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Abstract
The past several decades of research into calcium signaling have focused on intracellular calcium
(Ca2+

i), revealing both exquisite spatial and dynamic control of this potent second messenger. Our
understanding of Ca2+

i signaling has benefited from the evolution of cell culture methods,
development of high affinity fluorescent calcium indicators (both membrane-permeant small
molecules and genetically encoded proteins), and high resolution fluorescence microscopy. As our
understanding of single cell calcium dynamics has increased, translational efforts have attempted to
push calcium signaling studies back into tissues, organs and whole animals. Emerging results from
these more complicated, diffusion-limited systems have begun to define a role for extracellular
calcium (Ca2+

o) as an agonist, spurred by the cloning and characterization of a G protein-coupled
receptor activated by Ca2+

o (the calcium sensing receptor, CaR). Here we review the current state-
of-the art for measurement of Ca2+

o fluctuations, and the evidence that fluctuations in Ca2+
o can act

as primary signals regulating cell function. Current results suggest that Ca2+
o in bone and epidermis

may act as a chemotactic homing signal, targeting cells to the appropriate tissue locations prior to
initiation of the differentiation program. Ca2+

i signaling-mediated Ca2+
o fluctuations in interstitial

spaces may integrate cell signaling responses in multicellular networks through activation of CaR.
Appreciation of the importance of Ca2+

o fluctuations in coordinating cell function will likely spur
identification of additional, niche-specific Ca2+ sensors, and provide unique insights into the
regulation of multicellular signaling networks.

Keywords
Extracellular calcium; calcium sensing receptor; multicellular network; signal integration; signal
amplification

Introduction
Systemic calcium homeostasis is critical to the survival of multicellular organisms, and
complex, inter-dependent regulatory systems have evolved to maintain Ca2+ in the extracellular
fluid within a narrow range (1.1–1.4 mM Ca2+ for humans) (reviewed by Hurwitz, 1996). The
calcium sensing receptor, CaR, is exquisitely sensitive to small changes in Cao

2+ (Brown,
1983; Breitwieser & Gama, 2001). In parathyroid chief cells, this permits sensing of minute
fluctuations in Ca2+

o (±200 µM) (Brown, 1983), with increases in Ca2+
o causing decreases in

parathyroid hormone (PTH) secretion (reviewed in Ambrish & Brown, 2003). PTH has effects
on the kidney to increase Ca2+ reabsorption from the filtrate and synthesis of vitamin D, 1,25
(OH)2D (which enhances intestinal absorption of Ca2+), and on bone to increase release of
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Ca2+ and phosphate by demineralization. Recent reviews detail the mechanisms involved in
systemic calcium homeostasis and the pathologies resulting from their dysregulation (Brown,
2004; Akerström et al., 2005; Rodriguez et al., 2005; Chattopadhyay & Brown, 2006). CaR is
also expressed in many cell types which are not directly involved in systemic calcium
homeostasis, including neurons and glia, endocrine and exocrine glands, epithelia, cells of
hematopoietic origin, and keratinocytes (Brown and MacLeod, 2001 and references therein).
Although the expression of CaR in these diverse cell types has been established at both the
mRNA and protein levels, and preliminary studies have characterized Ca2+

o-mediated
activation of cellular signaling pathways in culture models, the physiological importance of
CaR in these cell types has not be established. The current review will focus on the growing
evidence that Ca2+

o fluctuations occur as a routine consequence of Ca2+
i signaling. Autocrine/

paracrine sensing of Ca2+
o fluctuations by CaR (or potentially other Ca2+ sensors) amplifies

and integrates agonist-mediated signals in multicellular networks.

Measuring fluctuations in Cao2+

The concentration of Ca2+
o ([Ca2+

o]) in the bulk solution bathing cells and tissues is in the
range of 1.1–1.4 mM, more than 10,000 times higher than resting [Ca2+

i]. Measurement of
Ca2+

o fluctuations in proximity to cells or in restricted intercellular spaces has suffered from
a lack of adequate experimental tools to either access the compartment or resolve small
[Ca2+] increments imposed on a high background [Ca2+

o]. Ca2+-sensitive small molecule
indicators such as fura-2 (Haugland, 2005) and genetically encoded Ca2+ sensors (Palmer et
al., 2006; Kotlikoff, 2007) generally respond to changes in Ca2+ in the nM – µM range, and
are saturated at physiological [Ca2+

o]. A variety of approaches have been used to measure
[Ca2+

o] fluctuations, although each has its limitations with regard to either sensitivity or spatial
resolution. Here we present a brief overview of the methods.

Microelectrodes filled with Ca2+-ion exchange resins
Early studies of Ca2+

o fluctuations utilized microelectrodes containing ion exchange resins
with affinities for Ca2+ in the µM to mM range. Impalement of tissue with both a resin-
containing microelectrode and a reference microelectrode allows measurement of changes in
Ca2+

o under physiological conditions, and indeed, such studies demonstrated large decreases
in Ca2+

o during stimulation of the central nervous system (Nicholson et al., 1977). Access to
restricted diffusion compartments is possible in some isolated exocrine glands, and Ca2+-
selective electrodes have been used to impale gastric glands from frog mucosa (Caroppo et al.,
2001; Caroppo et al., 2004) or intact gastric mucosa (Hofer et al., 2004), demonstrating slow
changes in lumenal Ca2+

o in response to agonist stimulation. The vibrating probe technique,
which was initially developed and used to measure net charge currents in the vicinity of cells
and multicellular systems (first described by Jaffe and Nuccitelli, 1974), was adapted to
measuring Ca2+

o gradients by using low resistance Ca2+-sensitive resin-filled electrodes,
vibrated across the surface of cells or tissues (Smith et al., 1994; Kűhtreiber & Jaffe, 1990).
Self-referencing, vibrating Ca2+ microelectrodes have the sensitivity to quantify both influx
and efflux in the vicinity of isolated cells, and have been used to map the Ca2+ fluxes near the
surface of stereocilia of isolated hair cells (Yamoah et al., 1998). While the vibrating Ca2+-
selective probe improves spatial and temporal resolutions to a few microns and seconds,
respectively, access to restricted diffusion compartments between cells is limited.

Ca2+-sensitive fluorophores or genetically encoded Ca2+ sensors
Ca2+-sensitive fluorophores have broad utility in studying the temporal and spatial dynamics
of Ca2+ changes, but their utility for measuring Ca2+

o changes has been limited to date due to
their high affinities for Ca2+, i.e., at normal physiological [Ca2+

o] most dyes are saturated
(Knot et al., 2005; Knöpfel et al., 2006). Nevertheless, Ca2+ fluorophores afford sensitivity,
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time resolution and access to restricted spaces, prompting adaptation of fluorescence indicators
to the measurement of Ca2+

o fluctuations. In general, such methods require experiments to be
performed in limited volumes and at low [Ca2+

o]. Impermeant Ca2+ dyes were used to estimate
Ca2+

o decreases during a cardiac action potentials (Cleemann et al., 1984; Hilgemann &
Langer, 1984; Hilgemann, 1986), allowing inferences about the magnitude and timing of
Ca2+ influx into cardiac myocytes in multicellular preparations. A further iteration in the
development of a reliable means of measuring Ca2+

o fluctuations with Ca2+-sensitive
fluorophores is the droplet technique, developed by Drs. Tepikin and Petersen (Tepikin et al.,
1992a,b; Tepikin et al., 1994). This method makes use of current Ca2+-sensitive fluorophores
under low [Ca2+

o] conditions to characterize changes in Ca2+
o in small clusters of exocrine

gland cells. Ca2+
o can be measured using a Ca2+ indicator coupled to high molecular weight

dextran beads to limit diffusion of the Ca2+
o signal, and Ca2+

i can be measured using a
cleaveable, acetoxymethyl ester (AM)-conjugated dye having distinct Ca2+ affinities and
spectral characteristics (Belan et al., 1996; Belan et al., 1998; Mogami et al., 1999). More
recently, Ca2+

o dyes have been targeted directly to the extracellular surface of the plasma
membrane using fura-C18 (De Luisi & Hofer, 2003; Hofer, 2005). Stimulation of cells can be
initiated by injection of agonists/drugs into the oil droplet containing the cells, and changes in
both Ca2+

i and Ca2+
o can be monitored simultaneously. While this approach has provided

powerful insights into the temporal dynamics of transmembrane Ca2+ movements, it should
be reiterated that the experiments must be performed in low or nominally zero Ca2+

o because
of the high Ca2+ affinity of the fluorophores. To date, genetically encoded Ca2+ sensors have
not been amenable to measurement of Ca2+

o fluctuations under physiological conditions.
Engineered Ca2+ sensors are most commonly designed to monitor intracellular Ca2+

fluctuations and are based on native proteins containing high affinity, EF-hand motifs for
Ca2+ binding (Miyawaki et al., 1999; Palmer et al., 2006; Tour et al., 2007; Kotlikoff, 2007).
The power of the genetically encoded Ca2+ sensors includes the ability to target the sensor to
distinct cellular organelles or subcellular locations (Palmer et al., 2006; Tour et al., 2007).
Ca2+ sensors capable of accurately resolving Ca2+ fluctuations in the endoplasmic reticulum
lumen, where [Ca2+] may approach that of the extracellular environment, have been plagued
by interactions with ER-resident Ca2+ binding proteins and/or pH effects on the sensors (Hara
et al., 2004; Palmer et al., 2004; Osibow et al., 2006). A recent report of a family of Ca2+

sensors derived from green fluorescent protein, GFP, with affinities in the range of 0.4–2 mM,
suggests that sensors useful for the real-time measurement of Cao

2+ fluctuations in high
[Ca2+] intracellular compartments and at the surfaces of cells are being developed (Zou et al.,
2007). The ability to genetically encode such a sensor and target it to the extracellular surface
of cells or transgenic animals will greatly increase our understanding of dynamic changes of
[Ca2+

o] during cell and tissue activation.

Genesis of extracellular Ca2+ microdomains
[Ca2+

o] microdomains which differ significantly from systemic [Ca2+
o] have been identified

and characterized in many tissues, including cardiac myocytes (T tubules), neurons (synaptic
cleft), epithelia, regions of bone resorption, and exocrine glands. [Ca2+

o] fluctuations in tissue
microdomains can result from the differential kinetics of activity-driven movements of Ca2+

across the membrane, the asymmetric distribution of Ca2+ signaling and transport proteins in
polarized cells, and/or the unique nature of the extracellular space to which Ca2+ movements
are confined. Interstitial spaces represent a variable but minor component of tissue volume,
eg. extracellular space comprises 20% of total brain volume (Thorne & Nicholson, 2006), and
dense packing of cells in endocrine glands significantly increases and synchronizes hormone
secretion (Petrasek et al., 2002). In most, if not all cases, all of these factors contribute to
generation of Ca2+

o microdomains. Here we discuss the evidence for each of these contributors
to physiologically relevant [Ca2+

o] fluctuations.
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Asymmetric distribution of Ca2+ signaling and transport proteins
Polarized expression and targeting of Ca2+ permeable ion channels, the plasma membrane
Ca2+ ATPase (PMCA) and/or the Na+/Ca2+ exchanger (NCX) can create distinct plasma
membrane compartments specialized for Ca2+ influx and efflux, potentially creating areas of
extracellular accumulation or depletion of Ca2+, particularly coupled with restricted diffusion
spaces within a tissue. The differential distribution of Na+, Ca2+ and K+ channels, and both
PMCA and NCX between cardiac sarcolemmal and T tubular membranes produces the efficient
release of intracellular Ca2+ from the sarcoplasmic reticulum and rapid recovery of Ca2+

i during
diastole (Brette & Orchard, 2003), which is reflected in the reduction and recovery of [Ca2+]
in the T tubules during each contraction (Cleemann et al., 1984; Hilgemann & Langer, 1984;
Hilgemann, 1986). Similarly, the global decreases in [Ca2+

o] observed in intact rat brain after
hypoxia (Silver & Ercińska, 1990) can be attributed to the highly specialized expression and
distribution of voltage- and neurotransmitter-activated Ca2+ permeable channels at the pre-
and postsynaptic membranes (Rusakov et al., 1999; Juhaszova et al., 2000, Wiest et al.,
2000; Stanley, 2000). Indeed, the synaptic cleft represents a highly dynamic compartment for
stimulus frequency-dependent Ca2+

o fluctuations (Vassilev et al., 1997). The pancreatic acinar
cell, a well-studied model for exocrine gland cells, takes up Ca2+ at the basal pole and extrudes
Ca2+ from the apical pole after agonist stimulation (reviewed in Petersen & Tepikin, 2007).
An asymmetric distribution of plasma membrane Ca2+ channels and PMCA, as well as
distinctive subcellular distributions of intracellular organelles including mitochondria and
secretory vesicles, contribute to the directional secretion of Ca2+ into the lumen of pancreatic
acini (Belan et al., 1996; Ashby & Tepikin, 2002; Li et al., 2004). Many types of polarized
epithelial cells have segregated Ca2+ influx and efflux pathways at apical versus basolateral
membranes, leading to transepithelial Ca2+ transport (Bourdeau & Burg, 1980; Nellans &
Goldsmith, 1981; Bronner, 1989; Friedman & Gesek, 1995; VanHouten et al., 2004).

Temporal dynamics of Ca2+ signaling events
The temporal dynamics of [Ca2+

i] changes after cell activation are critical to shaping cellular
responses. Complementary changes in [Ca2+

o] can occur when the extracellular space is
functionally compartmentalized as a result of diffusion barriers, eg. in the synaptic cleft, in the
exocrine gland lumen, or along the crypt-villus axis of intestinal mucosa. Voltage activated
Ca2+ channels generate a rapid, transient Ca2+ influx, which can be further potentiated by
Ca2+-induced Ca2+ release from intracellular stores. Similar rapid Ca2+

i transients can be
generated upon G protein-coupled receptor (GPCR) activation of Ca2+ release from
intracellular stores. Ca2+

i is then brought back to baseline levels primarily by efflux pathways
including PMCA and/or NCX, with a potential second wave of targeted Ca2+ influx for refilling
of intracellular Ca2+ stores. Figure 1 illustrates the molecular components of GPCR signaling
via Gq, with the potential for autocrine amplification of the Ca2+

i signal by CaR. In T cells,
coordinate regulation of PMCA and store-sensitive Ca2+ release-activated Ca2+ channels
(CRAC) shapes the intracellular Ca2+ transient (Bautista & Lewis, 2004). The general features
of intracellular Ca2+ signaling dynamics for exocrine gland cells have recently been reviewed
by Petersen & Tepikin (2007). Interestingly, the bulk of the [Ca2+

i] increase after cell activation
is extruded from cells via PMCA, resulting in an estimated loss of Ca2+

i on the order of 0.4
mM for exocrine secretory cells (Belan et al., 1998), with an attendant increase in Ca2+

o at the
apical, secretory pole of the cell (Belan et al., 1998;Petersen & Tepikin, 2007). Secretory
granules themselves contain high amounts of Ca2+ (50–100 mM total [Ca2+], Hutton et al.,
1983; ≈50 µM free [Ca2+], Mitchell et al., 2001), likely bound to the low affinity Ca2+ chelator
chromogranin A (O’Connor et al., 1983;Yoo & Albanesi, 1990;Nicaise et al., 1992), which
can be released in quanta upon initiation of secretion (Gerasimenko et al., 1996;Belan et al.,
1998). Distinctions can be made between PMCA-mediated Ca2+ extrusion, which is non-
quantal (Belan et al., 1996) and granule-mediated Ca2+ extrusion, which is pulsatile (Belan et
al., 1998). The net effect of a strong stimulus for secretion is the transient, directional efflux
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of a significant fraction of total cellular Ca2+, which can generate a physiologically relevant,
transient fluctuation in [Ca2+

o].

CaR as the prototypical sensor of Ca2+o fluctuations
The cloning of CaR (Brown et al., 1993) from bovine parathyroid laid the groundwork for an
increasing awareness of the signals inherent in Ca2+

o fluctuations in cells and tissues. The
highly cooperative dependence of CaR activation on [Ca2+

o] (Garrett et al., 1995; Ruat et al.,
1996; Gama & Breitwieser, 1998) correlates with the steep inverse relationship between serum
[Ca2+] and PTH secretion (Brown, 1983). CaR is expressed in tissues involved in systemic
Ca2+ homeostasis, including kidney (reviewed in Huang & Miller, 2007), intestine (reviewed
in Kirchhoff & Geibel, 2006) and bone (reviewed in Dvorak & Riccardi, 2004). CaR may also
be involved in central nervous system (CNS)-mediated fine-tuning of systemic Ca2+ and fluid
balance by regulating angiotensin secretion by the subfornical organ (Rogers et al., 1997;
Washburn et al., 2000), and contributes to the regulation of Ca2+ transport across the placenta
during fetal development (reviewed in Brown & MacLeod, 2001).

CaR is a member of family 3/C of the GPCR superfamily and functions as a disulfide-linked
homodimer (Ray et al., 1999). The CaR agonist binding site lies within a large extracellular
domain (ECD) consisting of a Venus flytrap-like domain (VFTD) and a cysteine-rich domain
(CysRD) (Figure 2). Ca2+ and polyvalent cations bind in the cleft of the VFTD (Silve et al.,
2005; Huang et al., 2007). Amino acids allosterically modulate CaR activation and bind to an
adjacent site on the VFTD (Mun et al., 2005; Acher & Bertrand, 2005). CaR activity can also
be modulated by clinically important phenylalkylamine derivatives, binding at site(s) within
the transmembrane helical domain (TMD) (Petrel et al., 2003; Miedlich et al., 2004; Petrel et
al., 2004). The intracellular loops (ICLs) and carboxyl terminus (CT) of CaR interact with
heterotrimeric G proteins (Gq, Gi, G12/13) to initiate signaling although the residues involved
have not been unequivocally identified (reviewed in Ward, 2004). CaR also interacts with the
cytoskeletal scaffold Filamin A (Awata et al., 2001; Hjalm et al., 2001), and this interaction
both stabilizes CaR against degradation (Zhang & Breitwieser, 2005) and facilitates MAPK
signaling (Hjalm et al., 2001; Zhang & Breitwieser, 2005). Finally, CaR has been shown to
interact with RAMPs 1 and 3 (receptor-activity-modifying proteins), an interaction which is
required for efficient trafficking to the plasma membrane (Bouschet et al., 2005), and may
facilitate differential targeting of CaR to distinct membrane compartments. CaR is expressed
in myriad cells and tissues, including neurons and glia in the CNS (Yano et al., 2004), peripheral
perivascular sensory nerves (Bukoski et al., 1997), exocrine cells in the pituitary (Zivadinovic
et al., 2002), pancreas (Komoto et al., 2003), and gastrointestinal tract (Conigrave & Brown,
2006; Remy et al., 2007), epithelia of the lens (Chattopadhyay et al., 1998) and olfactory bulb
(Hubbard et al., 2002), in mammary tissue (VanHouten et al., 2004), the prostate (Lin et al.,
1998), fibroblasts (McNeil et al., 1998) and keratinocytes (reviewed in Tu et al., 2004). Many
of the cell types in which CaR is expressed have no known role in systemic Ca2+ homeostasis.
What is/are the physiological roles of CaR in these diverse tissues? Family C GPCRs as a group
encompass a variety of metabolic sensors for Ca2+, amino acids, and tastants (Bräuner-Osborne
et al., 2007). CaR is activated not only by Ca2+ but by amino acids and peptides binding at
allosteric sites (reviewed in Breitwieser et al., 2004). Conigrave & Brown (2006) present strong
arguments for a physiological role of CaR as a “taste receptor” in the gastrointestinal tract,
functioning predominantly as an L-amino acid sensor. Similarly, the expression patterns for
CaR in a number of fish species suggest roles in amino acid and/or salinity sensing (Naito et
al., 1998; Hubbard et al., 2002; Loretz et al., 2004). For many other cells types which express
CaR, the nature of the in vivo activating stimulus and functional consequences are unknown,
although in many cases, we have a detailed map of the signaling pathways which are activated
by CaR in isolated cells in culture. An increasing understanding of the dynamics of Ca2+

o
fluctuations in interstitial spaces has pointed to two potential roles for CaR in integrating tissue
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function. First, CaR may act as a gradient sensor, triggering chemotaxis of motile cells to
critical niches in bone or epidermis. Second, CaR may function in an autocrine/paracrine
fashion to integrate cell signaling across multicellular networks, particularly in epithelia and
exocrine glands. Here we discuss the mounting evidence in support of these integrative roles
for CaR in tissue function.

Ca2+ gradients as homing signals
Ca2+

o gradients are present in a number of distinct physiological niches and can represent
potent signals for cell migration, bringing together the distinct cell types required to intiate a
multicellular process such as bone remodeling or wound repair. CaR activates several signaling
pathways which can mediate shape changes and promote cell migration, including Rho A
through interactions with filamin (Pi et al., 2002), and through CaR interactions with β-
arrestin-1, the Arf nucleotide binding site opener (ARNO)—ARF6—engulfment and cell
motility protein (ELMO) protein network (Bouschet et al., 2007). CaR activation leads to cell
migration in osteoblasts (Godwin & Soltoff, 1998; Yamaguchi et al., 1998a), peripheral blood
monocytes (Yamaguchi et al., 1998b; Olszak et al., 2000), stem cells (Adams et al., 2006), and
GnRH neurons (Chattopadhyay et al., 2007). CaR also plays a role in fibroblast and
keratinocyte migrations during epidermal development and wound repair (reviewed by Martin,
1997; Landsdown, 2002).

Bone remodeling occurs constantly at 1–2 million discrete sites in the adult skeleton (reviewed
in Raisz, 1999). Bone remodeling at each site is initiated by osteoclasts, multinucleated cells
derived monocytes (reviewed by Teitelbaum, 2000). Bone demineralization is achieved by
vectorial secretion of HCl into the resorptive space formed under the mature osteoclast, yielding
an extracellular pH < 4.5 and very high local [Ca2+

o], on the order of 40 mM (Silver et al.,
1988). Multiple cell types in bone marrow express CaR (House et al., 1997), and in particular,
stromal cells (Yamaguchi et al., 1998a) and osteoblasts (Sugimoto et al., 1993); Godwin &
Soltoff, 1997) are activated by high [Ca2+

o] and migrate in response to Ca2+ gradients. While
there has been some dispute in the literature regarding which cell types that contribute to bone
remodeling express CaR, or a related, recently deorphanized receptor, GPRC6A (discussed in
Brown, 2007), it is clear that Ca2+

o represents a potent homing signal which targets cells
required for bone formation to the site(s) of bone dissolution. Interestingly, both CaR and
GPRC6A are activated by divalent cations and amino acids, although each has a distinct order
of amino acid preference (Conigrave et al., 2000; Christiansen et al., 2007). Sites of active
bone resorption also contain high levels of amino acids from protease-mediated breakdown of
bone matrix proteins (Teitelbaum, 2000), so it will be of interest to determine whether the
combination of high Ca2+

o and amino acids differentially affects cell migration through CaR
and/or GPRC6A. High [Ca2+

o] not only promotes migration of osteoblasts, but initiates a
program of proliferation and maturation which is required to elaborate the gene products
involved in bone matrix mineralization. Targeting constitutively active CaR to mature
osteoblasts dysregulates maturation and leads to loss of cancellous bone (Dvorak et al.,
2007). Finally, CaR is required for targeting of haematopoietic stem cells to the endosteal niche
(Adams et al., 2006), since CaR−/− mice have defects in both migration and homing. CaR is
being considered as a potential clinical target to enhance stem cell mobilization and
engraftment in bone marrow transplants (Ballen, 2007).

A Ca2+
o gradient is crucial to the normal development of skin, and to the process of wound

healing. The epidermal permeability barrier is established late in fetal development (reviewed
in Byrne et al., 2003). Coincident with permeability barrier formation, the Ca2+

o gradient, low
in basal and spinous layers and highest in the granule layer, develops (Elias et al., 1998). The
Ca2+

o gradient has been shown to regulate lamellar body secretion independent of barrier
formation (Menon et al., 1994). CaR−/− mice have abnormalities in epidermal development,
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with enhanced numbers of proliferating keratinocytes and a decrease in expression of late
markers of differentiation including filaggrin, and loricin (Komuves et al., 2002). Conversely,
transgenic mice overexpressing CaR in basal cells of the epidermis, driven by the human keratin
14 promoter, have precocious fetal barrier formation, early hair follicle development,
hypertrophic epidermis with an increase in spinous and granular layers and overexpression of
terminal differentiation markers including filaggrin, involucrin and loricin (Turksen & Troy,
2003). CaR is thus a critical sensor of the epidermal Ca2+

o gradient during epidermal
development, stimulating migration as well as initiation of the program of keratinocyte
differentiation.

Wound healing is a specialized case of epidermal development, and the initiating signal
includes disruption of the epidermal Ca2+

o gradient and a large increase in [Ca2+
o] in the basal

layers of the epidermis. High [Ca2+
o] and/or elevated concentrations of other cations including

Mg2+, zinc, copper and iron, act as homing signals for monocytes (Yamaguchi et al., 1998b;
Olszak et al., 2000), fibroblasts (Payne et al., 1996), and keratinocytes (Magee et al., 1987).
Lateral migration into the wound site of dermal fibroblasts and keratinocytes is critical to re-
epithelialization (Jensen & Bolund, 1988; Zia et al., 2000), and is initiated in response to
elevated [Ca2+

o]. Keratinocytes are extremely sensitive to [Ca2+
o], with the so-called “calcium

switch” from proliferation to differentiation occurring when Ca2+
o is increased from 0.03 mM

to >0.5 mM, while fibroblasts, in contrast, require [Ca2+
o] above 1.4 mM for proliferation

(Kulesz-Martin et al., 1984). Both keratinocytes (Bikle et al., 1996) and fibroblasts (McNeil
et al., 1998) require CaR expression for the Ca2+

o-induced changes in cell function (Tu et al.,
2001). Keratinocytes express both the normal CaR form observed in most other tissues and a
splice variant with a deletion of exon 5 which does not respond to changes in [Ca2+

o] (Oda et
al., 1998). During Ca2+

o-induced differentiation of keratinocytes, there is a decrease in
expression of the full length form of CaR, with no change in the amount of splice variant protein
expressed (Oda et al., 1998). The full length form of CaR is required to initiate the “calcium
switch” in keratinocytes (Komuves et al., 2002). The original CaR−/− mouse, which utilized
an insertion of the neomycin cassette into exon 5 (Ho et al., 1995) represents an interesting
control, since it expresses only the splice variant. Epidermal differentiation in CaR−/− mice is
limited, with enhanced proliferation despite an enhanced epidermal Ca2+ gradient (Komuves
et al., 2002), confirming the importance of full length CaR for initiation of keratinocyte
differentiation.

Ca2+ fluctuations as integrators of tissue activity
Hofer and colleagues have championed the idea that CaR acts as a sensor and integrator of
tissue activity, since their first description of intercellular communication via CaR (Hofer et
al, 2000). This was a revolutionary idea, eliciting a “News and Views” comment by Thomas
(2000), and shifted the focus from intra- to extracellular Ca2+ as a signal for tissue integration.
To this point, tissue integration of Ca2+ signals was considered predominantly a phenomenon
linked to gap junctions. HEK293 cells stably expressing human CaR (HEK-CaR) were cultured
on coverslips under restricted diffusion conditions (fine gauge polypropylene fibers were
melted onto glass coverslips to generate small lacunae between the plastic and the glass). CaR
activation by varying [Ca2+

o], or upon addition of an allosteric agonist for CaR, NPS R-467,
elicited characteristic alterations in [Ca2+

i]. To test for Ca2+-mediated intercellular
communication, HEK-CaR cells were co-cultured with non-CaR expressing cells (either
BHK-21 fibroblasts or freshly isolated pancreatic acinar cells). Agonist-mediated activation
of an increase in [Ca2+

i] in BHK-21 cells was elicited by histamine, which induced an alteration
in [Ca2+

i] of adjacent HEK-CaR cells after a brief time lag. Similar experiments with pancreatic
acinar cells elicited HEK-CaR cell changes in [Ca2+

i] in response to cholecystokinin and/or
bombesin, activators of pancreatic cell receptors. Activation of HEK-CaR cells required both
close proximity to BHK-21 fibroblasts or pancreatic acinar cells, and restricted diffusion, i.e.,
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location of the cells in lacunae created by the polyethylene fibers. Incubation of the agonist-
activated cells with BAPTA-AM, to buffer the rise in [Ca2+

i] and limit Ca2+ efflux, or inclusion
of a Ca2+ buffer (citrate/isocitrate/BAPTA) in the extracellular solution inhibited the responses
in the HEK-CaR cells. These results demonstrated that agonist activation of Ca2+

i signaling
also generates a Ca2+

o signal which can be “read” by adjacent cells which express CaR,
potentially amplifying and integrating focal signals resulting from neural or paracrine pathways
impinging directly onto only a subset of cells in a tissue. Figure 3 illustrates a simplified model
of trans-tissue amplification by autocrine/paracrine activation of CaR by Ca2+ released from
activated cells.

The initial experiments supporting a role for CaR in intercellular communication were
performed in an artificial cell culture system (Hofer et al., 2000). Experiments in intact
polarized gastric acid-secreting epithelia have demonstrated polarized alterations in [Ca2+

o] in
response to agonist application (Caroppo et al., 2001). Alterations in [Ca2+

o] fluctuations are
blocked by inhibiting release of Ca2+ from endoplasmic reticulum with sarcoendoplasmic
reticulum Ca2+-ATPase (SERCA) inhibitors or by chelation of intracellular Ca2+ with BAPTA-
AM, suggesting that the [Ca2+

o] fluctuations are a consequence of agonist-activated Ca2+
i

signaling. Interestingly, immunostaining of the isolated tissue suggests that both PMCA and
CaR are localized to basal and lateral aspects of the surface epithelial cells (Caroppo et al.,
2001), putting the “sensor” in proximity to the “signal”. Additional microelectrode studies in
isolated epithelia (Hofer et al., 2003; Caroppo et al., 2004) confirm and extend these findings.

The potential functional linkage between CaR and PMCA was directly explored in HEK-CaR
cells (De Luisi & Hofer, 2003), and results suggest that PMCA-mediated Ca2+ efflux increases
the activity of CaR. CaR and PMCA are preferentially localized to cell contact regions, and
CaR-mediated Ca2+ oscillations were more likely to be observed in cell clusters rather than
isolated cells. Near-membrane measurements of fluctuations in [Ca2+

o] using the lipophilic
indicator fura-C18 demonstrated that increases in [Ca2+

o] lagged behind increases in [Ca2+
i]

in response to application of spermine, an allosteric activator of CaR, suggesting that efflux
was a result of CaR activation. Addition of extracellular Ca2+ buffers severely blunted the
increase in [Ca2+

o]. Ca2+ activation of CaR is highly cooperative, with an apparent Hill
coefficient ranging from 2–4 (Garrett et al., 1995; Ruat et al., 1996; Gama & Breitwieser,
1998). These results suggest that the apparent sensitivity of CaR to Ca2+

o may be augmented
by Ca2+ efflux from activated cells by autocrine/paracrine feedback (illustrated schematically
in Figure 1), and further, that the sensitivity of CaR to [Ca2+

o] fluctuations may be cell and
tissue-dependent.

Overall, the studies in HEK-CaR cells make a strong case for a critical role for CaR in
integrating Ca2+ signaling events in multicellular networks. CaR-mediated intercellular
signaling requires close proximity between cells, restricted diffusion, and intact intracellular
signaling pathways leading to increases in [Ca2+

i] and efflux via PMCA. Parallel studies in
isolated, intact epithelia suggest that the proposed signaling-mediated fluctuations in [Ca2+

o]
can occur. To determine the breadth and generality of CaR-mediated integration of cell
signaling requires the development of methods to measure [Ca2+

o] fluctuations in intact tissues.
Until then, CaR double knockout mice (CaR−/−/PTH−/− (Kos et al., 2003) or CaR−/−/
Gmc2−/− (Tu et al., 2003)) which survive to adulthood may provide evidence for the
importance of CaR in integration of tissue responses.

Other Ca2+o sensors in specialized environments
We have focused our discussion of the potential contributions of [Ca2+

o] fluctuations on CaR
because it represents the cleanest example of a Ca2+-sensitive “sensor”. It should be noted,
however, that a variety of membrane-localized proteins sensitive to Ca2+

o fluctuations have
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been identified, including metabotropic glutamate receptors, particularly subtypes 1 and 5
(Saunders et al., 1998; Kubo et al., 1998, but see also Nash et al., 2001), GABAB receptors
(Tabata et al., 2004), calcitonin receptors (Stroop et al., 1993), gp330/Megalin (Lundgren et
al., 1997), TRPM7 channels (Wei et al., 2007), gap junction hemichannels (Stout & Charles,
2003), Notch (Rand et al., 2000; Raya et al., 2004), ASIC1a/ASIC1b channels (Babini et al.,
2002), and a variety of voltage-gated cation channels (reviewed by Hofer, 2005). This partial
list will likely expand as the importance of [Ca2+

o] fluctuations in modulating cell signaling
is appreciated, and explicitly tested in a variety of experimental contexts.

Conclusions
Recent results suggest that Ca2+

o fluctuations occur as a natural consequence of agonist-
activated cellular signaling which increases Ca2+

o, primarily as a result of PMCA-mediated
export of Ca2+ released from intracellular stores. The presence of CaR on the activated cell or
adjacent cells initiates a wave of Ca2+ signaling through a multicellular network, not through
cell-cell coupling via gap junctions but through the diffusion-restricted extracellular space.
Other Ca2+-sensitive sensors may assume similar integrative roles in a tissue-specific manner.
Extracellular Ca2+ may represent the “tip of the iceberg” with respect to small molecules which
might serve to signal cell activation and lead to cell network integration. cAMP (reviewed by
Hofer & Lefkimmiatis, 2007), ATP (reviewed by Zimmermann, 2007), and cGMP (Sager,
2004) are exported from cells in physiologically significant amounts and may serve to integrate
non-Ca2+ signaling pathways, although the receptors and functionally important niches have
not in all cases been identified. It is clear that the interstitial environment represents a unique
signaling compartment which can profoundly influence the behavior of cells in a tissue. Needed
now are experimental approaches which permit the characterization and manipulation of this
compartment in vivo.
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Abbreviations
CaR, Calcium sensing receptor; Ca2+

o, extracellular calcium; GPCR, G protein-coupled
receptor; Ca2+

i, intracellular calcium; NCX, Na+/Ca2+ exchanger; PTH, parathyroid hormone;
PMCA, plasma membrane Ca2+ ATPase; 1,25(OH)2D, vitamin D.
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Figure 1. Molecular players in CaR-mediated autocrine/paracrine integration of Ca2+-mediated
signaling
Agonist activation of a Ca2+-mobilizing GPCR (1) activates heterotrimeric G protein Gq (2),
leading to activation of phospholipase Cβ (PLCβ)(3), and generation of inositol 1,4,5-
trisphosphate (InsP3), which binds to the endoplasmic reticulum-localized inositol
trisphosphate receptor (IP3R) (4), inducing release of Ca2+ into the cytosol. Most of the
Ca2+ released from the endoplasmic reticulum is pumped out of the cell by the plasma
membrane-localized Ca2+ ATPase (PMCA) (5). Restitution of endoplasmic reticulum Ca2+

content occurs via store-operated Ca2+ entry channels (SOCE) (6) and the sarcoendoplasmic
reticulum Ca2+ ATPase (SERCA) (7). If the activated cell also expresses the calcium sensing
receptor (CaR), potentiation of the response is possible, as PMCA pumps Ca2+ out of the cell
into a restricted diffusion space, significantly increasing the [Ca2+

o], leading to CaR activation
(8).
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Figure 2. Domain structure of CaR
CaR has a large extracellular domain of >600 amino acid residues (ECD) consisting of a venus
flytrap-like domain (VFTD) binding module with binding sites for Ca2+ and polyvalent cations
and a distinct site for amino acids. The VFTD is coupled to the transmembrane heptahelical
domain (TMD) by a cysteine-rich domain (CysRD) which is critical for coupling agonist
binding to transmembrane domain activation. The TMD contains binding site(s) for positive
and negative allosteric modulators of CaR. The intracellular loops (ICLs) plus large (215 amino
acid residues) carboxyl terminus (CT) contain binding sites for heterotrimeric G proteins as
well as the cytoskeletal scaffold protein Filamin A. CaR can also interact with RAMPs 1 and
3 (not shown). See text for details and references.
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Figure 3. Potential mechanism for CaR-mediated integration of Ca2+ signaling
When a single cell (or a few cells) in a multicellular network is (are) activated by an agonist
for a Ca2+-mobilizing GPCR, Ca2+

i increases, and is pumped out of the cell via PMCA. The
local increase in [Ca2+

o] in the restricted diffusion space surrounding the cells potentiates the
activity in the agonist-activated cell (autocrine activation), and also activates CaR on adjacent
cells (paracrine activation). CaR activation increases Ca2+

i, leading to PMCA-mediated
Ca2+ efflux in adjacent cells, propagating the Ca2+ signaling response through the tissue. In
this example, CaR is present in proximity to PMCA, which has been observed in epithelial
tissue (De Luisi & Hofer, 2003). For details of the signaling pathways, see Figure 1.
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