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Biologically constrained action selection improves
cognitive control in a model of the Stroop task
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The Stroop task is a paradigmatic psychological task for investigating stimulus conflict and the effect
this has on response selection. The model of Cohen et al. (Cohen et al. 1990 Psychol. Rev. 97, 332–
361) has hitherto provided the best account of performance in the Stroop task, but there remains
certain key data that it fails to match. We show that this failure is due to the mechanism used to
perform final response selection—one based on the diffusion model of choice behaviour (Ratcliff
1978 Psychol. Rev. 85, 59–108). We adapt the model to use a selection mechanism which is based on
the putative human locus of final response selection, the basal ganglia/thalamo-cortical complex
(Redgrave et al. 1999 Neuroscience 89, 1009–1023). This improves the match to the core human data
and, additionally, makes it possible for the model to accommodate, in a principled way, additional
mechanisms of cognitive control that enable better fits to the data. This work prompts a critique of
the diffusion model as a mechanism of response selection, and the features that any response
mechanism must possess to provide adaptive action selection. We conclude that the consideration of
biologically constrained solutions to the action selection problem is vital to the understanding and
improvement of cognitive models of response selection.
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1. INTRODUCTION
The Stroop task provides a thoroughly explored

experimental framework for investigating cognitive

aspects of selection. In this task, subjects have to

name the ink colour of word strings which can

themselves spell out the name of a colour. When the

ink colour and the word name contradict each other

response selection is slowed and is more prone to error

(compared to conditions where the word name is

neutral or complementary with respect to the ink

colour). This is ‘the Stroop effect’. A simple reversal of

the task, that of reading the word name and ignoring

the ink colour, does not produce an opposite effect (a

‘reverse Stroop’ effect).

The asymmetrical interaction of the colour- and

word-naming processes can be interpreted within an

automaticity framework (Posner & Snyder 1975;

MacLeod 1991). Here, word reading is an ‘automatic’,

or ‘overlearnt’, response which is triggered on stimulus

presentation and difficult to interrupt, and colour

naming is a controlled process which is not automatic

and is liable to interference from word reading.

Variations on the basic Stroop task have been successful

in clarifying the nature of automatic processing (Besner

et al. 1997; Besner & Stolz 1999; Dishon-Berkovits &

Algom 2000; Durgin 2000).
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Here, however, we wish to focus on the Stroop task as
defining a process of selection. The Stroop task has a long
history of use in the investigation of aspects of response
selection at a cognitive level (MacLeod 1991) and, more
recently, at the neural level (MacLeod & MacDonald
2000). In particular, while early processing of stimulus
information is clearly important to an understanding of
the Stroop task, the final response uttered on each trial is
subject to the constraints imposed by a response or
decision mechanism, which must translate internal
cognitive states into motor action.

Much progress has been made in investigating
decision mechanisms in simple two-alternative choice
tasks. Mathematical models of such simple decisions are
able to accurately predict the patterns of reaction times
(RTs) and errors across task variations, and there is a
considerable history in psychology of their development
and refinement (Luce 1986; Ratcliff & Smith 2004).
More recently, it has been possible to connect these
models with neurophysiological data (Ratcliff et al.
2003; Reddi et al. 2003) and with an information
theoretic foundation for optimal decision making
(Bogacz et al. 2007a,b). These developments promise
an exciting period of cross-fertilization between neuro-
biological and psychological perspectives on simple
decisions (Platt 2002; Smith & Ratcliff 2004; Opris &
Bruce 2005). The current work investigates how one
instance of this class of model serves selection in a model
of the more complex Stroop task.

An additional perspective on decision making is
supplied by workers in neuroscience, animal behaviour,
ethology and robotics who have defined, and explored
solutions to, the problem of action selection: the
resolution of conflicts between competing requests for
This journal is q 2007 The Royal Society
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behavioural expression through a final common motor
path (Redgrave et al. 1999).

The aim of the present work was to determine
whether a biologically plausible model of the putative
locus of action selection in humans (the basal ganglia)
could work as the response mechanism in a model of a
cognitive task (the Stroop task). Therefore, this is a first
step in making links between possible neural substrates
for action selection, neural correlates of decision
making and cognitive processes of selection.
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Figure 1. Architecture of the Cohen model.
2. MODELLING THE STROOP TASK
Ina seminal paper, Cohen et al. (1990) described a model
of processing in the Stroop task and variants.

This simple connectionist model (hereafter ‘The
Cohen model’) involves the translation of a localist
input representation into a response representation, via
a feedforward two-layer network trained with standard
backpropagation. The architecture is shown in figure 1.
The main features of this network are as follows:

(i) Differential training of the network: word inputs
are presented at ten times the frequency of
colour inputs during training. This results in a
stronger weighting of signals representing this
aspect of the stimulus.

(ii) Attentional sensitization: the network
implements attention as an additional input
which offsets a bias (in effect a default inhi-
bition) on all hidden units. This interacts with
the sigmoidal output function of the units so
that moderately sized colour- or word-input
signals do not result in a commensurate increase
in output, unless presented in combination with
attentional input. Signals in the word-proces-
sing pathway are, however, large enough to
partially overcome the default inhibition with-
out the aid of attentional input.

(iii) RTs are generated by the dynamics of a response
mechanism that works with evidence accumu-
lation: the two output units of the network are
taken to indicate, at each time-step, the evidence
favouring each response. This evidence is
compared and the difference accumulated,
until the total crosses a threshold, when a
response is said to have been made.

The current work focuses on the third element
above: the response mechanism and its role in
determining overall model behaviour.

The Cohen model matches the basic Stroop data very
well (figure 2). Not only does the model capture the
quantitative difference that word reading is faster than
colour naming, and unaffected by the word information,
but it also matches the asymmetry between the size of the
interference effect (the slowing of colour naming due to
contradictory word information) and the facilitation
effect (the speeding of colour naming due to compat-
ibility with the word information). All the simulations
presented, both of our model and our replication of
Cohen’s model, are shown run without added noise since
this does not affect the mean results.
Phil. Trans. R. Soc. B (2007)
In addition to matching the fundamental data, the
model gives an implementational definition of auto-
maticity: automaticity arises from greater strength of
processing. In a connectionist framework, this means
stronger weightings between stimulus and response
(as in the Cohen model), or additional connections
between modules involved in stimulus response
translation (as in other connectionist models of
Stroop processing, Phaf et al. 1990; Zhang et al.
1999). Either way, the implication is that there is no
sharp dichotomy between ‘automatic’ processes and
‘controlled’ processes, and, additionally, that other
quantitative differences, such as response time
differences, arise out of this single fundamental
mechanistic difference.

A plausible alternative theory of Stroop processing—
and of automatic processing in general—is that more
automatic processes are those in which pre-response
processing is faster. This theory suggests that Stroop
interference is due to the response evoked by the
(contradictory) word element of the stimulus arriving
at some response bottleneck earlier, creating slower
selection of the opposite (and correct) response when it
arrives there (we can posit that in a connectionist
network this would be reflected by faster transference
times between stimulus input and the model response
mechanism which arbitrates action selection). This
theory may be tested in so-called stimulus-onset
asynchrony (SOA) experiments. These involve the
two elements of the conventional Stroop stimulus, the
word and colour, being presented asynchronously. This
manipulation allows either element to appear before
the other and thus, it is assumed, to be given a
‘headstart’ in perceptual processing.

The experimental data are shown in figure 3a. By
convention SOAs which involve the to-be-ignored
element being presented first are labelled negative.
Clearly, no amount of headstart for colour infor-
mation (i.e. at negative SOAs) allows it to interfere
with word reading (Glaser & Glaser 1982), demon-
strating that the automaticity of word reading is not a
consequence of enhanced speed of processing. For
colour naming, the word element causes interference
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Figure 2. The fundamental pattern of RTs in the basic Stroop tasks. There are two tasks: word-naming (filled circles) and colour
naming (unfilled squares). Within each task, there are three possible conditions; in the congruent condition word and the colour
agree, in the conflict condition the word and the colour disagree, in the control condition the irrelevant element is neutral with
respect to the target. (a) Empirical data from Dunbar & MacLeod (1984) for which standard error bars are shown, and (b)
simulation data from replication of model of Cohen et al. (1990).
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Figure 3. Empirical data, (a), for the Stroop tasks with
stimulus-onset-asynchrony (adapted from Glaser & Glaser
1982). Simulation data: (b), replication of Cohen et al. (1990).
(c) Using the basal ganglia response mechanism. Negative
SOAs represent the irrelevant element of the stimulus
appearing before the target element, positive SOAs represent
the target element appearing before the irrelevant element.
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if it appears at any point before colour processing is

finished (up to 300 ms after the appearance of the

colour element—close to the asymptotic limit for

RTs). Additionally, the appearance of the word before

the colour always causes interference, however, long

the subject is given to accommodate to the presence

of the word. This and other results which contradict

the automaticity as speed-of-processing account

(Dunbar & MacLeod 1984), leave the automaticity

as strength-of-processing account more preferable

(this is not to say that strength-of-processing

accounts do not imply that automatic processes will

be faster than controlled processes—they do—rather

they merely assert that speed of processing is a

by-product of a more fundamental distinction

between the two types of processes rather than

being causative in itself ).

The original simulation data for the SOA manipu-

lation within the Cohen model are shown in figure 3b.
The Cohen model simulates the correct relative

ordering of the RTs in all conditions with respect to

the empirical data. Cohen et al. (1990) note some

discrepancy between their simulation and the model—

firstly, that in the simulations colour information does

interfere with word reading, albeit marginally, and that,

secondly, the influence of word information on colour

reading is not reduced but increases for SOAs before

K200 ms. These discrepancies would not contradict

the empirical data, and hence a strength of processing

account, if the size of these effects was limited to that

shown over the range originally tested by Cohen et al.
(1990). The size of the interference and facilitation

effects are not, however—as Cohen et al. (1990)

suggest—asymptotic with increasingly negative SOA

(as shown below, figure 4). Given this, it is of concern

that the primary model of the automaticity-based

account of Stroop processing, the Cohen model, is

not able to simulate the primary data which falsifies the

speed-of-processing account but, instead, produces a

pattern of RTs which would, if true, appear to validate

a speed-of-processing account.
Phil. Trans. R. Soc. B (2007)
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(a) Limitations of the Cohen model with

stimulus-onset asynchrony are failures

of response selection

Our replication of Cohen et al.’s (1990) model shows

that, beyond the range of data of SOA values they

originally present, the trends visible in the original data
continue so that the model behaves inconsistently with

the strength-of-processing account and consistently

with the experimentally disproved speed-of-processing
account of automaticity in the Stroop task (figure 4).

Consider the change in the simulated RTs as SOA

gets more negative—as the to-be-ignored element of
the stimulus appears increasingly before the to-be-

responded-to element. For the colour-naming task in

the conflict condition, the model RT increases as the
word element slows selection based on the colour.

Eventually, beyond K1300 ms, the word is presented
early enough to prompt a response on its own. This

response will be an incorrect one, since in the conflict

condition the word is opposite to the colour. RTs now
start to decrease with increasingly negative SOAs

because the RT is defined as the time between the

onset of the to-be-responded-to stimulus element and
the occurrence of selection. Hence, RT eventually falls

below zero because selection occurs before the onset of

the colour (this is highlighted in figure 4 by the point at
which the RT lines cross the dotted line representing

zero on the RT axis). If the word is congruent to the

colour information then there is comparable
interference, but this reveals itself as a speeding of the

correct response (which likewise falls below zero RT

beyond K1500 ms). Note that from here the time
between the onset of the irrelevant element and

selection is constant, so that beyond this point the

rate of the decrease in RT becomes a function of the
decrease in SOA, not of changes in model output.

For the same fundamental reasons, in the word-

naming task, the conflict and congruent conditions
diverge in the same way (albeit over a longer time span,
Phil. Trans. R. Soc. B (2007)
the point at which word-reading times fall below zero
SOA is not shown here). Thus, the model behaves in
accordance with the experimentally disproved speed-
of-processing account: presenting colour information
ahead of word information creates a reverse Stroop
effect—colour information interferes with word read-
ing. This is surprising, not least because the stated
purpose of the model was to validate a strength of
processing account.

Here, we trace this flaw to the response mechanism
used in the model. Cohen’s model of Stroop
processing explicitly draws on the choice behaviour
literature (Luce 1986) and adopts an exact analogue
of the diffusion model (Ratcliff 1978; Ratcliff & Smith
2004) to resolve the response selection problem
presented by the Stroop task. In the diffusion model,
the balance of evidence regarding the two possible
responses at each point in time is used to adjust a
running total. The momentary balance of evidence is
defined by the strength of evidence in favour of one
response minus the strength of evidence in favour of
the other. At each time-step, the change in the running
total is drawn from a normal distribution with a mean
defined by the balance of evidence (in this case, this is
the difference between the output units of the
connectionist front-end). When this total, which
reflects the accumulated evidence, crosses either a
positive threshold (indicating selection of one
response) or a negative threshold (indicating selection
of the other response) selection occurs. The diffusion
model has been shown to be an analytically tractable
form of several connectionist models of decision
making, and an optimal decision algorithm for a
two-choice decision situation (Bogacz et al. 2007a)
where either desired accuracy or time-to-decision is
specified (obviously these two mutually constrain each
other). Further, potential neurobiological correspon-
dences to the evidence accumulation processes of the
diffusion model have been identified (Gold & Shadlen
2000; Ratcliff et al. 2003; Reddi et al. 2003).

The diffusion model response mechanism takes the
outputs of the connectionist ‘front-end’ of the Cohen
model as inputs. Because the model, like all connec-
tionist models, works on graded signals, there is always
some input due to the to-be-ignored stimulus, even if
this is very small due to the attentional inhibition. In
the case of the colour-naming task, it is integral to the
model’s function that some influence of the word
element of the stimulus survives attentional selection
and comes to influence the response stage. Without this
feature, the basic effect of Stroop interference would
not be present. However, in SOA conditions, this
influence of the to-be-ignored element may accumulate
indefinitely. This affects selection time to an extent
proportional to the time it is presented multiplied by
the strength of evidence conveyed. Hence, arbitrarily
small amounts of evidence can provoke erroneous
selection if presented for long enough, or they can
massively slow correct selection (because accumulated
evidence for the opposite response must be overcome).

The fact that Cohen et al.’s (1990) model involves a
response mechanism is ignored in textbook treatments
of the model (Sharkey & Sharkey 1995; Ellis &
Humphreys 1999; O’Reilly & Munakata 2000) and
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even overlooked in Cohen et al.’s (1990) own analysis of
the function of the model. We argue that this reflects a
regrettable, but not untypical, neglect of the action
selection problem in psychology. Reinforcing this view,
we have recently shown how, contrary to the original
account of Cohen et al. (1990), it is the response
mechanism, not the neuronal transfer function, which
generates the important differences in RTs between
conditions (Stafford & Gurney 2004), and it is the
response mechanism which explains the asymmetry in
the magnitudes of the interference and facilitation
effects in the Cohen model (a matter about which there
has been some debate, MacLeod & MacDonald 2000).

In summary, our investigation of evidence accumu-
lation as a mechanism of selection in the Cohen model of
the Stroop task will have general implications for
theories of selection. The core element in this investi-
gation is to show how a more biologically realistic
response mechanism—a model of action selection in the
basal ganglia—overcomes the deficiencies noted here.
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Figure 5. Basal ganglia anatomy and functional architecture
(a) basal ganglia anatomy used as the basis for the model, (b)
new functional architecture for basal ganglia (Gurney et al.
2001a) used in the current work. See text for details.
3. THE BASAL GANGLIA AND THALAMIC
COMPLEX AS A RESPONSE MECHANISM
IN A COGNITIVE TASK
The basal ganglia are a set of subcortical nuclei that have
been implicated in a range of motor and cognitive
functions (Brown et al. 1997). Recently, we have
provided a unified account of basal ganglia function by
hypothesizing that they are a key element in resolving the
action selection problem by serving as a central ‘switch’
or arbiter between action requests (Redgrave et al.
1999). Anatomically, this is plausible because the basal
ganglia receive widespread input from all over the brain,
including many areas of the cortex (Parent & Hazrati
1993) and subcortex (McHaffie et al. 2005). Outputs
from the basal ganglia project back, directly or
indirectly, to their input targets, forming closed
anatomical loops (Alexander & Crutcher 1990;
McHaffie et al. 2005). For loops including cortex, this
occurs indirectly via thalamus. We focus, first, on those
aspects of our decision circuitry that make use of the
basal ganglia alone.

(a) The basal ganglia and action selection

Our model of the circuitry intrinsic to the basal
ganglia is drawn directly from our earlier work
(Gurney et al. 2001a). This, in turn, is based on the
known anatomy and physiology of the vertebrate basal
ganglia, shown in figure 5a and described detail in
several recent reviews (e.g. Mink 1996; Smith et al.
1998). The main input nuclei of the basal ganglia are
the striatum and the subthalamic nucleus (STN). The
STN is the only source of excitation within the basal
ganglia. In primates, the major output nuclei are the
internal segment of the globus pallidus (GPi), and
substantia nigra pars reticulata (SNr). These nuclei
provide extensively branched GABAergic efferents to
functionally related zones of the ventral thalamus
(which in turn projects back to the cerebral cortex),
the midbrain and hindbrain areas critical for move-
ment (e.g. Kha et al. 2001). The external segment of
the globus pallidus (GPe) is an internal source of
inhibition within the basal ganglia. Two separate
Phil. Trans. R. Soc. B (2007)
striatal populations have been identified (Gerfen &

Young 1988): (i) a population that contains the

neuropeptides substance P and dynorphin, and

preferentially expresses the D1 subtype of dopamine

receptors and (ii) a population that contains

enkephalin and preferentially expresses the D2

subtype of dopamine receptors. In most accounts of

basal ganglia anatomy, the D1-preferential population

is usually associated with projections to SNr and GPi

alone, while its D2 counterpart is associated with

projections to GPe (Gerfen et al. 1990).

The basic assumption underlying our model was

that the brain is processing, in parallel, a large number

of sensory, cognitive and motivational streams or

‘channels’, each of which may be requesting/promot-

ing different actions to be taken. For effective use of

limited motor resources, it is necessary to suppress the

majority of these requests while allowing the

expression of only a small number (in some cases
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just one). This channel-based scheme is consonant

with the view that the basal ganglia comprise a series
of afferent and efferent parallel processing streams or

loops (Alexander et al. 1986; Hoover & Strick 1993;
Middleton & Strick 2002). At the systems level, the

smallest neuronal population we needed to consider
was, therefore, the set of neurons responsible for a

single channel within each of the basal ganglia nuclei.
A further assumption was that, implicit in the

representation of each action, there is an encoding of
its salience or propensity to be selected for execution. In

our model, we assumed that channel salience had
already been extracted from phasic excitatory input by

processes in the basal ganglia input nuclei. The input to

the model, therefore, was simply the scalar-valued
salience of each channel. The basal ganglia output is

inhibitory and tonically active. Selection then occurs via
selective disinhibition of target structures (Chevalier &

Deniau 1990) which include (as well as thalamus)
premotor areas of the brainstem. Once inhibition has

been released in this way, the corresponding behaviour
is enacted. In summary then, large salience signal

inputs at striatum and STN select for low signal outputs
at the SNr/GPi.

We used the computational premise of selection to
guide our interpretation of basal ganglia anatomy in

functional terms. One architectural feature that may
be invoked in this respect is the diffuse excitation from

STN to its targets—GPe and SNr/GPi (Parent &
Hazrati 1993, 1995)—in combination with more

focused inhibition from striatum to the same nuclei.
This constitutes an off-centre, on-surround network

that can perform a selection function, as noted by
Mink & Thach (1993). However, it is not clear a priori
what function GPe serves in this scheme, since it is

not an output nucleus of the basal ganglia able to
implement selection directly. We resolved this

problem by observing that, while selection could be
performed in principle by the complex of striatum

(D1), STN and SNr/GPi alone, the relative levels of
excitation and inhibition required to achieve this

function were only obtained (and indeed guaranteed)
by the inhibition supplied by GPe. We therefore

hypothesized that the GPe acts within a control
pathway (comprising striatum (D2), STN and GPe)

as a source of control signals for the selection pathway
(striatum (D1), STN, SNr/GPi). The new functional

architecture described above (Gurney et al. 2001a) is
shown in figure 5b. Note that it is quite different from

the prevailing ‘direct/indirect’ pathway scheme of
Albin et al. (1989), and hypothesizes a different role

for GPe from that posited by Frank et al. (2007) and
Hazy et al. (2007).

The resulting model (Gurney et al. 2001b) was able

to successfully select and switch between channels
based on their input salience. In addition, the model

allowed dopaminergic modulation of basal ganglia
function in ways compatible with disorders of

dopamine function (e.g. Parkinson’s disease). While,
the role of dopamine is not discussed here, we note

that the model is rich enough, in principle, to account
for data derived from studies with relevant clinical

populations.
Phil. Trans. R. Soc. B (2007)
(b) Including the thalamic complex

As noted above, the basal ganglia sit in a wider

anatomical context comprising closed loops of cor-

tex–basal ganglia–thalamus–cortex. In previous work,

we modelled such loops by embedding the basal ganglia

model (described above) into a loop incorporating motor

and somatosensory cortex (Humphries & Gurney

2002). In that instance, there are well-understood

anatomical relations between these cortical areas, basal

ganglia and specific nuclei within thalamus. In the

current work, the specific areas of cortex associated

with word reading and colour processing are not well

understood. We therefore adopt a simplified version of

the model in Humphries & Gurney (2002) by using

only a single cortical area (figure 6).

Further, whereas in the somatosensory/motor loop

the thalamic nucleus is identified as the ventrolateral

thalamus (Price 1995), here it is left non-specific and

labelled ‘thalamus’ in figure 6. A component common

to both the original and simplified scheme is the

thalamic reticular nucleus (TRN) which sends diffuse

inhibition to thalamus. The extended thalamo-cortical

model retains the channel-based scheme of the basal

ganglia model and reciprocal connections between

thalamus and TRN imply the latter acts as a distal

lateral inhibition mechanism for the former. Input to

the model comes from other cortical areas and

constitutes an initial representation of salience.

The original somatosensory/motor loop model dis-

plays enhanced selection capabilities in several respects

when compared with the model of the basal ganglia

alone (Humphries & Gurney 2002). Further, using

these models in robot controllers has shown that their

selection behaviour is of sufficient efficiency and

sophistication to be behaviourally adequate in realistic

environments (Girard et al. 2003; Prescott et al. 2006).

Details of these models are to be found in Gurney et al.
(2001a) and Humphries & Gurney (2002) and also in

the annotated code which is provided in the accom-

panying electronic supplementary material.
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(c) Combining the Cohen model with the basal

ganglia response mechanism

It is natural to ask if the extended thalamo-cortical-
basal ganglia model, viewed as a decision mechanism,
can perform appropriate selection in a cognitive task.
The model was developed with a view to accounting for
action selection in the domain of systems neuroscience
with no intention, originally, of being used to generate
RT data. Further, the model’s ability to account for
such data would therefore serve to validate it, and open
up possibilities for investigating biologically plausible
response mechanisms in the study of cognition.

The rationales for the connectionist Cohen model
and our systems neuroscience model are quite
different. The Cohen model is a minimal connectionist
model designed to test a high-level hypothesis about
automatic and controlled processing. On the other
hand, our basal ganglia models are biologically
constrained, respecting the known anatomy of the
target circuits, and were designed to test the hypothesis
that those specific circuits could support action
selection. Further, whereas learning is a key com-
ponent of the Cohen model, it does not figure in our
models of basal ganglia and thalamus.

There are, however, sufficient points of contact
between the two models to allow them to be joined in a
unified scheme. Thus, the model in figure 6 is built out
of standard leaky integrator neurons (Arbib 1995)—
a feature that it shares with the Cohen model—so that
they both use a common signal representation denoting
neuronal population responses.

The reaction-time behaviour of the model is read
from the output units of basal ganglia. Recall that these
represent neuron populations providing tonic (continu-
ous background) inhibition to motor targets, and that
selection occurs on those channels whose inhibitory
output is sufficiently reduced. RT is then interpreted as
the time to selection, which is the time from stimulus
onset to reduction of basal ganglia output on the
selected channel to some threshold value. Moreover,
we suppose that this selection threshold may be greater
than zero. Although a zero output would demonstrate
unequivocal selection, it is unrealistic to suppose that a
population of neurons have to be held in a completely
silent state for a behaviourally meaningful period of
time to allow selection.

Given these observations, a combined model was
constructed using the connectionist ‘front-end’ of the
Cohen model (figure 7). This performed initial
stimulus processing to provide initial salience input to
the thalamo-cortical-basal ganglia model which con-
stituted the response mechanism. The latter uses two
channels mimicking the possible outcomes in the
Stroop task.

The neural network component of Cohen et al.’s
(1990) model performs what is normally thought of as
the cognitive elements of the task: stimulus–response
translation, attentional control and learning. Only one
minor change is required to this ‘front-end’ to make it
compatible with the basal ganglia model response
mechanism. The output units of the original Cohen
model have resting values of 0.5, the midpoint of their
output range which lies in the interval [0, 1]. This is
inconsistent with our new interpretation of these
Phil. Trans. R. Soc. B (2007)
signals as salience values, since it indicates that all
possible responses have moderately strong saliences at
rest. In the combined model, the resting values of the
front-end are set to 0.1, indicating a weakly salient
input to the basal ganglia (small changes in weight
initialization are also required as a consequence of this
manipulation; for details see Stafford 2003).

In all other respects, the combined model is exactly as
published by Cohen et al. (1990), except with the basal
ganglia model replacing evidence accumulation as the
method of final response selection. The basal ganglia
thalamo-cortical model used is exactly as published
elsewhere (Gurney et al. 2001b; Humphries &
Gurney 2002).

(d) Simulations I: matching basic empirical data

The combined model successfully replicates the basic
(colour naming) Stroop task and the word-reading
variation (figure 8). This shows that the model is
capable of performing basic selection in a cognitive task
and producing realistic RT values.

The ability to realistically model learning phenom-
ena is a key benefit of connectionist models. The
combined model mimics the power-law function of
learning (figure 9), just as the original Cohen model



1000
simulated reaction time
regression line

pr
oc

es
si

ng
 ti

m
e 

—
 a

sy
m

pt
ot

e

100

10

1

0.1
10 100 1000

training epochs
10 000 100 000

Figure 9. The model conforms to the power law of practice
(Logan 1988). Both axes use a log scale. Simulation results
are shown as dots. The simple regression for the data is shown
as a straight line and follows the form log(processing time)Z
2.65K0.46!log(Epochs). R2Z0.948.

1000

(a)

900

800

re
ac

tio
n 

tim
e 

(m
s)

control
conflict

congruent

700

600

500

condition

400

(b)

control
conflict

congruent

condition

colour naming
word reading

Figure 8. Comparing (a) empirical and (b) simulation RTs when using the basal ganglia model as the response mechanism for
the basic Stroop. Empirical data is adapted from Dunbar & MacLeod (1984), for which standard error bars are shown.

700

650

600

550

re
ac

tio
n 

tim
e 

(m
s)

500

450

400

350
–2000 –1500 –1000

SOA (ms)

–500 0 500

colour naming
conflict
control
congruent

control
conflict
congruent

word reading

Figure 10. Simulation SOA data at an extended range when
using the basal ganglia model as the response mechanism.

1678 T. Stafford & K. N. Gurney Modelling selection in the Stroop task
does (note that no learning takes place in the response

mechanism component in either model). This demon-

strates that the learning dynamic captured by the

connectionist front-end is not interfered with by the use

of the basal ganglia response mechanism; graded

changes in the signals from the front-end are converted

into appropriately graded changes in RTs.

The SOA task reveals that using the basal ganglia

as a response mechanism provides a superior fit to the

data than when using the original response

mechanism (figure 3c). Within the original range of

the SOA values, the simulation data more closely

matches the empirical data. Running the model at

extended SOA values (figure 10) confirms that RTs

using the basal ganglia response mechanism are

stable. At negative SOAs, the salience output caused

by the to-be-ignored element of the stimulus is not

sufficient to cause selection. Thus, using the basal

ganglia response mechanism, the model makes the

correct selection at all SOA values. In addition, the

amount of interference and facilitation it causes is

limited. This is reflected in the stabilization of RTs at

SOAs below K400 ms.
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(e) Simulations II: dynamic attentional

inhibition

Providing the model with stability under SOA

conditions makes possible further model manipula-

tions which bring the model up to date, in a

principled way, with developments in our under-

standing of automatic processing and cognitive

control. It has been suggested that selection in

the Stroop task is dynamically controlled by a

process that monitors for conflicts (located in the

anterior cingulate cortex) and increases attentional

control in response (Botvinick et al. 2001, 2004).

Two additional simulations presented here demon-

strate that using the basal ganglia model as the

response mechanism allows the use of dynamic-

attentional modulation to enhance the match to the

empirical data.

Here, we neither propose an account of conflict

monitoring nor tie it to any specific anatomical

location. Instead, we implement solely the essential

feature that the appearance of the to-be-ignored
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element provokes, after some delay, an increase in

the attentional inhibition acting on it. The length of

the delay used here is 100 ms which accords well

with the time-scale of phenomena such as negative

priming, (see May et al. 1995, for a review) and

neurophysiological recordings of activity suppression

due to attentional processes (Chelazzi et al. 1998).

See Usher & McClelland (2001) for a discussion of

the time-course of activity during choice selection.

The implementation of attentional modulation in

our model is achieved in the following way. After

100 ms (simulated), the inhibition on the relevant

hidden units of the Cohen model is increased in

magnitude from the default value of K4 to K4.9, the

value used by Cohen et al. (1990) in their simulations of

the SOA task (at all values of the SOA). Thus dynamic

attentional modulation is a modification of the

mechanism that already exists in the model for

implementing attentional selection, using parameters

that have already been established. The parameteriza-

tion of the attentional modulation could have been

finessed, but we sought to test the validity of the idea

without such ad hoc modifications.

Figure 11 shows the simulation results for the model

with this dynamic attentional modulation. RTs in the

colour-naming conflict condition now peak around the

0 ms SOA point, and flatten-off at a lower level, as

occurs in the empirical results (figure 3a)—this is an

improvement over both the Cohen model and the

combined model without dynamic attentional modu-

lation. This simulation both solves the stability

problem and matches the peak and decline in RTs

that the empirical data shows.

In contrast, with dynamic attentional modulation,

the original Cohen model does not successfully match

the empirical data (figure 12). Because the stability

problem is not resolved, the to-be-ignored stimulus

element still provokes erroneous selection at long

enough SOAs, and causes unrealistic amount of

response-time interference before that.
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4. DISCUSSION
Our primary result is that a neurobiologically plausible
model of action selection allows the successful
simulation of RTs in the Stroop task, despite the fact
that the model construction was structurally and
functionally guided by quite different principles.
Although the front-end of the model was explicitly
designed to do Stroop processing, it is the response
mechanism which is responsible for converting signal
outputs into RTs. Structurally, the model was
constrained by the known functional neuroanatomy
of the basal ganglia; functionally, it was a quantitative
interpretation of our action selection hypothesis
(Redgrave et al. 1999). The basal ganglia model was
neither explicitly designed to simulate RTs nor was it
constrained by human cognitive performance, yet when
processing outputs from the front-end of the Cohen
et al. (1990) model it has advantages over the diffusion
model, which was explicitly designed to simulation
RTs, in simulating RTs.

(a) Why the basal ganglia model successfully

simulates reaction times

The model captures the basic Stroop (figure 8) and
learning (figure 9) phenomena because, for moderately
sized saliences, selection time is based on the relative
difference between the to-be-selected salience and the
competing salience (if any). To understand the emer-
gence of RT differences in the basal ganglia model,
consider figure 13. Figure 13a shows traces (directly
from the simulation) of the output signals correspond-
ing to the correct response, in a control and a conflict
condition; these signals cross the selection threshold and
therefore produce a behavioural response. Note that the
output signal in the conflict condition falls to a lower
level than in the control condition. It is this final level to
which the signal drops which defines the rate at which
the signal drops and hence the time to selection. The
final signal level is in turn, dependent upon the relative
difference between the to-be-selected salience and the
competing salience (if any).

The schematic diagram of signal time courses
(figure 13b) clarifies the way in which final equilibrium
output governs selection and RT. The rate of decrease
of the output signal has the same relation to time-
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to-selection as the drift rate (strength-of-evidence) does
to mean RT in the diffusion model. However, because
the rate of decrease in the basal ganglia model is
ultimately determined by the final output signal resting
level, selection does not always occur. In particular,
small saliences—which might result from a to-be-
ignored stimulus—do not drive the output down
beyond the selection threshold.

It is because the basal ganglia model is designed to
operate continuously that it has equilibrium final states.
Thus, in the idealized situation of unchanging inputs,
all patterns of input eventually produce unchanging
output states. In particular, for some patterns of
input the final output state indicates that no action
is selected. In more realistic situations, with noisy input
the basal ganglia-thalamo-cortical model is stable to
small transient fluctuations in salience (Humphries &
Gurney 2002). It is with small saliences, and when
dealing with successive rather than simultaneous
inputs, that the advantages of using a selection
mechanism which has non-selection equilibrium states
Phil. Trans. R. Soc. B (2007)
is revealed. Both of these cases are revealed by
comparison of the SOA simulations (figures 4 and 10).

(b) Weaknesses of the diffusion model

Our simulations show a situation in which simple
evidence accumulation is a non-adaptive choice
process. The failure of the Cohen model on the SOA
simulations is due to a model feature which is neither
trivial nor irrelevant. The empirical existence of the
basic Stroop interference effect demonstrates that
response activation from the to-be-ignored word
element of the stimulus must, at least to some extent,
‘break through’ any initial attentional inhibition. This
activity, arriving at the response mechanism before the
response activation of the colour element, is enough, in
the Cohen model, to cause selection. The erroneous
selection produced at long SOAs shows that a response
mechanism must not make selections based on
inconsequentially low inputs.

The Cohen model evidence accumulation
mechanism has no minimal threshold on inputs, and
no decay of accumulated evidence. This means that
there are no equilibrium states and it is constantly being
driven to enforce selection, no matter how long this
takes. By extension, the diffusion model, the general
form of the evidence accumulation mechanism used,
contains no capacity for not making a selection. This is
a serious flaw. At a minimum, it indicates that the
context within which the diffusion model of selection is
used cannot be ignored or assumed.

(c) Alternative solutions

We have considered how the choice of response
mechanism affects performance in simulation of the
Stroop task. Other mechanisms for matching the core
empirical data could be envisaged. Cohen & Huston
(1994) adapt the model of Cohen et al. (1990) to
provide a better match to the SOA data. They do this
by removing the diffusion model response mechanism
entirely and having selection triggered by activation
on the output units crossing a fixed threshold. This
solves the problem of selection by arbitrarily small
activations, since they do not reach the selection
threshold.

This approach allows a fit to the data, but the
removal of an explicit response mechanism raises
some additional questions. The Cohen & Huston
(1994) model, in this respect, bears some similarity to
the Usher & McClelland (2001) model of perceptual
choice. Both models use a single network for
processing stimuli and selecting responses using a
simple threshold. Bogacz et al. (2007b) have provided
extensions and discussions of the optimality of the
Usher & McClelland (2001) model. This model
considers mechanisms of choice comprising neuron-
like elements but removed from a realistic cognitive
or biological architecture. Although models without
explicit response mechanisms can fit behavioural data
(Cohen & Huston 1994) or be shown to make
optimal decisions (Usher & McClelland 2001;
Bogacz et al. 2007b), two issues remain unaddressed.
Firstly, which neural structures implement the model?
Secondly, how is the optimal decision making
provided by the model adaptively controlled?
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Our approach has been to consider action represen-

tation and response selection separately, as in the

original Cohen model, and to provide an account of

response selection based upon the basal ganglia, as the

proposed vertebrate solution to the selection problem.

The benefits of using a centralized rather than

distributed selection mechanism are discussed in

Prescott et al. (1999). Among these benefits is the

greater theoretical ease of coordinating between

multiple competing neural loci—both in terms of

lower wiring cost and in the ability to centrally mediate

the equivalent of thresholds.
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Figure 14. Interference in (a) the diffusion model and (b) the
basal ganglia model response mechanisms. Signals in the
diffusion model represent the accumulated evidence in favour
of two possible responses, selection is indicated by crossing
either the positive or negative evidence thresholds. Signals in
the basal ganglia represent the activity on the to-be-selected
action channel, selection is indicated by activity on that
channel dropping below the selection threshold. Solid lines
show signals subject to interference from a preceding input,
dashed lines show signals without this competition. The
signal courses for the early or later appearance of the
to-be-responded-to stimulus are shown (indicated by points
�1 and �2, respectively), and the corresponding size of the
interference effects is indicated.
(d) Benefits of the basal ganglia model

The simulation of the SOA paradigm highlights two

properties which the basal ganglia as a selection

mechanism brings to the combined model to improve

the possible account of the data. The first, as already

discussed, is the lack of incorrect selection for

arbitrarily small saliences. The second is the limit on

the maximum possible influence of concurrently or

consecutively active inputs. Priming of response times,

whether positive or negative, occurs because activity on

other channels alters the basal ganglia output signals, at

a subselection level, thereby affecting the time it takes

for outputs to drop below the selection threshold.

A similar process occurs in the diffusion model, but

accumulated evidence is not limited—and can ulti-

mately lead to incorrect selection (as discussed earlier).

Figure 14 shows the geometry of selection interference

in both response mechanisms. In the diffusion model

(figure 14a), the increase in RT due to a preceding

to-be-ignored stimulus is a function of the size of that

signal multiplied by time—the longer the to-be-ignored

stimulus is presented, the greater the size of the

interference effect. If the to-be-ignored stimulus is

presented for long enough and the accumulated

evidence reaches the selection threshold then an

incorrect response is made. In the basal ganglia

model (figure 14b), the amount of increase in RT

due to a to-be-ignored stimulus is solely a function

of the magnitude of the salience that the to-be-ignored

stimulus provokes. Because, as discussed above,

the basal ganglia model has equilibrium final states,

some of which do not indicate selection, the rise in the

output signal associated with the correct response is

limited and does not increase with time after a certain

point. The increase in RT result is commensurately

limited, and thus the correct response is selected

efficiently.

This is an example of the general ‘clean switching’

property which has been identified as a desirable

feature of any selection mechanism (Redgrave et al.
1999). A response mechanism needs to work in real-

time, continuously, dealing with the successive selec-

tion of actions and interruption of old actions by new.

The SOA paradigm shows just one situation where

human action selection demonstrates clean switching.

The benefits the basal ganglia model brings to

modelling the Stroop task demonstrates the value of

considering the constraints of natural action selection

within cognitive models.
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(e) The diffusion model in the context

of action selection

That the evidence accumulation response mechanism,

on the other hand, has only one type of final state (that

of selecting an action) and that it continuously moves

towards this state, has implications for the diffusion

model as a model of response selection. The diffusion

model embodies the inevitable progression towards

selection because all inputs are integrated into a

running total of activity, without any decay of that

activity. This ‘perfect integration’ is actually a

requirement of the proof that the diffusion model

performs optimally (Smith & Ratcliff 2004; Bogacz

et al. 2007a), at least for a restricted class of choices.

The simulation of the SOA experiments reveals that

selection by perfect integration can be unadaptive in at

least some circumstances. This particular case of the

general problem of clean-switching shows that adap-

tive action selection involves criteria beyond those

which have been used to define decision optimality

(i.e. criteria beyond those pertaining to the kind of

simple choices which have hitherto been the main

focus of analysis of choice behaviour). This is not to

say that the diffusion model, or diffusion-like pro-

cesses, is inappropriate for selection. Indeed, it has

recently been proposed that the basal ganglia archi-

tecture is able to perform optimal decision making in a

manner akin to the diffusion model, but between
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multiple alternatives (Bogacz & Gurney 2007a). The
diffusion model reflects an optimal way of integrating
information if the possible choices are defined, the
sources of evidence static and if the point at which the
choice process begins is a given. Our claim is only that
evidence accumulation and the diffusion model alone
cannot provide a full account of adaptive action
selection. For this wider problem mechanisms are
required which signal the appropriate initialization of
the accumulation process, and which reset it or
effectively overcome previous accumulation of evi-
dence. The basal ganglia thalamo-cortical model
provides a first step towards the integration of the
decision–optimal diffusion model into the wider
context of adaptive action selection.

(f ) Summary and future work

This work validates our model against the basic Stroop
phenomena. Use of the basal ganglia model as the
response mechanism improves the fit that can be made to
the empirical data and highlights necessary features
response mechanisms should contain, the lack of which
was overlooked in the previous account by Cohen et al.
(1990). Using an adaptive, action-selection based
response mechanism in the model of Stroop task, allows
the principled addition to the model of dynamic
attentional modulation (Botvinick et al. 2001, 2004).
Use of the basal ganglia model also extends the account
of Stroop processing to connect with the neurobiology
of selection.

From a wider perspective, there is a ‘theoretical
purity’ to testing models outside of the domain that
they were developed in. Firstly, the basal ganglia
model, while not designed to account for RTs,
successfully managed to do so. Secondly, the biologi-
cally grounded model of the basal ganglia also deals
appropriately with signals provided by a more abstract
connectionist model of a cognitive task. This depended
upon a common signal interpretation at the interface
between the two model components in terms of
population rate codes. We therefore suggest that this
offers a useful tactic in any high-level cognitive
modelling that would enable the gradual replacement
of abstract model components with more biologically
realistic counterparts. Note, however, that this
approach does not undermine the principled use of
connectionist modelling in quantitative testing of
cognitive hypotheses. Thus, in our present context,
the model proposed by Cohen et al. (1990) was a test of
the hypothesis that the Stroop effect could be
accounted for in a framework in which the ‘strength
of processing’ devoted to a perceptual or cognitive
process determined its status as more or less automatic
(or controlled) in relation to other processes. Our work
does not challenge the validation of this particular
hypothesis since the ‘front-end’ of the model still tests it
perfectly adequately.

Finally, the ability of the model to deal with an
arbitrary number of inputs will provide opportunities
for future modelling investigations of additional
selection paradigms. Making connection to the
underlying neurobiology enriches the account
possible of Stroop processing. In particular, we
anticipate that the existing provision for dopaminergic
Phil. Trans. R. Soc. B (2007)
modulation of signal processing in our model will
allows future tests of the model against various
pathologies, such as schizophrenia. Our account will
also need to be broadened to account for learning
within the basal ganglia. Developing a full account
of the interaction of plasticity with decision making
will be an important test of all existing models of
action selection.

We thank Mark Humphries and two anonymous reviewers for
their comments on this paper.
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