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Abstract
Visual search and identification of analyzable metaphase chromosomes using optical microscopes
is a very tedious and time-consuming task that is routinely performed in genetic laboratories to detect
and diagnose cancers and genetic diseases. The purpose of this study is to develop and test a
computerized scheme that can automatically identify chromosomes in metaphase stage and classify
them into analyzable and un-analyzable groups. Two independent datasets involving 170 images are
used to train and test the scheme. The scheme uses image filtering, threshold, and labeling algorithms
to detect chromosomes, followed by computing a set of features for each individual chromosome as
well as for each identified metaphase cell. Two machine learning classifiers including a decision tree
(DT) based on the features of individual chromosomes and an artificial neural network (ANN) using
the features of the metaphase cells are optimized and tested to classify between analyzable and un-
analyzable cells. Using the DT based classifier the Kappa coefficients for agreement between the
cytogeneticist and the scheme are 0.83 and 0.89 for the training and testing datasets, respectively.
We apply an independent testing and a two-fold cross-validation method to assess the performance
of the ANN-based classifier. The area under and receiver operating characteristic (ROC) curve is
0.93 for the complete dataset. This preliminary study demonstrates the feasibility of developing a
computerized scheme to automatically identify and classify metaphase chromosomes.
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I. Introduction
Since Tjio and Levan discovered that the chromosome number of human being was 46 in 1956
[1], the knowledge about chromosomal abnormalities, as a cause of diseases, increased
enormously. For example, in 1960 Nowell and Hungerford discovered a small chromosome
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marker, the Philadelphia chromosome, in patients with chronic myeloid leukemia (CML) [2].
This is proved to be the first consistent chromosomal abnormality in human cancer and it greatly
stimulated interest in cancer cytogenetics. Currently, identification and classification of
chromosomes using optical microscopic images is an important laboratory and clinical
procedure to screen and diagnose genetic disorders [3], cancers [4,5] and other diseases [6].
Specifically, chromosome abnormalities and mutations are the results of changes in
chromosome structure. Studies have found that consistent chromosomal changes led to
isolation of the genes involved in the cancer pathogenesis [7]. Detection of these consistent,
recurrent chromosomal changes has allowed the division of patients into clinical groups which
define their duration of remission and mean survival time [8]. Hence, better understanding the
mechanism of abnormal chromosome can help oncologists evaluate cancer prognosis and select
more effective treatment procedures. For this purpose, karyotyping of metaphase cells is the
most common procedure to analyze and classify chromosomes [9]. This procedure requires
generating a layout of chromosomes organized by decreasing size in pairs for each testing cell
by the comparison between the chromosomes identified in the cell and the chromosomes stored
in a pre-established standard database. Chromosomes are assigned to each of the 24 classes
[10]. Then, variety of diseases, genetic disorders, and cancers, can be diagnosed based on the
possible distortion of the banded patterns of different chromosome pairs [11].

Before performing karyotyping and other diagnostic procedures, a cytogenetic technologist
uses an optical microscope to visually examine each glass slide prepared from samples (i.e.,
amniotic fluid, blood sample, skin or bone marrow) acquired from a patient to search for and
identify the cells with analyzable chromosomes. Because the cells are very small (in the order
of a few hundred micrometers), the technologist must move the slide under the microscope
many times to thoroughly search the entire slide and frequently switch between two
microscopic objectives of low (e.g., 10X) and high magnification power (e.g., 100X). It is
desirable to find at least 20 to 30 analyzable metaphase chromosome cells for each patient.
Since, not all cells are engaged in cell division and not all dividing cells are in the analyzable
metaphase stage, the technologist must look at a large number of cells before a cell with clearly
imaged chromosomes can be found. Figure 1 demonstrates two metaphase chromosome cells,
one is considered analyzable and one is un-analyzable by an experienced cytogeneticist. In the
clinical practice, examining as many as 5 to 10 microscopic sample slides is typically needed
for one patient. Therefore, it takes tremendous effort and time for the technologist to obtain a
sufficient number of analyzable metaphase cells before making an accurate laboratory
diagnosis of abnormal human chromosomes that have been altered by disease or cancer
mechanisms. This lengthy and inefficient process can also cause delay to the treatment of
patients. Therefore, developing a computerized scheme could potentially significantly speed
up the process of searching for and identifying analyzable chromosomes. It may also help
cytogeneticists improve the diagnostic performance and minimize inter- and intra-reader
variability.

Since 1980s a number of research groups has developed and tested different computerized
schemes to analyze chromosome images including identifying analyzable metaphase cells,
separating overlapped chromosomes, classifying different chromosomes (karyotyping), and
detecting abnormal patterns depicted on the chromosomes. The detailed discussion of the
previous studies (including the advantages and limitations of these studies) has been reported
in a previously published review article [12]. For examples, one study developed an Athena
system to semi-automatically identify analyzable metaphase chromosomes [13]. The second
study reported an automated karyotyping system (AKS) using a novel recursive searching
algorithm [14]. The third study developed a scheme to recognize metaphase spreads from nuclei
and artifacts in microscopic images acquired at 10X magnification power with approximately
91% recognition rate [15]. The fourth study developed an automatic metaphase finder and
reported a true positive rate of 80% with a false positive rate of 20% [16]. The fifth group used
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texture features to classify manually segmented objects into metaphase spreads with
approximately true positive rate of 85% [17]. The sixth group applied a wavelet-based
algorithm to improve the salient features of chromosome images for the better diagnosis [18].
This group also developed and reported a subspace-based model to classify chromosomes into
24 types after applying the semi-automated methods to pre-process all individual chromosomes
(including straightening the bending chromosomes and identifying the orientation of p-arm of
each chromosome) [19]. In addition, different statistical models and machine learning
classifiers (i.e., artificial neural network and probabilistic Markov network) based on an
optimal feature vector or pixel value distribution have been trained and implemented in
computerized schemes to detect (or identify) abnormal patterns of chromosomes [20–23]. The
success of the schemes for detecting chromosomal aberrations depends on several pre-
conditions including that the analyzable metaphase chromosomes have been identified and the
individual chromosomes have been separated (without overlapping) and correctly oriented
(i.e., straightening the bending chromosomes and knowing p-arms). As a result, when applying
these schemes to real clinical images, human intervention is often required to select analyzable
chromosomes [24]. For examples, since early 1990s, several research groups have tested the
feasibility of applying the semi-automated computer systems to detect aberrant chromosomes
in different clinical images [25,26].

Despite the considerable research effort in developing computerized schemes to analyze
chromosome images, one of the most importantly clinical issues of how to automatically and
robustly detecting and identifying analyzable metaphase chromosomes depicted on the original
microscopic sample slides remains un-solved. As a result, the technologists in genetic
laboratories still visually search for and identify analyzable metaphase chromosomes in the
routine clinical practice to date. In this study, we focused on developing and testing a new
automated scheme to identify metaphase chromosome cells depicted on microscopic digital
images and to classify them into analyzable and un-analyzable cells. The purpose of this study
is to develop a simple and robust scheme that has potential analyzable to replace the time-
consumed visual searching process. This scheme can also be the first and important step in
developing other fully-automated schemes for chromosome image analysis and diagnosis.

II. Materials and Methods
From a clinical database established at a genetic laboratory of University of Oklahoma Health
Science Center, a cytogeneticist randomly selected 100 metaphase cells as one dataset (which
was later used as a training dataset) and then selected another dataset involving 70 metaphase
cells (a testing dataset). An optical microscope equipped with an objective of 100X
magnification power and a digital camera was used to acquire digital images of these selected
metaphase chromosome cells. These images have average size of 768 ×576 pixels and the size
of each pixel on the surface of the slides is approximately 0.2µm × 0.2µm. In the training
dataset, 35 cells are considered (visually recognized as) analyzable and 65 are un-analyzable
by the cytogeneticist. In the test dataset, 37 cells are analyzable and 33 are un-analyzable,
respectively. These visual classification results were saved in a “truth” file that is used as a
standard to train our computerized scheme and test its performance.

Our computerized scheme includes five image processing and feature classification stages to
segment chromosome areas and to identify analyzable metaphase cells (Fig. 2). First, the
scheme uses an image filter to pro-process the images that aims to enhance the image quality
(i.e., increase signal-to-noise ratio). Because a median filter is a simple and effective filter to
reduce random image noise while preserving image sharpness (minimizing image blurring)
[27], we implement a median filter (with window size of 5 × 5 pixels) in the scheme to reduce
the noise and artifact background in the originally digital chromosome images. Second, an
adjustable threshold is applied to remove all pixels with gray (digital) values smaller than the
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threshold (because chromosomes in metaphase stages usually have greater gray value than
majority of artifacts in the background). Third, a 4-connectivity component labeling algorithm
and a raster scanning method are applied to label and group the detected pixels into connected
areas and delete the isolated pixels. The rationale of selecting the 4-connectivity component
labeling algorithm is because it is less sensitive to the image noise (or broken pixels) comparing
to other labeling algorithm (e.g., 8-connectivtity component labeling algorithm) [27]. Fourth,
the scheme computes following five image features from the labeled regions in each
microscopic digital image.

1. The number of labeled regions: The scheme counts the total number of labeled regions
(NM) in one image slide.

2. The size of each labeled region: It is defined by counting the number of pixels involved
in the region (Si = NM).

3. The circularity of each labeled region: Based on the size of the region (NM), the scheme
defines an equivalent circle originating at the gravity center of the region. For a circle
with the same size as the labeled region, the scheme computes the number of pixels
that are located inside the region contour and the circle (NC). The circularity is defined

as , the ratio of the region pixels covered by the circle and the total pixels inside
the labeled region [28].

4. Average gray value of each labeled region: It is computed as an average digital value

of pixels .

5. The radial length of each region to the cell center: It is defined as the distance between
the gravity center (xc, yc) of total labeled regions in the image (center of a cell) and
the center of one individual region (xk, yk). It is computed as

.

In these five features, feature #1 is global feature of the metaphase cell and the rest of four
features are computed for each individual chromosome.

In the last stage of the scheme, a machine learning classifier is applied to identify analyzable
metaphase chromosomes and delete un-analyzable ones. Two classifiers, a decision tree (DT)
and an artificial neural network (ANN), are optimized and tested in this study. DT is one of
the most widely used and practical methods for inductive inference, which approximates
discrete-valued functions that is robust to noisy data and is capable of learning disjunctive
expressions. ANN is loosely motivated by biological neural systems to learn the real-valued
and discrete-valued functions from noisy or incomplete samples. In particular, the training
algorithm of back-propagation using gradient descent can turn ANN parameters to best fit a
training set of input-output pairs. The limitations of these two classifiers include potentially
inductive bias for DT and over-fitting for ANN. The detailed mathematic foundations and
characteristics (including advantages and limitations) of DT and ANN can be found elsewhere
[29]. Despite the potential limitations, DT and ANN are two of the most popular machine
learning classifiers implemented in the computerized schemes for biomedical images including
chromosome images [12].

DT implemented in this study is constructed based on the five computed features and used to
classify which digital image depicts an analyzable metaphase chromosome cell or not. The
structure of the DT is demonstrated in Figure 3. This DT uses a simple classification criterion:
analyzable metaphase chromosome cells contain more recognizable individual chromosomes
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than un-analyzable cells. The DT includes four (horizontal) layers (rows). The first layer
includes a start node. The five computed images features are connected to the five nodes listed
in the second row. The first node in this row is the number of labeled regions. If the number
of regions is less than a threshold value (that is determined by the training dataset), this
chromosome image is defined as not analyzable. Only the images depicted the labeled
chromosomes (regions) within the range between Nmin = 19 and Nmax = 46 are further analyzed
by the following nodes of the DT. Node 2 is the size of each labeled (individual) region and it
aims to delete some very large connected areas (e.g., S > Smax = 5000) and very small regions
(e.g., S < Smin = 90) in each image. Node 3 is the circularity of the region and it is designed to
delete the circled regions (e.g., a nucleus) if the circularities are larger than a predetermined
threshold (e.g., C > CT = 0.90). Node 4 is average gray level of the region and it is used to
delete the regions dominated with dirty substances or cells in each image. In general, the gray
value of chromosomes is larger than those dirty substances and cells. Hence, if the average
gray level of a region is smaller than the threshold (e.g., Iave > IT = 75), the region is deleted.
Node 5 is the radial length of the region and it deletes the labeled regions that are far away
from the center of the cell or cluster (e.g., L ≥ Lk = (maximum radial length – standard deviation
of radial length of all labeled regions)). Since in each of nodes 2 to 5, the DT may delete a
number of labeled regions and result in the reduction of the total number of regions remained
in one image, this image (or cell) is analyzed again based on the number of remaining regions
(similar to the node 1) in the third layer (row) of the tree. The last (fourth) layer contains a
number of decision nodes.

The second classifier tested in this study is an ANN. Unlike the DT (Fig. 3) that uses the features
computed from the individual chromosomes, the ANN only uses the features computed from
all labeled regions in one acquired image region of interest (ROI). The ANN has a simple three-
layer feed-forward topology. The input layer includes six neurons that are represented by six
features, which are (1) the number of labeled regions; (2) the average size of all labeled regions;
(3) the standard deviation of region size; (4) the average pixel value of all regions; (5) the
standard deviation of pixel values; and (6) the average radial length of all regions. The hidden
layer of the ANN involves three neurons and the output layer contains one decision neuron. A
standard back-propagation training algorithm is used to train the ANN. Due to the limited size
of our training dataset and in order to minimize over-fitting and keep the robustness of the
ANN performance when applied to new testing cases, a limited number of training iterations
as well as a large ratio between the momentum and learning rate is used [30]. Hence, we limit
the training iterations to 400; while the momentum and learning rate are set at 0.9 and 0.01,
respectively. For each training or testing sample (chromosome cell), the ANN generates a
classification score in the range from 0 to 1, where 0 means definitely un-analyzable and 1
indicates easily analyzable.

Different methods are applied to assess the performance of two classifiers. When using DT,
we tabulated the experimental data and computed the Kappa coefficients for agreement of the
classification results between the cytogeneticist and the computerized scheme. The
performance of using ANN to classify metaphase chromosome cells is evaluated using receiver
operating characteristics (ROC), a standard method widely used to evaluate the performance
of observers and computerized schemes in diagnosis and analysis of biomedical images [31].
A computer program converts the ANN-generated classification scores of all analyzable
(“positive”) and un-analyzable (“negative”) samples in one dataset (either training or testing)
into two histograms with 11 bins. Based on these two histograms (one for positive cases and
one for negative cases), an un-smoothed ROC type performance curve can be plotted. ROCFIT
program [32] that uses maximum likelihood estimation method [33] is then used to fit ROC
data (curve) and compute an area under the ROC curve (AZ value), an index to measure the
scheme performance. Because two datasets were independently selected and size of each
dataset is relatively small, two datasets may have substantially different distribution of image
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feature characteristics. To better estimate the performance of our scheme and minimize the
potential bias when using an ANN as a classifier, we also applied a two-fold cross validation
method to assess scheme performance. We trained and tested the ANN twice by switching
between training and testing dataset, which means that each of two datasets is used once for
training and once for testing. The testing classification score of each cell region is used to
generate the final ROC curve for the complete dataset using ROCFIT program.

III. Results
The difference of classification results between the “truth” (provided by the cytogeneticist)
and the DT based scheme for both training and testing datasets is summarized and compared
(as shown in Table I and Table II). The results indicate that 92.0% (92 out of 100) and 94.3%
(66 out of 70) of queried cell regions in the training and testing datasets are assigned to the
same group (either “analyzable” or “un-analyzable”) by both the cytogeneticist in our genetic
laboratory and DT based classifier. The corresponding Kappa coefficients for agreement are
0.83 and 0.89 for the training and testing datasets, respectively. Specifically, the DT based
scheme achieves 94.3% (33 out of 35) of detection sensitivity (“true-positive” classification
rate) and 90.8% (59 out of 65) of specificity (“true-negative” classification rate) for the training
dataset. For the testing dataset, the sensitivity and specificity are 91.9% (34 out of 37) and
96.9% (32 out of 33), respectively.

To verify the feature distribution difference between two datasets, we plotted a series of scatter
diagrams between different pairs of features. For example, the scatter diagrams between the
features of average pixel values and the number of labeled regions are shown in Figure 4 and
Figure 5 for the original training and testing dataset. For these two features the analyzable cells
are mostly located in the upright corner of the diagram (which indicated the larger number of
labeled regions and higher pixel right value). Comparing between Figure 4 and Figure 5, we
find that in the initial training dataset used for DT based classifier; several un-analyzable cells
also involve larger number of labeled regions and higher average pixel values. These “difficult”
un-analyzable cells reduce the classification performance of the ANN when applying to this
dataset comparing to the classification performance on the initial testing dataset (as shown in
Figure 6). A ROC curve generated based on complete dataset using two-fold cross validation
method is also plotted in Figure 6. The computed AZ values (the areas under ROC curve) are
0.918 ± 0.015, 0.942 ± 0.013, and 0.930 ± 0.008, for the original training, testing, and complete
dataset, respectively.

IV. Discussion
Because of its advantages and effectiveness over traditionally anatomical imaging modalities
and techniques in detecting cancers and monitoring cancer treatment efficacy, molecular and
chromosome imaging have been attracted extensive research interests. Chromosomal disorder
is a powerful indicator in diagnosis of cancers (i.e., leukemia, skin and breast cancers) and
other genetic diseases. Although identification of chromosomal aberrations (disorders) is
routinely performed in the clinical laboratories to provide physicians the diagnostic results and
help them decide and manage optimal therapeutic treatment plans for patients, this is a very
tedious and time-consuming task. Currently, the laboratory technologists spend more valuable
time to identify analyzable metaphase chromosome cells, rather than spend time to identify
and analyze the chromosomal abnormal patterns. Our previous study has demonstrated that
using computerized scheme could potentially help clinicians more efficiently and accurately
diagnose (classify) different types of leukemia and predict the cancer prognosis [34]. However,
the precondition of accurate diagnosis of cancers and genetic diseases using chromosome
images is to identify a set of analyzable (or diagnosable) metaphase chromosome cells. In
addition, developing a fully-automated scheme to detect and identify analyzable metaphase

Wang et al. Page 6

J Biomed Inform. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



chromosome cells is the first and probably the most important step to replace tediously manual
searching process. Therefore, the motivation and purpose of this study is to develop a
computerized scheme that has potential to replace the manual searching process and meet the
requirement of other semi-automated schemes in chromosome classification by automatically
identifying analyzable metaphase chromosomes depicted on microscopic digital images.

For this purpose, we developed and tested a simple and unique computerized scheme. The
scheme was directly optimized and applied to the originally cultured chromosome images used
for the standard (or banded) chromosome analysis routinely performed in our genetic
laboratory for the diagnosis of cancers and genetic diseases. This approach of using real clinical
images without pre-processing increases the application potential and robustness of our scheme
in the clinical environment. We are aware that when different cultured or sample preparation
methods are used in different laboratories for different diagnostic purpose, the banded patterns
of the chromosomes could be different. However, this does not affect our scheme to detect and
identify analyzable metaphase chromosomes because no specific band features and absolute
size features of individual chromosomes are used in our scheme. Our scheme was also applied
to the high-resolution (or high-magnification) microscopic digital images. Comparing with
previously reported studies using low-resolution images, which could only alert the laboratory
technologists the location of potentially analyzable chromosome cells and visual examination
is needed by switching to another microscopic objective with high magnification power to
determine whether the cell is analyzable or not [15], our approach has two advantages. First,
the analyzable metaphase chromosome cells detected and prompted by the scheme can be
directly examined and analyzed by technologists (or cytogeneticists) for the diagnosis purpose
without using the microscope. Second, the identified analyzable metaphase chromosomes can
be used by other computer-aided diagnosis scheme to potentially perform more comprehensive
tasks (i.e., the detection of the distortion in chromosomes’ banded patterns). Hence, our scheme
can be integrated with other available semi-automated schemes to develop fully-automated
computer schemes in the future studies.

During the development and evaluation of a computer scheme involving a machine learning
classifier, the researchers often face a number of biases, in particular the bias of case (learning
sample) selection and validation method. We took several measures (procedures) in an attempt
to avoid or minimize the bias of the classification results. First, the training and testing datasets
used in this study were independently selected in our genetic laboratory by cytogeneticists.
The researchers who developed and tested the computerized scheme did not involve in the case
selection, which helps eliminate the bias in case selection. Second, due to the limitation of size
of the dataset, avoiding or minimizing the bias in classification results (e.g., due to the potential
over-training) is always a difficult challenge. Several optimization (training and testing)
methods including jackknifing (leave-one-out), N-fold cross-validation, and use of
independent testing dataset have been widely used in development and optimization of the
computerized schemes. Previous studies have suggested that both leave-one-out and cross-
validation methods were more likely to generate considerable bias and variance [35,36].
Although using independent testing dataset is the best way to reduce the classification bias,
dividing limited dataset into two independent datasets reduces the size and diversity of training
dataset and may also reduce the performance of testing result [35]. As a result, to minimize the
classification bias and assess the optimal performance of the scheme, we used both independent
testing and two-fold cross validation methods in this study.

The results of this preliminary study are encouraging. The scheme achieved high performance
on an independent testing dataset (i.e., Kappa = 0.89 for using the DT based classifier and
AZ > 0.93 for using the ANN based classifier). The results indicated that the scheme could
correctly identify more than 90% of analyzable chromosome cells while eliminating majority
of un-analyzable cells (e.g., > 85%). However, there are several limitations in this study. First,
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the size of datasets was relatively limited (small). Second, the “truth” was determined by one
cytogeneticist in our genetic laboratory. The issue of potential inter-observer variability has
not been investigated. Third, all microscopic digital images of chromosomes were pre-selected
and each image depicts one metaphase cell (either analyzable or un-analyzable one). In our
future studies, we will further optimize and test our scheme using a much large and diverse
image database. The “truth” file will be verified by a panel of cytogeneticists. We will also test
and apply this scheme to the sequential images automatically acquired by a high-speed
microscopic image scanner (that is currently under development in our laboratory). The new
computerized scheme should first detect whether an image depicts a metaphase cell or not,
since in the clinical environment most of images acquired by a high-speed microscopic image
scanner contain no metaphase cells. After the metaphase cells are detected, the scheme then
identifies analyzable metaphase cells and discards un-analyzable ones.
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Figure 1.
Digital images of two metaphase chromosome cells in which (a) is considered un-analyzable
cells that will be deleted and (b) is an analyzable cell that will be selected to perform
karyotyping.
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Figure 2.
A flow diagram of a computerized scheme to segment chromosomes and classify metaphase
cells into analyzable and un-analyzable cells.
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Figure 3.
A five-feature based DT for recognizing analyzable and un-analyzable metaphase chromosome
cells. Note: F1 – Average size of each region; F2 – Circularity of each region; F3 – Average
gray value of each region; F4 – Radial length of each region; Th1 - Number of regions is
between Nmin = 19 and Nmax = 46; Th2 – Average size of each region is between Smin = 90
and Smax = 5000; Th3 – Circularity of each region is < CT = 0.9; Th4 - Average gray value of
each region is ≥ IT = 75; Th5 - Number of regions is either < Nmin = 19 or > N max = 46; Th6
- Average size of each region is either <Smin = 90 or >S max = 5000; Th7 - Circularity of each
region is ≥ CT = 0.9; Th8 - Average gray value of each region is < IT = 75; Th9 - Radial length
of each region is ≥ Lk (the maximum radial length – standard deviation of radial length of all
labeled regions); and Th10 - Radial length of each region is < Lk.
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Figure 4.
A scatter diagram between two features of 100 training samples including 35 analyzable
(“positive”) and 65 un-analyzable (“negative”) cells.
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Figure 5.
A scatter diagram between two features of 70 testing samples including 37 analyzable
(“positive”) and 33 un-analyzable (“negative”) cells.
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Figure 6.
The distribution of the computed performance points for two data subsets (“training” and “test”
subsets) and the complete dataset. A ROC-type performance curve was generated based on
fitting of the complete dataset using ROCFIT program.
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Table I
Comparison of classification results between a cytogeneticist and the DT based scheme for training dataset.

Data classified by a cytogeneticist DT based scheme DT Accuracy Rate
Correct Wrong

Analyzable cells 35 33 2 94.3%
Un-analyzable cells 65 59 6 90.8%

Total cells 100 92 8 92.0%
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Table II
Comparison of classification results between a cytogeneticist and the DT based scheme for testing dataset.

Data classified by a cytogeneticist DT based scheme DT Accuracy Rate
Correct Wrong

Analyzable cells 37 34 3 91.9%
Un-analyzable cells 33 32 1 96.9%

Total cells 70 66 4 94.3%
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