci (dWi denotes
independent Wiener processes). These units also
inhibit each other by means of a connection of weight
w. Hence, during the choice process, information is
accumulated according to the following equations
(Usher & McClelland 2001)

dy1ZðKky1Kwy2CI1ÞdtCc1dW1

dy2ZðKky2Kwy1CI2ÞdtCc2dW2

; y1ð0ÞZy2ð0ÞZ0:

(

ð2:1Þ

In the above equations, the term Kkyi denotes the
decay rate of the accumulators’ activity (i.e. the leak)
and Kwyi denotes the mutual inhibition. For simpli-
city, it is assumed that integration starts from y1(0)Z
y2(0)Z0 (cf. Bogacz et al. 2006).

The LCA model can be used to describe the two
paradigms outlined in §2a. In the free-response
paradigm, the model is assumed to make a response
as soon as either accumulator exceeds a preassigned
threshold, Z. The interrogation paradigm is modelled
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Figure 1. Architectures of the models of choice. Arrows denote
excitatory connections, lines with filled circles denote
inhibitory connections. (a) LCA model (Usher & McClelland
2001). (b) Mazurek et al. (2003) model. (c) Wang (2002)
model.
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by assuming that at the interrogation time the choice is
made in favour of the alternative with higher yi at the
moment when the choice is requested.

Since the goal of the choice process is to select the
alternative with highest mean input Ii , in the following
analyses and simulations we always set I1OI2. Hence, a
simulated choice is considered to be correct if the first
alternative is chosen; this will happen on the majority of
simulated trials. However, on some trials, due to noise,
another alternative may be chosen; such trials corre-
spond to incorrect responses. By simulating the model
multiple times, the expected error rate (ER) may be
estimated. In addition, in the free-response paradigm,
the average decision time (DT) from choice onset to
reaching the threshold can be computed.

The LCA model can be naturally extended to N
alternatives. In this case, the dynamics of each
accumulator i is described by the following equation
(Usher & McClelland 2001):

dyi Z KkyiKw
XN
jZ1
jsi

yj C Ii

0
BB@

1
CCAdtCcidWi ;

yið0ÞZ 0:

ð2:2Þ

When the decay and inhibition parameters are equal
to zero, the terms in equations (2.1) and (2.2)
describing leak and competition disappear, and the
linear LCA model reduces to another model known in
psychological literature as the race model (Vickers
1970, 1979), in which the accumulators integrate noisy
evidence independent of one another.

(d) Dynamics of the model

The review of the dynamics of the linear LCA model in
this subsection is based on the work by Bogacz et al.
(2006). In the case of two alternatives, the state of the
model at a given moment in time is described by the
values of y1 and y2, and may therefore be represented as
a point on a plane whose horizontal and vertical axes
correspond to y1 and y2; the evolution of activities of
the accumulator units during the choice process may be
visualized as a path in this plane. Representative paths
for three different parameter ranges in this plane are
shown in figure 2. In each case, the choice process
starts from y1Z0 and y2Z0, i.e. from the bottom left
corner of each panel. Initially, the activities of both
accumulators increase due to stimulus onset, which is
represented by a path going in an upper-right direction.
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But as the accumulators become more active, mutual
inhibition causes the activity of the ‘weaker’ accumu-
lator to decrease and the path moves towards the
threshold for the more strongly activated accumulator
(i.e. the correct choice).

To better understand the dynamics of the model,
figure 2 shows its vector fields. Each arrow shows the
average direction in which the state moves from the
point indicated by the arrow’s tail, and its length
corresponds to the speed of movement (i.e. rate of
change) in the absence of noise. Note that in all the
three panels of figure 2, there is a line (indicated by a
thick grey line) to which all states are attracted: the
arrows point towards this line from both sides. The
location along this line represents an important
variable: the difference in activity between the two
accumulators. As most of the choice-determining
dynamics occur along this line, it is helpful to make
use of new coordinates rotated clockwise by 458 with
respect to the y1 and y2 coordinates. These new
coordinates are shown in figure 2b: x1 is parallel to
the attracting line and describes the difference between
activities of the two accumulators, while x2 describes
the sum of their activities. The transformation from y to
x coordinates is given by (cf. Seung 2003)

x1 Z
y1K y2ffiffiffi

2
p ;

x2 Z
y1 Cy2ffiffiffi

2
p :

8>>><
>>>:

ð2:3Þ

In these new coordinates, equations (2.1) become
(Bogacz et al. 2006)

dx1 Z ðwKkÞx1 C
I1K I2ffiffiffi

2
p

� �
dtC

c1ffiffiffi
2

p dW1K
c2ffiffiffi
2

p dW2;

ð2:4Þ

dx2 Z ðKkKwÞx2 C
I1 C I2ffiffiffi

2
p

� �
dtC

c1ffiffiffi
2

p dW1 C
c2ffiffiffi
2

p dW2:

ð2:5Þ

Equations (2.4) and (2.5) are uncoupled, i.e. the rate of
change of each xi depends only on xi itself (this was not
the case for y1 and y2 in equation (2.1)). Hence, the
evolution of x1 and x2 may be analysed separately.

We first consider the dynamics in the x2 direction,
corresponding to the summed activity of the two
accumulators, which has the faster dynamics. As
noted previously, in figure 2a–c there is a line to
whose proximity the state is attracted, implying that x2

initially increases and then fluctuates around the value
corresponding to the position of the attracting line. The
magnitude of these fluctuations depends on the
inhibition and decay parameters: the larger the sum
of inhibition and decay, the smaller the fluctuation (i.e.
the closer the system stays to the attracting line).

Figure 2 also shows the dynamics of the system in
the direction of coordinate x1. This is slower than the
x2 dynamics and it corresponds to a motion along the
line. Its characteristics depend on the relative values of
inhibitory weight, w, and decay, k. When decay is larger
than inhibition, attractor dynamics also come into play,
as shown in figure 2a. The system is attracted towards
this point and fluctuates in its vicinity. In figure 2a, the
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Figure 2. Examples of the evolution of the LCA model, showing paths in the state space of the model. The horizontal axes denote
the activation of the first accumulator and the vertical axes denote the activation of the second accumulator. The paths show the
choice process from stimulus onset (where y1Zy2Z0) to reaching a threshold (thresholds are shown by dashed lines). The
model was simulated for the following parameters: I1Z4.41, I2Z3, cZ0.33, ZZ0.4. The sum of inhibition (w) and decay (k) is
kept constant in all panels, by setting kCwZ20, but the parameters themselves have different values in different panels: (a)
decayOinhibition; wZ7, kZ13; (b) decayZinhibition; wZ10, kZ10; (c) decay!inhibition; wZ13, kZ7. The simulations were
performed using the Euler method with time-step DtZ0.01. To simulate the Wiener processes, at every step of integration, each
of the variables y1 and y2 was increased by a random number from the normal distribution with mean 0 and variance c2Dt. The
arrows show the average direction of movement of the LCA model in the state space. The thick grey lines symbolize the
attracting lines; filled circle in (a) indicates the attractor; open circle in (c) indicates the unstable fixed point.
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threshold is reached when noise pushes the system
away from the attractor. When inhibition is larger than
decay, the x1 dynamic is characterized by repulsion
from the fixed point, as shown in figure 2c.

When inhibition equals decay, the term (wKk) x1 in
equation (2.4) disappears and, describing the evolution
along the attracting line, it can be written as

dx1 Z
I1ffiffiffi
2

p dtC
c1ffiffiffi
2

p dW1

� �
K

I2ffiffiffi
2

p dtC
c2ffiffiffi
2

p dW2

� �
:

ð2:6Þ

In the rest of the paper, we refer to the linear LCA
model with inhibition equal to decay as balanced. The
vector field for this case is shown in figure 2b. In this case,
according to equation (2.6), the value of x1 changes
according to the difference in evidence in support of two
alternatives, hence the value of x1 is equal to the
accumulated difference in evidence in support of the two
alternatives.

The three cases shown in figure 2 make different
predictions about the impact of temporal information
on choice in the interrogation paradigm. If inhibition is
larger than decay (figure 2c), and the repulsion is high,
the state is likely to remain on the same side of the fixed
point. This causes a primacy effect (Busemeyer &
Townsend 1993; Usher & McClelland 2001): the
inputs at the beginning of the trial determine to
which side of the fixed point the state of the network
moves and then, due to repulsion, late inputs before the
interrogation time have little effect on choice made.
Analogously, decay larger than inhibition produces a
recency effect: the inputs later in the trial have more
influence on the choice than inputs at the beginning
whose impact has decayed (Busemeyer & Townsend
1993; Usher & McClelland 2001). If the decay is equal
to inhibition, inputs during the whole trial (from the
stimulus onset to the interrogation signal) influence the
choice equally, resulting in a balanced choice (with
maximal detection accuracy; see below). Usher &
Phil. Trans. R. Soc. B (2007)
McClelland (2001) tested whether the effects

described previously are present in human decision-
makers by manipulating the time flow of input

favouring two alternatives, and reported significant
individual differences: some participants showed

primacy, others showed recency and some were
balanced and optimal in their choice.
(e) Performance of the linear LCA model

In this subsection, we review the parameters of the
model (w, k) that result in an optimal performance of

the linear LCA model in the free-response paradigm for

given parameters of the inputs (Ii , ci). We start with the
two alternatives in the free-response paradigm (Bogacz

et al. 2006), then we discuss multiple alternatives (see
also McMillen & Holmes 2006), and the interrogation

paradigm.
When both inhibition and decay are fairly strong

(figure 2b), the state evolves very closely to the

attracting line (as mentioned previously) reaching
the decision threshold very close to the intersection of

the decision threshold and attracting line (figure 2b).
Thus, in this case, the LCA model exceeds one of the

decision thresholds approximately when the variable x1

exceeds a positive value (corresponding to y1 exceeding

Z ) or decreases below a certain negative value

(corresponding to y2 exceeding Z ).
The above analysis shows that when the LCA model

is balanced, and both inhibition and decay are high, a
choice is made approximately when x1, representing

the accumulated difference between the evidence
supporting the two alternatives, exceeds a positive or

a negative threshold. This is the characteristic of a
mathematical choice model known as the diffusion

model (Stone 1960; Laming 1968; Ratcliff 1978),

which implements the optimal statistical test for choice
in the free-response paradigm: the sequential prob-

ability ratio test (SPRT; Barnard 1946; Wald 1947).
The SPRT is optimal in the following sense: among all



Table 1. Summary of conditions the linear LCA model must
satisfy to implement the optimal choice algorithms.

paradigm no. of the alternatives

NZ2 NO2
free response inhibitionZdecay

and both high
optimality not

attainable
interrogation
(response signal)

inhibitionZdecay inhibitionZdecay

1.5

1.0

0.5

0

f(
y)

–0.1 –0.5 0 0.5 1.0 1.5
y

threshold linear
piecewise linear
sigmoidal

Figure 3. Nonlinear input–output functions used in the LCA
model. Threshold linear: f ( y)Zy, for yR0 and f( y)Z0, for
y!0 (Usher & McClelland 2001). Piecewise linear: f( y)Z0,
for y!0, f( y)Z1, for yO1 and f( y)Zy otherwise (Brown
et al. 2005). Sigmoidal: f( y)Z1/(1CeK4( yK0.5)) (Brown &
Holmes 2001; Brown et al. 2005).
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possible procedures for solving this choice problem
giving certain ER, it minimizes the average DT.

In summary, when the linear LCA model of choice
between two alternatives is balanced and both inhi-
bition and decay are high, the model approximates the
optimal SPRTand makes the fastest decisions for fixed
ERs (Bogacz et al. 2006).

In the case of multiple alternatives, the performance
of the linear LCA model is also optimized when
inhibition is equal to decay and both have high values
(McMillen & Holmes 2006). However, in contrast to
the case of two alternatives, the LCA model with the
above parameters does not achieve as good per-
formance as the statistically (asymptotically) optimal
tests: the multiple SPRT (MSPRT; Dragalin et al.
1999). The MSPRT tests require much more complex
neuronal implementation than the LCA model
(McMillen & Holmes 2006). For example, one of the
MSPRT tests may be implemented by the ‘max versus
next’ procedure (McMillen & Holmes 2006), in which
the following quantities are calculated for each
alternative at each moment of time: LiZyiKmax jsi y j,
where yi is the evidence supporting alternative i
accumulated according to the race model. The choice
is made whenever any of the Li exceeds a threshold.

Although the linear and balanced LCA with high
inhibition and decay achieves shorter DT for fixed ER
than the linear LCA model with other values of
parameters (e.g. inhibition different from decay or
both equal to zero), it is slower than MSPRT
(McMillen & Holmes 2006). Furthermore, as the
number of alternatives (N) increases, the best achiev-
able DT for fixed ER of the linear balanced LCA model
approaches that of the race model (McMillen &
Holmes 2006).

In the interrogation paradigm, the LCA model
achieves optimal performance when it is balanced
both for two alternatives (it then implements the
Neyman–Pearson test; Neyman & Pearson 1933;
Bogacz et al. 2006) and for multiple alternatives
(McMillen & Holmes 2006). However, by contrast to
the free-response paradigm, in the interrogation
paradigm, the high value of decay and inhibition is
not necessary for optimal performance and the
balanced LCA model (even with high inhibition
and decay) achieves the same performance as the
race model.

Table 1 summarizes the conditions necessary for the
linear LCA model to implement the optimal algorithm
for a given type of choice problem. Note that the linear
LCA model can implement the algorithms achieving
best possible performance for all cases except choice
between multiple alternatives in the free-response
Phil. Trans. R. Soc. B (2007)
paradigm. Hence, this is the only case in which there
exists room for improvement of the LCA model—this
case is addressed in §3.
(f) Nonlinear LCA model

In the linear version of the LCA model described so far,
during the course of the choice process, the activity
levels of accumulators can achieve arbitrarily large or
small (including negative) values. However, the firing
rate of biological neurons cannot be negative and
cannot exceed a certain level (due to the refractory
period of biological neurons). A number of ways of
capturing these limits in the LCA model have been
proposed, starting with the original version (Usher &
McClelland 2001), where the values of y1 and y2 are
transformed through a nonlinear activation function
f( y) before they influence (inhibit) each other:

dyi Z KkyiKw
XN
jZ1
jsi

f ðyjÞC Ii

0
BB@

1
CCAdtCcidWi ;

yið0ÞZ 0:

ð2:7Þ

Figure 3 shows three functions f( y) proposed in the
literature: threshold linear (Usher & McClelland
2001), piecewise linear (Brown et al. 2005) and
sigmoidal (Brown & Holmes 2001; Brown et al.
2005). The threshold linear function corresponds to
the constraint that actual neural activity is bounded
(by zero) at its low end. The piecewise linear and
sigmoidal functions bound the activity levels of
accumulators at both ends (the maximum level of
activity being equal to one). In the free-response
paradigm, the threshold of the model with piecewise
linear activation function (Brown et al. 2005) must be
lower than one (as otherwise a choice would never be
made). Hence, in the free-response paradigm, the
nonlinear model with piecewise linear activation
function is equivalent to the model with the threshold
linear function (Usher & McClelland 2001; the upper
boundary cannot be reached); these models only differ
in the interrogation paradigm.

One way to simplify the analysis is to use linear
equation (2.2) (rather than equation (2.7)) and add
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Figure 4. State plane analysis of the LCA model. Thick grey
lines symbolize attracting lines in the y1 y2 plane. (a,b) The
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reflecting boundaries on yj at zero, preventing any of yj
from being negative (Usher & McClelland 2001); we
refer to such a model as bounded. At every step of the
simulation, the activity level of an accumulator yj is
being reset to zero if a negative value is obtained. The
bounded model behaves very similar to the nonlinear
models with threshold linear, piecewise linear and even
sigmoidal activation functions, and provides a good
approximation for them (see appendix A of Usher &
McClelland (2001) for a detailed comparison of the
bounded and nonlinear LCA models).
position of the attracting line is shown for parameters used in
simulations in figure 5a,b, respectively. Thus, the distance x�2
of the attracting line from the origin is equal to 0.26 and 0.12,
respectively (from equation (2.8)). The dashed lines indicate
the thresholds. The values of the threshold are shown that
produce ERZ10% in simulations of the unbounded (linear)
LCA model for NZ2 alternatives in figure 5a,b, respectively,
i.e. 0.25 and 0.17.
(g) Performance of the bounded LCA model

For two alternatives, the bounded model implements
the optimal choice algorithm, as long as decay is equal
to inhibition and both are large (see §2e) and the model
remains in the linear range (i.e. the levels of
accumulators never decrease to zero; cf. Brown et al.
2005). Since during the choice process the state of the
model moves rapidly towards the attracting line, the
levels of yj are likely to remain positive if the attracting
line crosses the decision thresholds before the axes as
shown in figure 4a (but not in figure 4b). The distance
of the attracting line from the origin of the plane is
equal to (Bogacz et al. 2006)

x�2 Z
I1 C I2ffiffiffi
2

p
ðkCwÞ

: ð2:8Þ

According to equation (2.8), the larger the sum of
mean inputs I1CI2, the further the attracting line is
from the origin. Figure 5 compares the performance of
bounded LCA models with linear LCA models without
boundaries, which we refer to as unbounded. Figure 4a
shows the position of the attracting line relative to
thresholds for the parameters used in the simulations of
the unbounded LCA model, for NZ2 alternatives, in
figure 5a. For NZ2, adding the reflecting boundaries
at yiZ0 does not affect the performance of the model
(the left end of the solid line coincides with the left end
of the dashed line). This can be expected since, for the
parameters used in the simulations, the attracting line
crosses the threshold before the axes, as shown in
figure 4a.

Figure 4b shows the position of the attracting line for
the parameters used in simulations of the unbounded
LCA model for NZ2 alternatives in figure 5b. For
NZ2, adding the reflecting boundaries at yiZ0
degrades the performance of the model (the left end
of the solid line lies above the left end of the dashed
line). This happens because the attracting line reaches
the axes before crossing the threshold, as shown in
figure 4b and hence the state is likely to hit the
boundaries before reaching the threshold.

McMillen & Holmes (2006) tested the performance
of the bounded LCA model for multiple alternatives,
for the following parameters: I1Z2, I2Z/ZINZ0,
c1Z/ZcNZ1 (all accumulators received noise of
equal standard deviation), wZkZ1 and N varying
from 2 to 16. They found that the DT of bounded
LCA for ERZ10% was slower than that of the
unbounded LCA model. However, it will be shown
here that this is not the case for more biologically
realistic types of inputs.
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3. THE ADVANTAGE OF NONLINEARITY IN
MULTIPLE CHOICE
Most real-life decisions involve the need to selectbetween
multiple alternatives, on the basis of partial evidence that
supports a small subset of them. One ubiquitous example
could correspond to a letter (or word) classification task,
based onoccluded (or partial) information. This is shown
in figure 6 for a visual stimulus that provides strong
evidence in favour of P/R and very weak evidence in
favour of any other letter (a simple analogue for the case
of word classification would consist of a word stem
consistent with few word completions). Note the need to
select among multiple alternatives, based on input that
supports only a few of them.

We compare the performance of the bounded and
unbounded LCA models in the tasks of type described
previously within the free-response paradigm: we will
discuss three cases (with regards to the type of evidence
and noise parameters), which may arise in such
situations. We start with a simplified case, which is
helpful for the purpose of mathematical analysis,
followed by two more complex cases that reflect
progressively more realistic situations.
(a) Case 1: only two accumulators receive input

and noise

Consider a model of N accumulators, yi (corre-
sponding to N alternatives), two of which receive
input (supporting evidence; with means I1, I2 and
standard deviation c), while other accumulators do not,
so that I3Z/ZINZc3Z/ZcNZ0. First, let us
examine the dynamics of the bounded LCA model
(with y1, y2R0). In this case, the other accumulators,
y3, ., yN, do not receive any input but only inhibition
from y1, y2 and hence they remain equal to zero (i.e.
yiZ0 for all iO2; figure 5c). Therefore, the choice
process simplifies to a model of two alternatives, as
described in equation (2.1). Hence, when the
boundaries are present, the performance of the model
does not depend on the total number of alternatives, N.
This is shown in figure 5a,b for sample parameters of
the model. Note that DTs for fixed ER in each panel
(shown by solid lines) do not differ significantly
between different values of N.



Figure 6. Example of a stimulus providing strong evidence in
favour of two letters (P and R) and very weak evidence in
favour of any other letter.
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Figure 5. Performance and dynamics of choice models with only two accumulators receiving inputs. All models were simulated
using the Euler method with DtZ0.01 s. (a,b) Decision time for a threshold resulting in an ER of 10% of different choice models
as a function of the number of alternatives N (shown on x -axis). Three models are shown: the race model, the unbounded (i.e.
linear) LCA model and the bounded LCA model (see key). The parameters of the LCA model are equal to wZkZ10. The
parameters of the first two inputs were chosen such that c1Zc2Z0.33, I1KI2Z1.41 (values estimated from data of a sample
participant of experiment 1 in the study of Bogacz et al. (2006)), while the other inputs were equal to 0, I3Z/ZINZ0, c3Z/Z
cNZ0. The panels differ in the total mean input to the first two accumulators: in (a) I2Z3, while in (b), I2Z1. For each set of
parameters, a threshold was found numerically that resulted in ER of 10%G0.2% (s.e.); this search for the threshold was
repeated 20 times. For each of these 20 thresholds, the DTwas then found by simulation and their average used to construct the
data points. (Standard error of the mean was lower than 2 ms for all data points hence the error bars are not shown.) (c,d )
Examples of the evolution of the bounded LCA model (c) and unbounded LCA model (d ), showing yi as functions of time. The
models were simulated for the same parameters as in (a), and for NZ5 alternatives; (c) and (d ) were simulated for the same
initial seed of the random number generator hence in both cases the networks received exactly the same inputs.
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Figure 7. State-space analysis of the LCA model for three
alternatives. The grey triangle indicates the attracting plane
and dotted lines indicate the intersection of the attracting
plane with the y1 y3 plane and the y2 y3 plane. The thick grey
line symbolizes the attracting line in the y1 y2 plane; the
double grey lines show sample positions of the attracting line
in the y1 y2 plane for two negative values of y3. The two planes
surrounded by dashed lines indicate positions of the decision
thresholds for alternatives 1 and 2. The ellipses indicate the
intersections of the attracting lines in the y1 y2 plane with the
decision thresholds.
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Figure 5c,d compares the evolution of bounded and
unbounded LCA models for NZ5 alternatives.
Figure 5c shows the evolution of the bounded LCA
model in which accumulators y1, y2 evolve in the way
typical of the LCA model for two alternatives (compare
with figure 2b): the competition between accumulators
y1, y2 is resolved and as y1 increases, y2 decreases
towards zero. Figure 5d shows that during the evolution
of the unbounded model, the accumulators y3, ., yN
become more and more negative. Hence, the inhibition
received by y1, y2 from y3, ., yN is actually positive, and
increases the value of y1, y2. Therefore, in figure 5d (in
contrast to figure 5c), the activation of the ‘losing’
accumulator, y2, also increases.

To better illustrate the difference between the
bounded and unbounded choice behaviours, consider
the dynamics of the unbounded model (equation (2.1))
forNZ3 alternatives. In such a case, the state is attracted
to a plane (figure 7; McMillen & Holmes 2006).
However, since only alternatives 1 and 2 can be chosen,
it is still useful to examine the dynamics in the y1y2 plane.
In the y1y2 plane, the state of the model is attracted to a
line and the position of this line is determined by the value
of y3. For example, if y3Z0, then the attracting line in the
y1y2 plane is the intersection of the attracting plane and
the y1y2 plane, i.e. the thick grey line in figure 7. For other
values of y3, the attracting line in the y1y2 plane is the
intersection of the attracting plane and the plane parallel
to the y1y2 plane intersecting the y3 axis at the current
value of y3. For example, the double grey lines in figure 7
show the attracting lines in the y1y2 plane for two negative
values of y3.

During the choice process of unbounded LCA of
equation (2.1), accumulator y3 becomes more and more
negative (as it receives more and more inhibition from y1
Phil. Trans. R. Soc. B (2007)
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and y2), as shown in figure 5d. Hence, the attracting line
in the y1y2 plane moves further and further away from
the origin of the y1y2 plane. For example, the thick grey
line in figure 7 shows the position of the attracting line in
the y1y2 plane at the beginning of the choice process and
the double grey lines show the positions at two later time
points. Therefore, the choice involves two processes:
evolution along the attracting line (the optimal process)
and evolution of this line’s position (which depends on
the total input integrated so far). Owing to the presence
of the second process, the performance of the
unbounded LCA model for NZ3 departs from that
for NZ2, which is visible in figure 5a,b. Also note in
figure 7 that as y3 becomes more and more negative, the
relative positions of the decision thresholds and the
attracting line change and the part of the attracting line
between the thresholds becomes shorter and shorter.
Hence, relative to the attractive line, the thresholds
move during the choice process. This situation is in
contrast to the case of the bounded LCA model, in
which y3 is constant (as stated above), and hence the
position of the attracting line in the y1y2 plane (and thus
its relation to the thresholds) does not change.

In summary, in the case of choice between multiple
alternatives with only two alternatives receiving
supporting evidence, the boundaries allow the LCA
model to achieve the performance of the LCA model
for two alternatives (close to the optimal performance).
The performance of the unbounded LCA model is
lower—approaching that of the race model as the
number of alternatives increases.

(b) Case 2: all accumulators receive equal noise

In the previous case, accumulators y3, ., yN did not
receive any input. This assumption is somewhat
unrealistic, as the input neurons have a spontaneous
variable firing rate even if the stimulus does not provide
any evidence (Britten et al. 1993). In the electronic
supplementary material, we extend the previous
analysis to the case where all the accumulators are
subject to the same level of noise, i.e. c1Z/ZcN; as in
the previous case we assume that only two accumula-
tors receive positive input, i.e. I3Z/ZINZ0. We show
that if I1 and I2 are sufficiently high, then the conclusion
from the previous case generalizes to this case, and the
bounded LCA model outperforms the unbounded
model. However, if I1 and I2 are lower, the performance
of the bounded LCA model decreases below that of the
unbounded model, but the performance of the
bounded LCA model can be improved by increasing
inhibition relative to decay.

(c) Case 3: biologically realistic input parameters

for choice with continuous variables

We assumed previously that only two integrators receive
input while the others received none: I3Z/ZINZ0.
However, in many situations, it might be expected that
there is a graded similarity among the different inputs,
with the strength of the input falling off as a continuous
function of similarity. This would be the case, for
example, in tasks where the stimuli were arranged along
a continuum, as they might be in a wavelength or length
discrimination task. Here, we consider the case of
stimuli arranged at N equally spaced positions around a
Phil. Trans. R. Soc. B (2007)
ring, an organization that is relevant to many tasks used
in psychophysical and physiological experiments, where
the ring may be defined in terms of positions,
orientations or directions of motion. We use the motion
case since it is well studied in the perceptual decision-
making literature but the analysis applies equally to
other such cases as well, and may be instructive for the
larger class of cases within which stimuli are positioned
at various points within a space.

Considering the motion discrimination case,
motion-sensitive neurons in area MT are thought to
provide evidence of the direction of stimulus motion.
Neurons providing evidence for alternative i respond
with a mean firing rate that is a function of the angular
distance, di , between the direction of coherent motion
in the stimulus and their preferred direction. This
function is called a tuning curve and can be well
approximated by a Gaussian distribution function
(Snowden et al. 1992)

Ii Z rmin C ðrmaxK rminÞexp K
d2
i

2s

� �
; ð3:1Þ

where rmin and rmax denote the minimum and the
maximum firing rates of the neuron, respectively, and s

describes the width of the tuning curve. In our
simulation, we use the parameter values given by
Snowden et al. (1992), as shown in figure 8a.

We made two other changes for the current
simulations. First, we assumed in the previous cases
that all the accumulators receive the same level of noise,
and furthermore that the noise magnitude is indepen-
dent of the input level. However, a number of studies
have shown that the variance in the neuronal firing rate
of visual neurons (including neurons in area MT
providing inputs in the motion discrimination task) is
approximately proportional to the mean firing rate (for
review, see Shadlen & Newsome (1998)). On the basis
of these studies, Shadlen & Newsome (1998) proposed
that a typical relationship between the mean and the
variance of the inputs is c2

i z1:5Ii, so here we test the
performance of the bounded and unbounded LCA
models for the levels of noise chosen in this way.

Second, in all simulations described so far, the input to
accumulator i at each time-step of numerical integration
IidtCcidWi was generated from the normal distribution
(figure 2) and hence could be negative. The neurons
providing input to the accumulators cannothave negative
firing rates, hence in the simulations described here, we
additionallymade the input equal to zero if it was negative
on a given integration step.

Figure 8b shows the DTs under the assumptions
described. The DT grows rapidly as N increases,
because as N grows, the difference between the largest
input (I1) and the next two largest inputs (I2 and IN)
decreases. Importantly, in the simulation, introduction
of boundaries to the LCA model reduce DT (for a fixed
ER of 10%) very significantly, as N increases. For
example, for NZ10, the boundaries reduce the DT by
approximately 25%. Figure 8b also shows that the
performance of the nonlinear LCA model of equation
(2.7) with sigmoid activation function closely approxi-
mates the performance of the bounded LCA (recall
from §2f that the sigmoid activation function, like the
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1:5Ii

p
(Shadlen & Newsome 1998). The following

scaled sigmoid function was used in the simulation of the nonlinear LCA model: f( y)Z10/(1Cexp(K4( y/10K0.5))).
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boundaries, prevents the activity levels of accumulators
from decreasing below zero).

Furthermore, figure 8b also shows that the
performance of the bounded LCA model, and of the
nonlinear LCA model with sigmoid activation func-
tion, is very close to that of the max-versus-next
procedure (that may implement an asymptotically
optimal test; see §2e). In summary, this simulation
shows that introduction of the biologically realistic
assumption that firing rate of accumulator neurons
cannot be negative, may not only improve the
performance of choice networks for biologically
realistic parameters of inputs, but it also allows the
LCA model to closely approximate the optimal
performance.
4. OPTIMIZATION OF PERFORMANCE OF
BOUNDED LEAKY COMPETING ACCUMULATOR
MODEL IN THE INTERROGATION PARADIGM
It is typically assumed that in the interrogation paradigm
the decision threshold is no longer used to render a
choice. Instead, the alternative with the highest activity
level is chosen when the interrogation signal appears
(Usher & McClelland 2001). However, a more complex
assumption regarding the process that terminates
decisions in the interrogation paradigm is also possible.
As suggested by Ratcliff (1988), a response criterion
may still be in place (as in the free-response paradigm)
and participants use this response criterion (again as in
the free-response paradigm) so that when the activation
reaches this criterion, they make a preliminary decision
(and stop integrating input). Accordingly, there are two
Phil. Trans. R. Soc. B (2007)
types of trials: (i) those that reach criterion (as

mentioned previously) and (ii) those that do not reach

criterion until the interrogation signal is received and

where the choice is determined by the unit with highest

activation. This is mathematically equivalent with

the introduction of absorbing upper boundaries on the

accumulator trajectories; once an accumulator hits the

upper boundary, it terminates the decision process, so

that the state of the model does not change from that

moment until the interrogation time (Ratcliff 1988;

Mazurek et al. 2003). Mazurek et al. (2003) point out

that the dynamics of the model with absorbing upper

boundaries is consistent with the observation that in

the motion discrimination task under the interrogation

paradigm, the time courses of average responses from

the population of LIP neurons stop increasing after a

certain period following the stimulus onset, and are

maintained until the interrogation time (Roitman &

Shadlen 2002).

In §2e, we showed that the unbounded LCA model

achieves optimal performance when the decay is equal

to inhibition. The following question then arises: does

the balance of decay and inhibition still optimize the

performance of the bounded LCA model in the

interrogation paradigm, when an absorbing upper

boundary is assumed (to account for pre-interrogation

decisions)? Figure 9 shows the ER of bounded LCA

model for NZ2 alternatives. To make the position of

the attracting line stable (cf. equation (2.8)), we fixed

parameters wCk but varied wKk. The results illustrate

that by decreasing inhibition relative to decay the

boundedmodel can achieve lowerERin the interrogation
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paradigm. This happens because in this case, there is an
attracting point to which the state of the model is
attracted, as shown in figure 2a, and this attraction
prevents the model from hitting the absorbing
boundary prematurely due to noise; thus, the biasing
effect of early input leading to premature choice is
minimized. In summary, in the interrogation paradigm,
in contrast to the unbounded model, a balance of decay
and inhibition does not optimize ER for the bounded
model. Instead, optimal performance within the tested
range of parameters is achieved when inhibition is
smaller than decay.
5. VALUE-BASED DECISIONS
The LCA model and its extensions discussed so far are
targeting an important, but special type of choice: the
type deployed in perceptual classification judgments. A
different type of choice, of no less importance to
humans and animals, is deciding between alternatives
on the basis of their match to a set of internal
motivations. Typically, this comes under the label of
decision making. While human decision making is a
mature field, where much data and many theories have
been accumulated (Kahneman & Tversky 2000), more
recently, neurophysiological studies of value-based
decisions have also been carried on behaving animals
(Platt & Glimcher 1999; Sugrue et al. 2004).

Although both the perceptual and the value/motiva-
tional decisions involve a common selection
mechanism, the basis on which this selection operates
differs. The aim of this section is to discuss the
underlying principles of value-based decisions and to
suggest ways in which a simple LCA-type of mechanism
can be used to explain the underlying cognitive
processes. We start with a brief review of these principles
and of some puzzling challenges they raise for an optimal
theory of choice, before we explore a computational
model that addresses the underlying processes.

(a) Value- and motivation-based choice

Unlike in perceptual choice, the decisions we consider
here cannot be settled on the basis of perceptual
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information alone. Rather, each alternative (typically
an action, such as purchasing a laptop from a set of
alternatives) needs to be evaluated in relation to its
potential consequences and its match to internal
motivations. Often this is a complex process, where
the preferences for the various alternatives are being
constructed as part of the decision process itself (Slovic
1995). In some situations, where the consequences are
obvious or explicitly described, the process can be
simplified. Consider, for example, a choice among
three laptops, which vary in their properties as
described on a number of dimensions (screen size,
price, etc.) or a choice between lotteries described in
terms of their potential win and corresponding risks.
The immediate challenge facing a choice in such
situations is the need to convert between the different
currencies associated with the various dimensions. The
concept of value is central to decision making, as a way
to provide such a universal internal currency.

Assuming the existence of a value function associ-
ated with each dimension, a simple normative rule of
decision making, the expected additive value, seems to
result. Accordingly, one should add the values that an
alternative has on each dimension and compute
expectation values when the consequences of the
alternatives are probabilistic. Such a rule is then
bound to generate a fixed and stable preference order
for the various alternatives. Behavioural research in
decision making indicates, however, that humans and
animals violate expected value prescriptions and
change their preferences between a set of options
depending on the way the options are described and a
set of contextual factors.

(b) Violations of expected value and preference

reversals

First, consider the pattern of risk aversion for gains.
Humans and animals prefer the less risky of the
two options that are equated for expected value
(Kahneman & Tversky 2000). For example, most
people prefer a sure gain of £100 to a lottery with a
0.5 probability of winning £200 and nothing other-
wise. An opposite pattern, risk seeking, is apparent for
losses: most people prefer to play a lottery with a 0.5
chance of losing £200 (and nothing otherwise) to a
sure loss of £100.

Second, the preference between alternatives
depends on a reference, which corresponds to either
the present state of the decision maker, or even an
expected state, which is subject to manipulation.
Consider, for example, the following situation
(figure 10a). When offered a choice between two job
alternatives A and B, described on two dimensions (e.g.
distance from home and salary), to replace a hypo-
thetical job that is being terminated (the reference, RA or
RB, which is manipulated between groups), partici-
pants prefer the option that is more similar to the
reference (Tversky & Kahneman 1991).

Third, it has been shown that the preference order
between two options can be modified by the introduc-
tion of a third option, even when this option is not
being chosen. Three such situations have been widely
discussed in the decision-making literature, resulting in
the similarity, the attraction and the compromise effects.
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To illustrate these effects, consider a set of options, A,
B, C and S, which are characterized by two attributes
(or dimensions) and located on a decision maker’s
indifference curve: the person is of equal preference on
a choice between any two of these options (figure 10b).
The similarity effect is the finding that the preference
between A and B can be modified in favour of B by
the introduction of a new option, S, similar to A in the
choice set. The attraction effect corresponds to the
finding that, when a new option similar to A and D, and
dominated by it (D is worse than A on both
dimensions) is introduced into the choice set, the
choice preference is modified in favour of A (the similar
option; note that while the similarity effects favours the
dissimilar option, the attraction effect favours the
similar one). Finally, the compromise effect corre-
sponds to the finding that, when a new option such as
B is introduced into the choice set of two options
A and C, the choice is now biased in favour of the
intermediate one, C, the compromise.

The traditional way in which the decision-making
literature addresses such deviations from the normative
(additive-expected-value) theory is via the introduction
of a set of disparate heuristics, each addressing some
other aspect of these deviations (LeBoef & Shafir
2005). One notable exception is the work by Tversky
and colleagues, who developed a mathematical,
context-dependent advantage model that accounts for
reference effects and preference reversal in multi-
dimensional choice (Tversky & Simonson 1993).
However, as observed by Roe et al. (2001), the
context-dependent advantage model cannot explain
the preference reversals in similarity effect situations
(interestingly, a much earlier model by Tversky (1972),
the elimination by aspects, accounts for the similarity
effect but not for the attraction, the compromise or
other reference effect). In turn, Roe et al. (2001) have
proposed a neurocomputational account of preference
reversal in multidimensional choice, termed the
decision field theory (DFT; see also Busemeyer &
Townsend 1993). More recently, Usher & McClelland
(2004) have proposed a neurocomputational account
of the same findings, using the LCA framework
extended to include some assumptions regarding
Phil. Trans. R. Soc. B (2007)
nonlinearities in value functions and reference effects
introduced by Tversky and colleagues. The DFT and
LCA models not only share many principles but also
differ on some. While DFT is a linear model (where
excitation by negated inhibition, of the type described
in §2, is allowed) and the degree of lateral inhibition
depends on the similarity between the alternatives, in
the LCA account the lateral inhibition is constant (not
similarity dependent) but we impose two types of
nonlinearity. The first type corresponds to a zero-
activation threshold (discussed in §3), while the
second one involves a convex utility–value function
(Kahneman & Tversky 2000).

It is beyond the scope of this paper to compare
detailed predictions of the two models (but see Usher &
McClelland 2004, and reply by Busemeyer et al. 2005).
We believe, however, that there is enough independent
motivation for nonlinearity and reference dependency
of the value functions. In the next subsection, we
discuss some principles underlying value evaluation
and, in the following one, we show how a simple LCA-
type model, taking these principles on board, can
address value-based decisions.

(c) Nonlinear utility functions and the Weber law

The need for a nonlinear relation between internal
utility and objective value was noticed by Bernoulli
([1738] 1954), almost two centuries ago. Bernoulli
proposed a logarithmic type of nonlinearity in the value
function in response to the so-called St Petersburg
paradox. (The paradox was first noticed by the casino
operators of St Petersburg. See, for example, Glimcher
(2004), pp. 188–192 and Martin (2004) for good
descriptions of the paradox and of Bernoulli’s
solution.) Owing to its simple logic and intuitive
appeal, we reiterate it here.

Consider the option of entering a game, where you are
allowed to repeatedly toss a fair coin until it comes up
‘heads’. If the head comes in the first toss you receive £2.
If the head comes in the second toss, you receive £4, if in
the third toss, £8 and so on (with each new toss needed to
obtain a head the value is doubled). The question is
what is the price that a person should be willing to pay
for playing this game. The puzzle is that although
the expected value of the game is infinite
ðEZ

P
iZ1;.;Nð1=2Þ

i2iZ
P

iZ1;.;N1ZNÞ, as the casino
operators in St Petersburg discovered, most people are
not willing to pay more than £4 for playing the game and
very few more than £25 (Hacking 1980). Most people
show risk aversion. (In this game, most often one wins
small amounts (75% win less than £5), but in a few cases
one can win a lot. Paying a large amount for playing the
game results in a high probability of making a loss and a
small probability for a high win. Hence, the low value that
people are willing to pay reflects risk aversion.)

Bernoulli’s assumption, that internal utility is
nonlinearly (with diminishing returns) related to
objective value, offers a solution to this paradox (the
utility of a twice larger value is less than twice the utility
of the original value) and has been included in the
dominant theory of risky choice, the prospect theory
(Tversky & Kahneman 1979). A logarithmic value
function u(x)Zlog(x), used as the expected utility,
gives a value of approximately £4 for the St Petersburg
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game. A more complex version of the game and

resulting paradox described in the electronic supple-

mentary material.

Note that the need to trade between the utility

associated with different objective values arises, not

only in risky choice between options associated with

monetary values but also in cases of multidimensional

choice (figure 10) where the options are characterized

by their value on two or more dimensions. Moreover, as

such values are examples of analogue magnitude

representations, one attractive idea is to assume that

their evaluation obeys a psychophysical principle which

applies to magnitude judgements, in general, the Weber

law. The Weber law states that to be able to

discriminate between two magnitudes (e.g. weights),

x and xCdx, the just noticeable difference, dx, is

proportional to x itself.

One simple way to simultaneously satisfy the Weber

law and the Bernoulli diminishing return intuition is to

assume that there are neural representations that

transform their input (which corresponds to objective

value) under a logarithmic type of nonlinearity and that

the output is subject to additional independent noise of

constant variance c2, as shown in the electronic

supplementary material.

As proposed by Bernoulli, a logarithmic nonlinear-

ity accounts simultaneously for risk aversion and the

Weber law. Here, we assume a logarithmic nonlinear-

ity of the type, u(x)Zlog(1Ckx), for xO0, and

u(x)ZKg log(1Kkx), for x!0 (xO0 corresponds to

gains and x!0 to losses; the constant of one in the

logarithm corresponds to a baseline of present value

before any gains or losses are received). (In prospect

theory (Tversky & Simonson 1993; Kahneman &

Tversky 2000), one chooses gO1, indicating a higher

slope for losses than for gains. This is also assumed by

Usher & McClelland (2004). Here, we use gZ1 in

order to explore the simplest set of assumptions that

can result in these reversals effects; increasing g

strengthens the effects.) As shown in figure 11a,

function u(x) starts linearly and then is subject to

diminishing returns, which is a good approximation to

neuronal input–output response function of neurons

at low to intermediate firing rates (Usher & Niebur

1996). While neuronal firing rates eventually saturate,

it is possible that a logarithmic dependency exists on a

wide range of gains and losses, with an adaptive

baseline and range (Tobler et al. 2005).
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There is a third rationale for a logarithmic utility
function, which relates to the need to combine utilities
across dimensions. When summing such a utility
function across multiple dimensions, one obtains
(for two dimensions), U(x 1, x2)Zu(x1)Cu(x2)Z
log[1Ck(x1Cx2)Ck2x1x2]. Note that to maximize this
utility function one has to maximize a combination of
linear and multiplicative terms. The inclusion of a
multiplicative term in the utility optimization is sup-
ported by a survival rationale: to survive, animals need to
ensure the joined (rather than separate) possession of
essential resources (like food and water). Figure 11b
shows a contour plot of this two-dimensional utility
function. One can observe that equal preference
curves are now curved in the x1Kx2 continuum: the
compromise (0.5, 0.5) has a much better utility than the
(1, 0) option.

Another component of the utility evaluation is its
reference dependence. Moreover, as discussed in §5b,
the reference depends on the subjective expectations
and on the information accessible to the decision maker
(Kahneman 2003). In §5d, the combination of non-
linear utility and reference dependence explains the
presence of contextual preference reversals. Finally,
when choice alternative are characterized over multiple
dimensions, we assume (following Tversky’s (1972)
elimination by aspects and the various DFTapplications;
Busemeyer & Townsend 1993; Roe et al. 2001) that
decision makers switch their attention, stochastically,
from dimension to dimension. Thus, at every time-step,
the evaluation is performed with regards to one of the
dimensions and the preference is integrated by the LCAs.
In §5d, these components of utility evaluations are
introduced into an LCA model and applied to the
value-based decision patterns described previously.
(d) Modelling value-based choice in the LCA

framework

To allow for the switching between the alternatives–
dimensions, the LCA simulations are done using a
discretized version of the LCA model of equation (2.2)
(single step of Euler method; note a threshold
nonlinearity at zero is imposed: only yiO0 are allowed)

yiðtCDtÞZyiðtÞCDt KkyiKw
XN
jZ1
js1

ðyjÞCIi

0
BBB@

CI0Cnoise

1
CCCA; ð5:1Þ

where Ii is evaluated according to the utility function
described previously and I0 is a constant input added to
all choice units, which is forcing a choice (in all
simulations reported here, this value is chosen as 0.6).
To account for the stochastic nature of human choice,
each integrator received the noise that was Gaussian
distributed (with s.d. 0.5). During all simulations, the
following parameters were chosen: DtZ0.05, kZwZ1
(balanced network). When a reference location is
explicitly provided (as in the situation shown in
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figure 10), the utility is computed relative to that
reference. When no explicit reference is given, a number
of possibilities for implicit reference are considered.

In all the simulations we present, the decision is
monitored (as in Roe et al. 2001; Usher & McClelland
2004) via an interrogation-like procedure. The
response units are allowed to accumulate their
preference evaluation for T time-steps. Five-hundred
trials of this type are simulated and the probability of
choosing an option as a function of time, Pi(t), is
computed by counting the fraction of trials in which the
corresponding unit has the highest activation (relative
to all other units) at time t. We start with a simple
demonstration of risk aversion in probabilistic monet-
ary choice and then we turn to preference reversals in
multidimensional choice.
(i) Risk aversion in probabilistic choice
We simulate here a choice between two options. The
first one corresponds to a ‘sure’ win, W, while the
second corresponds to a probabilistic win of W/p, with
probability p (note that the two have an equal expected
objective value, W, and that p provides a measure of
risk: lower p are more risky). The model assumes that
decision makers undergo a ‘mental simulation’ process,
in which the utility of the gain drives the value
accumulator, thus the sure unit receives a constant
input I0Cu(W ), while the probabilistic unit receives
probabilistic input, chosen to be I0Cu(W/p) with
probability p and I0 otherwise. In addition, a constant
noise input (s.d.Z0.5) is applied to both units at
all time-steps. Note that due to the shape of
utility function u, the average input to the sure unit
(I0Cu(W )) is larger than to the probabilistic unit
(I0Cu(W/p)p). In figure 12, we show the probability to
choose the sure option as a function of deliberation
time for five risk levels, p (small p corresponds to large
risk and p close to 1 to low risk). Thus, the higher the
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risk, the more probable the bias of choosing the sure
option (this bias starts at a value approximately
proportional to 1Kp and increases due to time
integration to an asymptotic value). This is consistent
with experimental data, except for low p where,
as explained by the prospect theory (Tversky &
Kahneman 1979), decision makers show an over-
estimative discrepancy between subjective and objec-
tive probability, which we do not address here (but see
Hertwig et al. 2004). In the electronic supplementary
material, the probability time-curve is approximated
analytically, and it is shown that it increases with the
square root of deliberation time until it saturates. Risk
seeking for losses can be simulated analogously.

(ii) Multidimensional choice: reference effects and preference
reversal
Three simulations are reported. In all of them, at each
time-step, one dimension is probabilistically chosen
(with pZ0.5) for evaluation. The preferences are then
accumulated across time and the choices for the various
options are reported as a function of deliberation time.

First, we examine how the choice between two
options, corresponding to A and B in figure 10a, is
affected by a change of the reference, RA versus RB.
The options are defined on two dimensions as follows:
AZ(0.2, 0.8), BZ(0.8, 0.2), RAZ(0.2, 0.6) and
RBZ(0.6, 0.2). Thus, for example, in simulations
with reference RA, when the first dimension is
considered the inputs IA and IB are I0Cu(0) and I0C
u(0.6) while, when the second dimension is considered,
the inputs are I0Cu(0.2) and I0Cu(K0.4) (this follows
from the fact that AKRAZ(0, 0.2) and BKRAZ(0.6,
K0.4)). We observe (figure 13a) that the RA reference
increases the probability to choose the similar A option
(top curve) and that the choice preference reverses with
the RB reference (the middle curve corresponds to a
neutral (0, 0) reference point). This happens because
with reference RA the average input to A is larger than
to B (as u(0)Cu(0.2)Zu(0.2)Ou(0.6)Ku(0.4)Z
u(0.6)Cu(K0.4)) and vice versa. (If I0Z0, the net
advantage in utility for the nearby option is partially
cancelled by an advantage for the distant option due to
the zero-activation boundary (negative inputs are
reflected by the boundary). The value of I0 did not
affect the other results (compromise or similarity).)

Second, we examine the compromise effect. The
options correspond to a choice situation with three
alternatives, A, B and C, differing on two dimensions as
shown in figure 10b. A and B are defined as before and
C is defined as (0.5, 0.5). We assume that when all
three choices are available the reference is neutral
(0, 0). We observe (figure 13b) that the compromise
alternative is preferred among the three. This is a direct
result of two-dimensional utility function (figure 11b).
For binary choice between A and C, we assume that the
reference point is moved to a point of neutrality
between A and C, such as RACZ(0.2, 0.5), which
corresponds to a new baseline relative to which the
options A and C can be easily evaluated as having only
gains and no losses (alternatively, one can assume that
each option serves as a reference for the evaluation of
the other ones; Usher & McClelland 2004). This
maintains an equal preference between C and the
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extremes in binary choice. Note also the dynamics of
the compromise effect. This takes time to develop; for
short times, the preference is larger for the extremes,
depending on the dimension evaluated first. Experi-
mental data indicate that, indeed, the magnitude of the
compromise effect increases with the deliberation time
(Dhar et al. 2000).

Third, we examine the similarity effect. In this
situation, the option SZ(0.2, 0.7) (similar to A) is
added to the choice set of A and B. The reference is
again neutral (0, 0). We observe that the dissimilar
option, B (figure 13c, solid curve), is preferred. This
effect is due to the correlation in the activation of the
similar alternatives (A and S ), which is caused by their
co-activation by the same dimensional evaluation.
When the supporting dimension is evaluated, both of
the similar options rise in activation and they split their
choices, while the dissimilar option peaks at different
times and has a relative advantage. Note also a small
compromise effect in this situation. Among the similar
options, S (which is a compromise) has a higher choice
probability. The attraction effect is similar to the
reference effect. One simple way to explain it is to
assume that the reference moves towards the
Phil. Trans. R. Soc. B (2007)
dominated option. (Alternatively, each option may
serve as reference for every other option; Tversky &
Simonson 1993; Usher & McClelland 2004.)

To summarize, we have shown that when the input
to LCA choice units is evaluated according to a
nonlinear utility function of the type proposed by
Bernoulli, which is applied to differences in value
between options and a referent, the model can account
for a number of choice patterns that ‘appear’ to violate
normativity. For example, the model provides a
plausible neural implementation and extension of
the prospect theory (Tversky & Kahneman 1979),
displaying risk aversion (it prefers the sure option to a
risky one of equal expected value) and a series of
preference reversals that are due to the effect of context
on the choice reference.
6. DISCUSSION
In this paper, we have reviewed the conditions under
which various versions of the LCA model (linear and
nonlinear) achieve optimal performance for different
experimental conditions (free-response and interrog-
ation). We have also shown how the LCA model can be
extended to value-based decisions to account for risk
aversion and contextual preference reversals.

We have shown that the linear LCA model can
implement the optimal choice algorithm for all tasks,
except the choice between multiple alternatives receiving
similar amount of supporting evidence in the free-
response paradigm. Moreover, we have shown that for
choices involving multiple alternatives in the free-
response paradigm, the nonlinearities of type present in
biological decision networks can improve the per-
formance, and in fact may allow the networks to closely
approximate the optimal choice algorithm. This raises an
intriguing possibility, that these nonlinearities are not just
a result of biological constraints, but may rather be a
result of evolutionary pressure for speed of decision.

We have also identified conditions (see §§3b and 4),
in which the performance can be optimized by an
elevation/decrease in the level of lateral inhibition
relative to the leak (this may be achieved via
neuromodulation; Usher & Davelaar 2002). It will be
interesting to test whether the behavioural mani-
festations of unbalance of decay and inhibition
(Usher & McClelland 2001) can be experimentally
observed under these conditions.

One interesting comment relates to Hick’s law,
according to which the DT is proportional to the
logarithm of the number of alternatives (Teichner &
Krebs 1974). In the simulations of the bounded LCA
model in figure 5a,b, the DT does not depend on the
number of potentially available alternatives. Note,
however, this simulation was designed to model the
task described in the beginning of §3 (figure 6) in
which the choice is mainly between two alternatives,
which match the ambiguous input (in this simulation,
only two accumulators receive any input or noise). If
all the accumulators received an equal level of noise
and the bounded LCA model remained in the linear
range, it would satisfy Hick’s law, because when the
bounded LCA model is in a linear range, it is
equivalent to the linear model, and the linear model
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satisfies Hick’s law when accumulators receive an
equal level of noise (McMillen & Holmes 2006).
However, it has recently been reported that in tasks
where one of the alternatives receives much more
support than all the others, Hick’s law is indeed
violated and the DT does not depend on the number
of alternatives (Kveraga et al. 2002). Thus, it would be
interesting to investigate the prediction of our theory
that a similar independence may occur when two
alternatives receive much larger input than the others.

It has recently been proposed that if the balanced LCA
model projects to a complex network with architecture
resembling that of the basal ganglia, the system as a whole
may implement the MSPRT (Bogacz & Gurney 2007)—
the optimal algorithm for this condition. The system
involving the basal ganglia may thus optimally make
choices between motor actions. However, many other
choices (e.g. perceptual or motivational) are likely to be
implemented in the cortex. The complexity of the
MSPRT algorithm prevents an obvious cortical
implementation; hence it is of great interest to investigate
the parameters optimizing the LCA model describing the
cortical processing.

The extension to value-based decisions brings the
model in closer contact with the topic of action
selection. Actions need to be selected according to the
value of their consequences, and this requires an
estimation of utility and its integration across dimen-
sions. The LCA model is also related to many models of
choice on the basis of noisy data presented in this issue of
Philosophical Transactions. In particular, it is very similar
to the model of action selection in the cerebral cortex of
Cisek (2007) which also includes accumulation of
evidence and competition between neuronal popu-
lations corresponding to different alternatives.

This work was supported by EPSRC grant EP/C514416/1.
We thank Andrew Lulham for reading the manuscript and
very useful comments. MATLAB codes for simulation and
finding DT of the LCA model are included in the electronic
supplementary material.
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