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We use residual-delay maps of observational field data for barometric
pressure to demonstrate the structure of latitudinal gradients in
nonlinearity in the atmosphere. Nonlinearity is weak and largely
lacking in tropical and subtropical sites and increases rapidly into the
temperate regions where the time series also appear to be much
noisier. The degree of nonlinearity closely follows the meridional
variation of midlatitude storm track frequency. We extract the specific
functional form of this nonlinearity, a V shape in the lagged residuals
that appears to be a basic feature of midlatitude synoptic weather
systems associated with frontal passages. We present evidence that
this form arises from the relative time scales of high-pressure versus
low-pressure events. Finally, we show that this nonlinear feature is
weaker in a well regarded numerical forecast model (European Centre
for Medium-Range Forecasts) because small-scale temporal and spa-
tial variation is smoothed out in the grided inputs. This is significant,
in that it allows us to demonstrate how application of statistical
corrections based on the residual-delay map may provide marked
increases in local forecast accuracy, especially for severe weather
systems.

Over the past 30 years, there has been growing theoretical and
modelling evidence of a marked change in atmospheric non-

linearity between tropical and extratropical regions. In the tropics,
although the important driving mechanisms are highly nonlinear
(convective in nature, occurring at the meso-scale), the large-scale
response is primarily linear (1–5). There is little wave–wave inter-
action and this large-scale variability seems to be largely a response
to anomalies in sea- and land-surface temperature and albedo, and
soil moisture (6). By comparison, much of the large-scale variability
in the extratropical atmosphere is highly nonlinear and arises from
baroclinic instability associated with the development of cyclones,
anticyclones, and fronts (6–11).

Most studies of atmospheric nonlinearity have concentrated on
theoretical aspects (e.g., chaos in models) or have examined ana-
lyzed meteorological fields, either by normal mode decomposition
or by computing variances and covariances. A few investigators have
attempted to directly analyze time series of field observations to
obtain estimates of the degree of deterministic chaos in the
atmosphere (12–17). However, many of the methods used to find
chaos in field data, and in particular, those involving the simple
computation of the correlation dimension and its relatives (18), are
not compelling, in that apparent low-dimensional chaos can easily
arise as an artifact of some forms of random noise (19–21). This has
cast into doubt many of the results from application of these
techniques to observational data.

Here, we step back from the perhaps overly restrictive question
‘‘Is the atmosphere chaotic?’’ to address more general and pertinent
issues regarding the presence and functional form of nonlinear
structure in atmospheric time series. This is in the spirit of Crutch-
field and McNamara, who were able to use observational data to
deduce equations of motion for an experimental system (22). We
introduce a new residual-delay technique for studying observational
field data of necessarily limited length. This method is not subject

to the difficulties mentioned above, and it provides a fresh approach
to obtain direct evidence of the degree of atmospheric nonlinearity,
its latitudinal gradient, and its variability within a particular region.
Moreover, we show how the V shape of the residual-delay map
(RDM), and in particular the response of this shape to the time
scales used in map generation, provides fundamental information
about the physical mechanisms responsible for the observed atmo-
spheric nonlinearity.

We conclude by addressing the practical importance of this
basic atmospheric property as it applies to weather forecasting.
We apply the residual-delay method to a numerical weather
prediction model from the European Centre for Medium-Range
Forecasts (ECMWF) and demonstrate that model output does
not capture the V shape present in real atmospheric data. By
incorporating this feature as a statistical correction, however, the
model’s spatially smoothed predictions can be adjusted to pro-
duce improved local forecasts. The corrected forecasts show
most promise for the cases of greatest interest: extreme pressure
events, including severe weather.

Methods
We present two demonstrations, based on an RDM and aniso-
tropic variances, to show that the atmosphere in temperate
regions is indeed nonlinear and that this nonlinearity diminishes
toward the tropics. In comparison to previous studies outlined
earlier, we are able to use observational data to identify the
specific source and nature of the nonlinearity, and we demon-
strate how this varies systematically across a latitudinal gradient
and within a geographical region.

We apply these methods to daily time series of observed baro-
metric pressures from 25 monitoring sites around Australia (Fig. 1),
each of which spans 30–45 years (10,000–17,500 points each). The
reason for focusing on station and mean sea-level pressure as
variables is that they are measures of the integrated mass of an
atmospheric column and key dynamic variables. In Australia, where
the upper-level network is poor, especially over the surrounding
oceans, and the land is relatively flat, the MSLP chart is by far the
most widely used and disseminated of all forecast charts. We
illustrate the use of the methods by choosing four representative
locations: Darwin (tropical), Townsville (subtropical), Perth (tem-
perate, west coast) and Sydney (temperate, east coast). Samples of
the time series for these locations are shown in Fig. 2.

RDM. The first method, which we call the RDM, involves
constructing the maximum likelihood AR3 model (an optimal
global linear autoregressive model). We found that in nearly all
25 cases, a model having three lagged coefficients produces the
best, or nearly best, out-of-sample linear forecasts of the one-
day-ahead mean sea-level pressure (explaining at least 80 per-

Abbreviations: RDM, residual-delay map; ECMWF, European Centre for Medium-Range
Forecasts.
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cent of the variance). Thus, we consider daily linear forecast
solutions having the simple linear form X̂t11 5 a1Xt 1 a2Xt21 1
a3Xt22, where X̂t11 is the linear prediction for tomorrow’s
pressure (t 1 1), and Xt, Xt21, and Xt22 are the observed
pressures for t, t 2 1, and t 2 2. We then examine the
relationship between the residual to the prediction at t 1 1
(Rt11 5 Xt11 2 X̂t11) and the observed raw barometric pressure
at time t, Xt (hence, the name residual-delay map).**

To reduce the variance and clarify any systematic patterns that
may exist, the raw values of barometric pressure are first sorted and
binned into groups of 100. For each bin, the average residual from
a linear forecast for the points in that bin is calculated and plotted
against the mean barometric pressure of the bin. RDMs thus
employ a two-way averaging procedure: each point in the RDM can
be thought of as the expected residual (at time t 1 1) where the
expectation is calculated over 100 points, contained within a given
bin of barometric pressure (at time t). The map (Fig. 3) effectively
shows how the expected residual of the optimal linear forecast
model (AR3) varies as a function of past barometric pressure.

If the underlying process responsible for generating the baro-
metric time series is linear then there should be no structure to the
residuals displayed; that is, they should fluctuate evenly around
zero. Alternatively, if there is nonlinear structure of sufficiently low
dimension to be detected with the data in hand, the functional form
of the lagged nonlinearity—the fahshion in which the residuals
depart from a random distribution centered around zero—will
likely become apparent.

The plots in Fig. 3 show a lack of any clear nonlinearity in the
tropics (Darwin and Townsville), but a very distinct nonlinear
signature in the temperate zone (Perth and Sydney). Moreover, the
nonlinearity that is displayed at the temperate sites is shown to be
present in all seasons (cf. colors in Fig. 2). This information can be
used in two ways: (i) to predict the next few steps in the time series
and (ii) to statistically correct deterministic numerical weather
prediction forecasts for local (subgrid-scale) conditions and model
bias. In this paper we concentrate on the second application.

Although residuals are commonly used to judge the fit of
models, our method is novel in that we plot the binned residuals

against the time-lagged raw variable.†† Structure emerging from
an RDM identifies pressure-specific time-dependencies in the
residuals that can be exploited to improve prediction. Moreover,
we shall see it can provide insight into the physical meaning of
the time scales of the dynamics. This method does not require
intensive computation as do other nonlinear methods, and the
data do not have to be continuous as in spectra or polyspectra.

Anisotropic Variances. The second method of detecting nonlin-
earity in field data involves constructing a one-dimensional
phase portrait and tests the assumption that variances in an AR
model should be isotropic and bivariate Gaussian between
lagged variables. That is, if the underlying process is linear and
driven by Gaussian noise, the variability in the scatter between
lagged variables should be isotropic. Thus, to implement this test,
one simply needs to plot the pressure at time t, (Pt), versus the
pressure at time t 1 1, (Pt11), as is done in Fig. 4, and measure
the anisotropy of the variance in the scatter of points obtained
to get an indication of the degree of non-Gaussianity (often
associated with nonlinearity) potentially present in the data.

Although this approach is not novel, it is simple to implement and
provides an independent test of the findings from the RDM.
Anisotropic variances are not a conclusive test of nonlinearity,
however, as non-Gaussianity does not necessarily imply nonlinear-
ity. Further, they do not show the specific functional form of the
nonlinearity or how to exploit it to improve forecastability. Thus we
use this only as a corroborative test of the RDM, which has the
advantage that it can show the specific form of the nonlinearity. To
our knowledge, this is the first use of phase portraits to obtain a
quantitative measure of the increased variance with low pressure
(the anisotropy of the system), which occurs at temperate latitudes.

Results and Discussion
Figs. 3 and 4 indicate a consistent latitudinal trend with regard
to the relative nonlinearity of the time series from the four sites
in Fig. 2. Darwin (tropical) and Townsville (subtropical) appear

**Although we use residuals from an AR3 model here [RDM(AR3)], one could just as easily
construct an RDM by using residuals from other forecast models.

††Note that this method avoids the problems associated with whitening chaotic data as
mentioned by Theiler and Eubank (23) because we do not whiten the input variables (Xt,
Xt 2 1, Xt 2 2). Plots of the residuals as a function of raw variables and simple generalisa-
tions to higher dimensions are discussed by Smith and Bhansali (24), but the application
to meteorological observations and the binning of the residuals reported here are new.

Fig. 1. Map showing locations of 24 monitoring sites for field measurements
of barometric pressure. The other station used, Macquarie Island (54° 299 S,
158° 569 E), lies south of the map.

Fig. 2. Representative sections of the time series of daily barometric pres-
sures (hPa at 0900 LST), for two tropical sites at Darwin and Townsville and two
temperate sites in western (Perth) and eastern (Sydney) Australia. Station
locations are in Fig. 1. The colors refer to the four seasons: magenta, winter;
cyan, spring; red, summer; blue, fall. These colors should be cross-referenced
with Fig. 3.
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to lack any nonlinear structure in the RDM (Fig. 3) and have
essentially the same variability at times of high and low pressure
(isotropic variances) (Fig. 4). Their dynamics, therefore, appear
to be adequately modeled as linear processes.‡‡ In sharp con-
trast, the two temperate sites, Perth (west coast) and Sydney
(east coast), both of which have more variable time series that
appear noisier to the naked eye (Fig. 2), also show distinct
nonlinear signatures, both in the RDM and in the demonstrated
anisotropic trend of higher variability with lower pressure.

Of particular note is the V-signature shown in the RDMs for
the high-latitude stations. Clearly the residuals are not Gaussian,
as would be expected from a linear system. The interesting
nonlinear structure appears to a first approximation to be
roughly quadratic or V-shaped in the first lag. Moreover, as
shown by the color-coded seasons in Fig. 3, this nonlinear
signature is an annually robust feature that is present in all
seasons. It is present during, El Niño, La Niña, and non-event
years, and with the seasonal mean removed. As will be discussed,
this V-shape is the key to understanding the nature of the
nonlinearity in daily observations of barometric pressure.

We next extend these methods to analyze the daily time series
of barometric pressures from all of the 25 Australian monitoring
sites shown in Fig. 1. An index of nonlinearity is defined by taking
the mean of the squares of the binned residuals of an RDM, R,
and normalizing this quantity by the product of the standard
deviations of the binned and unbinned residuals, r, to correct for
the larger residuals in midlatitudes compared to the tropics:

Index 5
R2

stdev~R!stdev~r!
.

As a rough approximation, this index of nonlinearity is related
to the correlation between predicted and actual residuals, where
predictions are made using 100 nearest neighbors (21, 25–29).

Let r̂t11 denote the predicted residual from a 100 neighbor
prediction, which is approximated by binning the residuals as in
an RDM. Then the correlation between predicted and actual
residual is given by

r~r̂t11, rt11! 5
1
N

O
t

r̂t11 rt11

stdev~r̂!stdev~r!
.

But on the right-hand side, we may approximate r̂t11 5 rt11 1 nt11,
where nt11 is a noise term uncorrelated with rt11, so that the sum
may be approximated as the sum of the squared terms of the RDM.

Fig. 5 demonstrates that the index of nonlinearity for RDMs
is nearly constant equatorward of 25° latitude, increases rapidly
towards southern Australia, and then perhaps decreases again at
higher latitudes. The uniformly low indices in the tropics lie
within roughly one equatorial Rossby radius of deformation
from the equator. The sharp increase into midlatitudes and the
evidence for a decrease at higher latitudes also correspond
closely to the shape of the storm frequencies in this region (11).

A similar result is found for the index of anisotropy of
variances (Fig. 6). Here a model of the form uRt11u 5 aXt 1 b
is fitted to the barometric pressure, Xt, by least squares. Because
the residuals, Rt11, have more variability at low pressures, a
negative value is obtained for a. We refer to the absolute value
of a as the index of anisotropy of variances as it quantifies the
results in Fig. 4 (the cone-shape, or increase in variance between
Xt and Xt11 at temperate latitudes).

Nonetheless, for reasons that will become clear, the particular
form of nonlinearity revealed in the RDM is a feature that is not
fully reproduced in the prevailing numerical weather prediction
data (ECMWF for Perth and Sydney). More importantly, we shall

‡‡This does not imply that a high dimensional nonlinear model may not give improved
performance.

Fig. 3. RDMs of barometric pressure
(hPa) at time t, versus the binned re-
sidual for the AR3 prediction at time
t 1 1 for four representative time
series shown in Fig. 2 [RDM(AR3)]. The
colors correspond to those in Fig. 2
and indicate AR3s for each season.
The white points use a single AR3 for
the whole year.
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show that the V shape in the RDM contains information about the
nature of the time scales associated with different dynamical events.

Nature of the V-Shaped Nonlinearity. A major feature of the global
circulation is the Inter-Tropical Convergence Zone, a zone of
low pressure that moves from the southern to the northern
hemisphere from approximately May to November in the Aus-
tralasia region. As a result, areas close to the equator will exhibit
a clear seasonal change in pressure (e.g., Darwin and Townsville
in Fig. 2). Indeed, the Inter-Tropical Convergence Zone move-
ment will dominate the variability in these locations. For places
far from the equator (e.g., Perth and Syndey), this periodic
forcing will weaken and the series will appear noisier. However,
this effect alone cannot account for the latitudinal gradient in
atmospheric nonlinearity we have documented (see supplemen-
tal Fig. 10 on the PNAS web site, www.pnas.org).

We hypothesize that the quadratic feature found in the RDM
may be due, in large part, to a difference in the time scales of
high-pressure events versus low-pressure events (E. N. Lorenz,
personal communication). Low-pressure systems tend to be
more ephemeral and localized than do high-pressure systems,
and have the higher amplitude and stronger gradients. The

passage of alternating highs and lows past a station will create an
asymmetry in the shape of the observation time series, which
might generate this nonlinear feature.

This idea is demonstrated with the toy model illustrated in Fig.
7 Upper, which generates a sequence of gently rounded highs and
spiky lows:

Pt 5 1020 1 50SU sinS p

5.195 O
i

t

uiDU 2
Î2
2 D

with ui a uniform random variable in the range [0.5, 1.5].
This simple geometry reproduces the V-shape in the corre-

sponding RDM (Fig. 7 Lower). Moreover, that this broad feature
which we have modelled in caricature here (persistent highs, and
less persistent lows) is true can be verified empirically by
computing the transition probability for a low event following a
low P(LtuLt21) and comparing it to that for a high event
following a high P(HtuHt21). In Table 1 we see that for Perth and
Sydney these transitions are very asymmetrical with
P(HtuHt21) . P(LtuLt21); however, this is not the case for the

Fig. 4. One-dimensional phase portraits for the four time series in Fig. 2.

Fig. 5. Index of nonlinearity for the barometric pressure series at each of the
25 locations in Fig. 1. The higher the index, the more nonlinear the series. Error
bars indicate 2 standard deviations from the mean for the index. The sche-
matic curve illustrates that tropical dynamics are independent of latitude and
that extratropical dynamics have a maximum in nonlinearity which corre-
sponds to the approximate latitude of the average storm track [cf. the covari-
ance plots of Trenberth (11) as a function of latitude].

Fig. 6. Summary of the degree of non-Gaussianity in the AR method for the
barometric pressure series at each of the 25 locations in Fig. 1. The higher the
index, the more non-Gaussian the series. The curve is as in Fig. 5.

Fig. 7. (Upper) Time variation of the toy model that simulates passage of
sharp lows and broad highs past a station. (Lower) RDM of the time series
generated by the toy model.
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tropical sites of Darwin and Townsville where the highs are not
more persistent than the lows.

A final and compelling piece of evidence in favor of this
hypothesis is created by changing the observation time scale for the
pressure series at Sydney (Fig. 8). If indeed the dominant feature
responsible for the nonlinearity we have measured is the differing
time scales of high- versus low-pressure events, then reducing the
observation time step should result in the rounded and persistent
highs becoming more nearly linear. At the same time, we would
expect the spiky lows to continue to appear more strongly nonlinear.
This would differentially shrink the right limb of the V as the highs
become more linear with increasing temporal resolution, or
sharpen the V as the time step increases. Both of these processes are
clearly occurring in Fig. 8, lending confidence to our hypothesis and
the results of the toy model simulation.

This implies that linear models based on daily pressure obser-
vations will underestimate both high and low pressure regimes. In
effect, the quadratic structure may be thought of as a quantification
of the basic feature of mid-latitude synoptic weather systems:
persistent and large highs and ephemeral, small and intense lows.
We believe that this is the dominant source of nonlinearity that can
be detected in daily observations of barometric pressure.

Forecasting and Comparison with Numerical Models. We are now
interested in investigating whether the V shape in the lagged
residuals is captured in output from the ECMWF model. To this
end, RDMs were created for 2 years of forecast data (1 October

1989 to 30 September 1991), with Lagrangian cubic interpolation
used to extract daily series of mean sea-level pressure at the
locations of Darwin, Townsville, Perth, and Sydney. As will be
explained below, only a weak V structure is found for Sydney and
Perth. This concurs with the lower asymmetry seen in the
transition probabilities for the ECMWF as compared with the
observations in Table 1. The table shows that there is a strong
asymmetry in the transition probabilities in the field observa-
tions for the temperate sites which is absent in the tropics;
moreover, the asymmetry at the temperate sites is less marked
in the ECMWF forecasts.

Why should the ECMWF model fail to capture this nonlinear
feature of barometric pressure time series? The answer arises
from the fact that forecast models of the atmosphere do not use
the monitoring station data directly. Instead, they employ a data
assimilation and analysis procedure that takes into account (i)
the raw observations, their reliability (instrument error), and
their representativeness; and (ii) the state of the atmosphere (all
the atmospheric variables must be mutually compatible and
certain balance conditions must be satisfied) (30). The input data
are then analyzed onto a regular spatial grid at fixed times. Use
is made of the model in this analysis step, so that the final input
data, as well as the forecast, are limited by the model spatial
resolution and its parameterization of physical processes that
occur on scales too small to resolve or that are too complex to
solve explicitly. This combined process results in a smoothing of
small-scale spatial and temporal variations. Numerical forecast
models also may have biases in particular geographic regions
(31) that are corrected in operations by application of statistical
corrections, such as the Model Output Statistics (MOS) (32–34).

Does spatial averaging play a role in the degradation of the
nonlinear V signature? We demonstrate the possibility by con-

Fig. 8. RDM graphs for observed barometric pressures at Sydney sampled
and forecast at four different time scales: (a) 36 hours, (b) 24 hours, (c) 12
hours, (d) 6 hours. These RDMs are calculated for a data set with 3-hour
samples.

Fig. 9. Degradation
of nonlinearity as a
function of spatial av-
eraging. The index of
nonlinearity is calcu-
lated for average
pressure series be-
tween pairs of sta-
tions located at ;35S
latitude, and plotted
as a function of dis-
tance between the
pair. This test sup-
ports our interpreta-
tion that spatial aver-
aging (as is typical of
ECMWF analysis) leads to a degradation of the V shape and, correspondingly,
the nonlinearity of the data.

Table 1. Transition probabilities for highs and lows for field observations and the ECMWF model predictions

City name

Conditional probabilities

Field observations ECMWF model predictions

P(HtuHt21) P(LtuLt21) Skewness P(HtuHt21) P(LtuLt21) Skewness

Darwin 0.838 0.843 20.37 6 0.02 0.855 0.870 20.36 6 0.09

Townsville 0.827 0.836 20.52 6 0.02 0.861 0.835 20.63 6 0.09

Perth 0.638 0.547 20.01 6 0.02 0.680 0.624 20.23 6 0.09

Sydney 0.703 0.575 20.12 6 0.02 0.661 0.542 20.31 6 0.09

Here, we condition on high and low values that are more than 0.75 standard deviations from the mean. As a correction for the
skewness of the distribution of the barometric pressure, the standard deviation is calculated separately for points on either side of the
mean. The table shows that there is a strong asymmetry in the transition probabilities in the field observations for the temperate sites
(Perth, CHI2 5 68.32, P , 0.0001; Sydney, CHI2 5 103.4, P , 0.0001) which is absent in the tropics (Darwin, CHI2 5 0.3895; Townsville,
CHI2 5 0.8791, both not significant). Moreover, the asymmetry at the temperate sites is less marked in the ECMWF forecasts (Perth,
CHI2 5 0.906, not significant; Sydney, CHI2 5 4.222, P , 0.05).
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sidering a set of stations–Albany, Port Lincoln, Adelaide, Wagga
Wagga, and Canberra–that are all located at approximately the
same latitude (35S; Fig. 1). The procedure is first to create an
average barometric pressure time series for each pair of stations,
and then construct a residual delay map for these spatially
averaged pressure series. The index of nonlinearity is calculated
as before and plotted as a function of the spatial separation
betweeen the pair of stations contributing to that averaged time
series (Fig. 9). If spatial averaging is important in the loss of the
nonlinear signal in the ECMWF, then we expect this procedure
to lead to a smooth decline in the index as the station pairs
become increasingly remote. This is precisely what we observe in
Fig. 9, lending credence to this explanation for the failure of the
ECMWF to capture the nonlinearity of observational baromet-
ric pressure data in temperate latitudes.

Although the ECMWF model was not designed to forecast raw
observations at sub-grid scales, we suggest that it is possible to adapt
it to do so by using RDMs to provide site-specific corrections. This
can be done empirically as an added quadratic term. These cor-
rections are possible because the spatial smoothing of the ECMWF
results in systematic errors when forecasts are made at finer scales.
The systematic nature of the error, an underestimation of high-
pressure and an overestimation of low-pressure values, is a conse-
quence of the temporal assymetry of event durations observed in a
particular location being mirrored by a spatially assymetric distri-
bution of barometric pressure values. In other words, short-lived
extreme low-pressure events also tend to be local events, whereas
longer-lived times of high barometric pressure tend to be broader
in space as well. This characteristic is obscured by the coarse spatial
scale and smoothing of the ECMWF.

We test this using RDMs to provide site-specific forecasts for
each of our four representative locations. For each point in the
series from each site, corrections were made out-of-sample by
keeping points in the same year and season from contributing to
the construction of the RDM. So, for example, the calculation of
the correction for forecasts made for the spring of 1991 utilized
no information about other pressure conditions during the
spring of that year. As expected, RDMs offer the most improve-
ment to forecasts in times of extreme pressure events. At Sydney,
for example, we see 28 and 20 percent improvement in average
error at the two lowest-pressure bins, whereas for Perth the best
results are for times of high pressure, with a 16% improvement
in mean error for the highest-pressure bin. Also as expected,

results in tropical latitudes are more erratic: RDMs give signif-
icantly improved forecasts at Darwin regardless of pressure, but
not at Townsville. RDMs are even more effective under some
conditions at removing systematic error from forecasts; for
example, there is a 70% improvement at Darwin during times of
lowest pressure. Detailed results are given as supplemental data
on the PNAS web site (www.pnas.org).

A logical expectation is that an improved monitoring grid and a
higher-resolution model will lead to more successful forecasts and
an improved ability to capture the nonlinear V shape we have
described. As a surrogate, it appears that RDMs may be able to
correct the current model as is, tuning spatially smoothed predic-
tions into better forecasts at single points. As in the above examples,
such corrections may be expected to best improve site-specific
prediction skill in the temperate region during extreme climatic
events. This is of particular relevance to the public, as there are also
times of greatest interest, including severe weather.

In conclusion, we have introduced the RDM as an effective
and readily implemented tool for detecting nonlinear structure
in observationally derived natural time series. The application of
RDMs to records of barometric pressure has enabled us to unveil
and quantify global patterns of atmospheric nonlinearity, and
extract the specific functional form—the V shape—of this basic
nonlinearity. We have provided a mechanistic explanation of the
origin of this shape in terms of relative time scales of low- and
high-pressure events. In the weather forecasting context, applied
to ECMWF output, the RDM provides a new, powerful statis-
tical method to correct forecasts for model bias and local
variability, in particular for times of extreme conditions, making
the forecast more useful to the public. Finally, while a detailed
comparison of the RDM method with the widely used MOS
technique for statistical correction to weather forecasting mod-
els will be reported at a later date, we stress that the RDM
method is unique in that it incorporates specific information
about relative time scales of atmospheric events into its correc-
tion. As such, the improved forecasts are not purely phenome-
nological corrections, but rather result from deeper insight into
time scales of the system’s dynamics.
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