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Abstract

One of the common methods for assessing energy functions of proteins is selection of native or near-
native structures from decoys. This is an efficient but indirect test of the energy functions because decoy
structures are typically generated either by sampling procedures or by a separate energy function. As a
result, these decoys may not contain the global minimum structure that reflects the true folding accuracy
of the energy functions. This paper proposes to assess energy functions by ab initio refolding of fully
unfolded terminal segments with secondary structures while keeping the rest of the proteins fixed in
their native conformations. Global energy minimization of these short unfolded segments, a challenging
yet tractable problem, is a direct test of the energy functions. As an illustrative example, refolding
terminal segments is employed to assess two closely related all-atom statistical energy functions, DFIRE
(distance-scaled, finite, ideal-gas reference state) and DOPE (discrete optimized protein energy). We
found that a simple sequence-position dependence contained in the DOPE energy function leads to an
intrinsic bias toward the formation of helical structures. Meanwhile, a finer statistical treatment of short-
range interactions yields a significant improvement in the accuracy of segment refolding by DFIRE. The
updated DFIRE energy function yields success rates of 100% and 67%, respectively, for its ability to
sample and fold fully unfolded terminal segments of 15 proteins to within 3.5 Å global root-mean-
squared distance from the corresponding native structures. The updated DFIRE energy function is
available as DFIRE 2.0 upon request.

Keywords: new methods; protein structure prediction; statistical energy function

Energy functions of proteins are developed to quantita-
tively capture the physical interaction that determines
how proteins fold and interact with other biologically
active molecules. Existing energy functions of proteins
are obtained through a physical-based approach (Brooks

et al. 1983; Weiner et al. 1986; Ponder and Richards
1987; Jorgensen et al. 1996; Scott et al. 1999), a statis-
tical (knowledge-based) approach (Tanaka and Scheraga
1976), or their combination (empirical approach). A
knowledge-based or statistical energy function is ob-
tained directly from statistical analysis of known protein
structures (Tanaka and Scheraga 1976).

Different statistical energy functions differ only in
how their reference states are defined. We have intro-
duced a physical reference state of uniformly distributed
ideal gas points in finite protein-size spheres and assumed
that the number of pairs of ideal gas points is proportional
to the constant fractional power of the distance between
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two ideal gas points (ra) with a < 2 to account for the
finite-size effect. This reference state together with a
distance-scaling approximation yields the DFIRE (dis-
tance-scaled, finite, ideal-gas reference state) statistical
energy function (Zhou and Zhou 2002). Recently, Shen
and Sali introduced the theory of the discrete optimized
protein energy (DOPE) based on the same finite ideal-
gas reference state but with an analytical, protein-size
dependent a parameter and a different scaling scheme (Shen
and Sali 2006). A large-scale comparison among DFIRE,
DOPE, and more than 20 other scoring functions (Eramian
et al. 2006) suggests that DFIRE and DOPE perform supe-
riorly over other scoring functions in near-native selections,
whereas the difference between the two is small.

Decoy selection is only an indirect test of an energy
function because decoys are often generated by a separate
energy function or by sampling only. Here, we propose a
more direct test of energy functions through ab initio
refolding of completely unfolded segments with secon-
dary structures while the rest of the protein remains
folded. We hypothesize that a more direct test could
detect the hidden difference between two closely related
energy functions. In addition to assessing energy func-
tions, terminal-segment refolding itself is biologically
relevant. The folding of many proteins is assisted by a
prefolded domain (pro-domain) (Llinas and Marqusee
1998; Atwell and Wells 1999).

Refolding the terminal segment while fixing the rest
of a protein, however, is challenging because terminal
regions are more flexible and often exposed (Jacob and
Unger 2007) and, thus, searching backbone and side chain
conformations at the same time is nontrivial. In fact,
Zhu et al. (2006) showed that several physical-based and
knowledge-based energy functions have difficulty folding
even partially unfolded segments with secondary struc-
tures, and the best performance is given by the DFIRE
energy function. Here, in order to separate testing energy
functions from testing sampling techniques, we limit
the maximum size of unfolded regions to less than 15
residues for a strand-containing segment, and less than 25
residues for a helix-containing segment.

Several variants of the DFIRE energy function are
tested in this paper with a genetic algorithm for global
energy minimization. We first update the DFIRE energy
function with 30 distance bins that allow finer statistics
to extract short-range repulsive and long-range interac-
tions (uDFIRE). We then obtain an asymmetric DFIRE
(aDFIRE) energy function that depends on the relative
sequence positions of the interacting residues, an ap-
proach adopted in the DOPE energy function. Segment
refolding by these energy functions suggests that both
aDFIRE and DOPE have stronger local interactions and
intrinsically bias toward the formation of longer helical
segments than uDFIRE does, while uDFIRE appears to

be more balanced in reproducing helical and strand seg-
ments. The most significant improvement, resulting from the
change of the binning method from DFIRE to uDFIRE,
highlights the importance of fine treatment of repulsive in-
teractions for shape complementarity in segment refolding.

Results

Table 1 shows the refolding results of four single helices,
two two-helix bundles, seven single strands, one mixed
helix/strand segment, and one b hairpin that were un-
folded and refolded in the presence of a fixed folded
region. The accuracy of refolded segments is described
by a local root-mean-squared distance (lrmsd) that is
calculated by superposing the unfolded and native seg-
ments or by a global rmsd (grmsd) between the refolded
and the native segment conformations that are calculated
after the superposition of the fixed regions. The values
of lrmsd and grmsd are calculated from the positions of
Ca atoms. The former measures the accuracy of the
segment structure only, while the latter describes both
the structure and its orientation relative to the rest of the
protein. We report the results of four energy functions:
DFIRE based on the original 20 bins (2 Å for the first
distance bin, 0.5 Å per bin up to 8 Å, and 1 Å per bin
from 8 Å to 15 Å), updated DFIRE (uDFIRE) based on
the 30 equal-distance bins (0.5 Å per bin for the same
distance range), asymmetric DFIRE (aDFIRE), where the
interaction between two atoms depends on the difference
(positive or negative) in the two sequence positions of
their respective residues, and DOPE, which is also an
asymmetric energy function. Three independent global
energy minimizations by a genetic algorithm (see Materi-
als and Methods) are performed for each segment in the
presence of the fixed, folded region, and only one global
minimum structure from each minimization is employed
to produce the results in Table 1.

It is clear from Table 1 that the uDFIRE energy makes
a significant improvement over the DFIRE energy func-
tion with a smaller number of bins. Large reductions
in rmsd values of refolded structures are observed for
1r690, 1o82a, and 2ayda, and smaller improvements are
achieved for 1u84a, 1opd0, and 1csp0. Only three seg-
ments (1i2ta, 1vcc0, and 2extb) are refolded with signifi-
cantly larger grmsd values by uDFIRE than by DFIRE
(difference >0.5 Å). All three are misfolded by uDFIRE
and DFIRE (grmsd > 6 Å). That is, the increases of grmsd
values due to the use of uDFIRE for these segments are
not that important. The overall success rates for refolding
to within a 3.5 Å grmsd from the native conformation are
47% by DFIRE and 67% by uDFIRE, respectively, while
aDFIRE and DOPE have the same success rate as uDFIRE.

While the overall success rates given by uDFIRE,
aDFIRE, or DOPE are the same, there are some intrinsic
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differences between the three energy functions. For
example, the uDFIRE energy function fails to fold the
terminal helix of 2guzb and 1i2ta (grmsd > 9 Å) while
DOPE misfolds the terminal strand in 1csp0 (grmsd ¼
5 Å) and 2ayda (grmsd ¼ 16 Å). A close examination of
2guzb and 1i2ta indicates that their C-terminal helices are
long and partially exposed (1i2ta is shown in Fig. 1A).
uDFIRE does not make an accurate prediction of the C-
terminal segments of the two proteins because it attempts
to tightly pack the terminal segment with the rest of the
protein. Both aDFIRE and DOPE must have stronger
local interactions than uDFIRE so that the partially
exposed helix can be stabilized in the absence of strong
interaction with the rest of proteins. We further discov-
ered that slightly more accurate refolding of mixed a-
helical and b-strand terminal regions of 2hsla by aDFIRE
and DOPE than by uDFIRE is due to a more accurate
prediction of the helical portion of the refolded segment.
However, bias toward a long helical structure has a

negative impact on folding of some other segments. For
example, DOPE predicts helical segments for the terminal
strands of 1csp0, 1fltx, and 2ayda (1csp0 is shown in Fig.
1C). Similar behavior is observed for the terminal segments
in 1csp0 and 2ayda predicted by aDFIRE. Stronger local
interactions are likely the source for the misfolded single
helix by DOPE and aDFIRE rather than native two helices
in the two-helix terminal segment of 1o82a (Fig. 1B).

While the difference between the three energy functions
(uDFIRE, aDFIRE, and DOPE) is obvious for the
seven above-mentioned segments, their similarity prevails
for the eight remaining segments. All make high-resolution
predictions of the terminal segments of 1u84a (1a), 1r690
(2a), 1opd0 (1a), 2igd0 (1b), and 2cc6a (1b) to within 1.5 Å
grmsd. They also refold the terminal strand of 2ptl0 at 3 Å
grmsd. An example (2ptl0) is shown in Figure 1D. All three
predict a slightly curved strand, likely due to the lack of
orientation-dependent polar interactions. The successful
folding of these segments suggests that shape complemen-
tary is sufficient for accurate refolding of some segments in
the presence of a prefolded region. All three energy func-
tions, however, misfold the strands in 1vcc0 and 2extb. An
example (1vcc0) is shown in Figure 1E. All three energy
functions yield a helical structure because there is space
available for helical formation and a helix has a better in-
teraction with the rest of protein. Thus, a strand conforma-
tion, if not confined by shape complementary, requires an
orientation-dependent interstrand interaction for its stabili-
zation. This interaction is absent in all three energy functions.

The analysis above is limited to the average grmsd
values of the global minimum structures. However, in
some cases, very different global minimum structures are
obtained from independent runs. This is reflected from
several large standard deviations in grmsd values of the
three global minimum structures from three independent
runs (Table 1). Interestingly, only one standard deviation
of three independent runs is >1 Å for uDFIRE. The cor-
responding number is three for either DOPE or aDFIRE.
More tests are required to be certain whether or not uDFIRE
is more specific than DOPE or aDFIRE in folding.

Different structures from independent runs indicate
the limitation of the global minimization technique em-
ployed in this study. This raises the question of whether
misfolding some segments is caused by the failure of
sampling. Figure 2 shows two segment conformations
(1o82a and 1vcc0, respectively) sampled by DOPE,
aDFIRE, and uDFIRE. In the first case, uDFIRE is more
specific (producing single stable structure). In the second
case (1vcc0), different energy functions have different
abilities to sample near-native structures. uDFIRE and
aDFIRE can sample near-native conformations of <2 Å
grmsd while DOPE cannot, although all three make wrong
predictions. Thus, near-native structures can be successfully
sampled even when their energy values are not competitive.

Figure 1. The segment structures (red) refolded by updated DFIRE

(uDFIRE, center left), asymmetric DFIRE (aDFIRE, center right), DOPE

(right) for five proteins—(A) 1i2ta, (B) 1o82a, (C) 1csp0, (D) 2ptl0, and

(E) 1vcc0—are compared with their respective native conformations (left).

The fixed portion of each protein is colored in light green. For segments

whose three independent runs yield quite different structures, only the

lowest energy structures are shown. In the first three cases, aDFIRE and

DOPE have a stronger ability to form helices correctly (1i2ta) or in-

correctly (1o82a and 1csp0) than uDFIRE.
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To further examine the ability of different energy
functions to sample near-native conformations, Table 2
shows the lowest global rmsd values (average over three
independent runs) sampled by DFIRE, uDFIRE, aDFIRE,
and DOPE. Although the success rate of folding to within
3.5 Å grmsd is only 67%, the success rate of reaching
(sampling) near-native structures (within 3.5 Å grmsd) is
significantly higher. uDFIRE has the highest success rate
of 100%, followed by aDFIRE and DFIRE (93%) and
DOPE (87%). However, the actual difference among the
four is small (two segments). Thus, more studies are
needed to be certain if the uDFIRE energy function is best
suitable for sampling both helical- and strand-containing
fragments.

Discussion

In this paper, we demonstrate that terminal-segment
refolding allows the revelation of the fine difference
between the energy functions that are otherwise difficult
to detect by commonly used decoy selections. We find
that DOPE and aDFIRE, because of their dependence of
relative sequence positions, favor helices over sheets
(2ayda, 1fltx, and 1csp0) and longer helices over short
ones (2guzb, 1i2ta, and 1o82a). This hidden bias produces
more accurate structures for some segments (2guzb,
1i2ta, 2hsla) while it misfolds others (2ayda, 1csp0,
1o82a). Stronger local interactions for helical formation
likely result from the simple two-state dependence on the
sequence positions of two residues I and J (I > J or J < I),
which overestimates the effect of the dependence on

sequence positions. It overestimates because the depen-
dence on sequence positions should be limited to neighbor-
ing residues (|I � J| within a small number), rather than
for all residues. More sophisticated sequence-position
dependence has been proposed (Melo et al. 2002; Zhang
and Skolnick 2004; Bradley et al. 2005; Ferrada and Melo
2007). We are currently testing various approaches to ac-
count for covalent bonding (Melo et al. 2002; Cheng et al.
2007; Ferrada and Melo 2007).

The effect caused by the protein-size-dependent a (the
difference between DOPE and aDFIRE) is small. This
was observed previously in decoy selections (Eramian
et al. 2006; Shen and Sali 2006). For example, the relative
occurrence of the most accurate 20% models among the
20% best scoring models compared with that for the
entire decoy set is 3.85 for DFIRE and 3.92 for DOPE
(Shen and Sali 2006) in the moulder decoy set of 20
proteins. For the same decoy set, the success rate of
selecting best near-native structures is 25.4% by DFIRE
and 24.7% by DOPE (Eramian et al. 2006). We compare
the energy parameters of DOPE and aDFIRE by calcu-
lating the correlation coefficients for the two sets of
parameters for all atomic pairs at each distance bin. The
correlation coefficients are all >0.9 from the bin of 0.5–
1 Å to the bin of 9.5–10 Å. For example, at the distance
bin of 4–4.5 Å, the correlation coefficient between the
two sets of data is 0.9888 with a slope of 0.996. The dif-
ference between the two sets of parameters is even smaller
for attractive interactions (negative values) and larger for
repulsive interactions. Repulsive interactions typically
involve fewer occurrences, and, thus, the larger difference

Figure 2. The energies of the segment conformations are sampled for proteins 1o82a (A) and 1vcc0 (B) by the genetic algorithm

coupled with either DOPE (top), aDFIRE (middle), or uDFIRE (bottom). They are plotted as a function of their global rmsd values

from their respective native structures. The results of three independent global minimizations are shown in three different colors.
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for repulsive interactions is in part due to different
statistical information from different databases for DOPE
(1472 proteins) and aDFIRE (3572 proteins). Using the
same database might further increase the similarity
between aDFIRE and DOPE. For segment refolding,
aDFIRE and DOPE yield similarly accurate structures
for 10 out of 15 segments (grmsd difference <0.5 Å).
aDFIRE produces a more accurate terminal b segment
in 1csp0, while DOPE folds the terminal helix of 2guzb
more accurately. We found that DOPE is more likely than
aDFIRE to form helical structures.

It is somewhat surprising that uDFIRE makes a sig-
nificant improvement over DFIRE. uDFIRE produces
more accurate structures for six segments and similarly
accurate structures for all other proteins (either the grmsd
difference is <0.5 Å or both grmsd values are $6 Å, i.e.,
misfolded structures). The only major difference between
uDFIRE and DFIRE is that the former has more bins
within the same interaction range of 15 Å. We believe that
the improvement is mostly contributed by a fine treatment
of short-range interactions from a single 2 Å bin to four
0.5 Å bins, rather than a fine treatment of long-range
interactions from seven 1 Å bins to 14 0.5 Å bins between
8 and 15 Å. Indeed, changing four 0.5 Å bins back to a
single 2 Å bin makes uDFIRE fold 1o82a at the same

level of accuracy (4.5 Å) as DFIRE does (5.2 Å). This
highlights the importance of an accurate description of
repulsive interactions for induced fitting in segment
refolding. It is interesting to note that DFIRE and DOPE
are able to form near perfect helices and reasonable
strands in the absence of hydrogen-bonding interactions.
This is mostly due to induced fitting of the unfolded segment
to prefolded domains. It remains to be seen if DFIRE or any
other distance-dependent only potential can make an ab
initio folding for some helical proteins or even b proteins.
We have implemented orientation-dependent dipolar inter-
actions into the DFIRE energy functions. A test of refolding
by the new dipolar DFIRE energy function to the same 15
terminal fragments yields a folding rate of 87% (13/15) to
within 2 Å grmsd from the corresponding native conforma-
tions (Yang and Zhou 2008). The successful refolding
(including the b hairpin in 2extb) highlights the importance
of orientation-dependent polar interactions in the formation
of secondary and tertiary structures of proteins.

The high success rate in refolding fully unfolded frag-
ments by the all-atom statistical energy function high-
lights its potential for structural refinement. By comparison,
it is known that molecular dynamics simulations often
fail to refine homology (Baker and Sali 2001; Summa
and Levitt 2007) models or partially unfolded structures
(Zhu et al. 2006). One possible cause is that the entropy of
packing is not included in a typical physical-based force
field and it cannot be described adequately by short nano-
second dynamics simulations. This is supported by the
fact that a more accurate description of the free energy of
packing leads to 20% improvement in the success rate of
fragment refolding from DFIRE to uDFIRE. Certainly,
one cannot discount other equally plausible causes such
as inadequate conformational sampling and shortcomings
of the force field and/or solvent model.

Materials and Methods

The genetic algorithm and the sampling method are the same as
those described elsewhere (Yang and Zhou 2008). We include
them here briefly for completeness.

Genetic algorithm for global minimization of unfolded
terminal segments

The selected terminal segment of a given protein is described by
internal coordinates: the bond lengths, bond angles, planar
torsion angles, backbone f/c torsion angles, and side-chain x
angles. The bond lengths, bond angles, and planar torsion angles
of the segment are fixed with standard values from the AMBER
99 force field (Weiner et al. 1986). The initial conformation of
the segment is obtained by randomly assigned backbone f/c
torsion angles according to the observed residue-specific prob-
ability in the backbone-dependent rotamer library (Dunbrack
Jr. and Karplus 1993) (http://www.fccc.edu/research/labs/
dunbrack/bbdep.html; version as of May 2002). The side-chain

Table 2. The lowest global rmsd (grmsd) values for the
structures sampled by the original DFIRE, updated DFIRE
(uDFIRE) with 30 bins, asymmetric DFIRE (aDFIRE) with a
simple sequence dependence, and the DOPE energy function

PDB Id#a

Lowest grmsd (Å)

DFIREb uDFIREb aDFIREb DOPEb

2guzb 3.5 6 0.9 1.9 6 0.5 0.52 6 0.09 0.7 6 0.3

1i2ta 3.8 6 1.0 2.3 6 1.9 0.39 6 0.03 0.36 6 0.02

1u84a 1.0 6 0.7 0.52 6 0.04 0.47 6 0.05 0.35 6 0.02

1r690 2.3 6 0.3 0.64 6 0.04 0.62 6 0.03 0.47 6 0.04

1o82a 1.9 6 0.4 0.85 6 0.07 1.1 6 0.4 1.0 6 0.5

1opd0 0.80 6 0.01 0.84 6 0.05 0.85 6 0.05 0.73 6 0.04

2igd0 0.38 6 0.02 0.39 6 0.02 0.370 6 0.003 0.42 6 0.02

1vcc0 2.10 6 0.08 1.1 6 0.7 1.1 6 1.0 2.4 6 0.2

2hsla 0.86 6 0.07 0.83 6 0.03 0.61 6 0.02 0.50 6 0.04

2cc6a 0.48 6 0.03 0.37 6 0.07 0.370 6 0.006 0.43 6 0.09

2ptl0 0.62 6 0.03 0.78 6 0.07 0.75 6 0.05 1.2 6 0.4

1csp0 0.74 6 0.04 0.38 6 0.03 2.0 6 0.2 1.7 6 0.9

1fltx 1.5 6 0.3 1.1 6 0.2 1.7 6 0.5 4.3 6 1.3

2ayda 2.8 6 0.8 1.5 6 0.9 5.0 6 1.2 4.2 6 1.7

2extb 2.1 6 0.7 1.8 6 0.3 1.9 6 0.2 1.8 6 0.6

Success rate

(<3.5 Å)c 14/15 (93%) 15/15 (100%) 14/15 (93%) 13/15 (87%)

a Protein Data Bank identification number. The fourth digit is the chain ID.
b The mean and standard deviation of the grmsd values of three best near-
native structures from three independent global minimizations with the
DFIRE, uDFIRE, aDFIRE, and DOPE energy function, respectively.
c The total number (percentage) of refolded segments whose lowest grmsd
values <3.5 Å.
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x angles are then randomly assigned according to rotamer prob-
ability based on the previously assigned main-chain f/c angles.
The initial conformations are generated 16 Å–20 Å away from
the native conformation in terms of global rmsd values (see Table
1). A given conformation is locally minimized by randomly
choosing a new f/c angle of a selected residue from its own bin
or its nearest-neighboring 24 angle bins. The side-chain x angles
are then chosen based on the new backbone angles as above. The
new conformation is accepted if it has a lower energy than the
current conformation and rejected if not. This procedure repeats
until reaching either 100 successive rejections of new conforma-
tions or a total of 1000 attempted angle changes.

The minimized initial conformations serve as the first parent
generation. The parent conformations are ranked with the
normalized fitness function and the standard fitness propor-
tionate selection procedure (Goldberg and Smith 1987). We
define the fitness function of each conformation in generation l,
relative to other conformations in the same generation, as

f l
i =

1

ri

exp �ðei � el�1
minÞ

TenvDel�1

� �
(1)

where the conformation density ri ¼ + j,j 6¼ i Sij, Sij is the
number of residues in identical conformational states between
conformations i and j, ei is the energy of conformation i
(including the fixed portion of the protein) based on either
the DFIRE or DOPE energy function, el–1

min and nel–1 are the
lowest energy and the rmsd of the energies in the parent
generation l � 1, respectively, with Tenv set to 1.5. Two residues
are considered in an identical conformation state if |fi � fj|
< 10°, |ci � cj| < 10°, and |fi � fj| + |ci � cj| < 15°. The
sequentially ranked conformation pair is chosen to be the parent
to breed two new conformations, first by a two-point crossover
and then by mutation operations. This evolution process con-
tinues until the global minimum conformation is not changed
for 100 successive generations or a total number of 400 gen-
erations is reached. A population of 120 conformations (i.e.,
Nc ¼ 120) was used in this study.

Segment refolding

Table 3 lists 15 small globular proteins (<100 residues) with
diverse structural topologies, both as a whole and in their
terminal regions. Each refolding was performed three times,
with different random initial conformations for the unfolded
segments. Multiple global minimizations were used to check
the robustness of the final folded structures. Because this
paper focuses on evaluating the proposed energy function rather
than testing sampling techniques, we limited the maximum size
of unfolded regions to be <15 residues for a strand-containing
segment, and <25 residues for a helix-containing segment.
Each refolding event takes ;40 h for the DFIRE energy function
on a single CPU in an AMD Dual-Core Opteron Processor
(2.4 GHz).

The DOPE, aDFIRE, and uDFIRE energy functions

All DFIRE variants were extracted from a database of 3574
nonredundant (<30% homology) high-resolution proteins
(resolution <2.0 Å and R % factor <0.25) from Hobohm et al.
(1992).

uDFIRE is an updated DFIRE energy function by increasing
the number of bins from 20 to 30 without changing the cutoff
distance of 15 Å. uDFIRE uses a constant 0.5 Å for each bin and
a total of 30 bins, 158 residue-specific atom types with identical
atom types merged (e.g., NH1 and NH2 in Arg), while the
original DFIRE used a variable bin width (2 Å for the first 2 Å,
0.5 Å from 2 Å and 8 Å, and 1 Å from 8 to 15 Å) and 167
residue-specific atom types (Zhou and Zhou 2002). Moreover,
uDFIRE is a continuous potential based on a linear interpola-
tion. No interpolation was used in DFIRE (Zhou and Zhou
2002). The same bin procedure and linear interpolation are used
in DOPE.

We further introduce aDFIRE for examining the effect of the
dependence on relative sequence positions adopted in DOPE.
The pair interaction energy between two atoms i and j of residues
I and J, uij, is different from uji. The former is exacted from the
database when the sequence position of residue I is greater than
that of J, and the latter is used when the opposite is true.

The latest version of DOPE was kindly provided by the
authors. It uses 30 distance bins with 0.5 Å per bin, asymmetric
pairwise interaction, and linear interpolation between bins. We
have integrated their energy function into our genetic algorithm
for global energy minimization.
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