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Abstract
Background: Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to
predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming
growth factor β1 (TGF-β1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain (NF-L), tissue
transglutaminases (tTGs), β-amyloid precursor proteins (AβPP), and tau are present as well as whether impairment of
the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological
mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to
cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans,
making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis
is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT.

Methods: BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis
embryonated eggs was investigated from 3 days (dpi) to 8 weeks post-infection (wpi) by Western blotting and RT-PCR.

Results: Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus
but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with
78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins
including TGF-β1, S100B, NF-L, tTG, AβPP, and tau, with increases ranging 2.0~12.0-fold were found, although their
corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was
evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain.

Conclusion: Further studies are needed to determine whether there is an increased risk of CT progression into
neurodegenerative disease because neurodegeneration-associated AβPP and phosphorylated tau emerged in the brain.
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Background
Brain injury (BI) caused by any number of physical, chem-
ical, or biological insults can have disabling or even fatal
consequences [1]. Because the outcomes and sequelae
resulting from different types of BI vary and are difficult to
predict, BI-associated biomarkers (BIABs) are used to help
delineate pathophysiological mechanisms, and predict
and monitor neurological outcomes. Some BIABs that
have been used are cytokines such as transforming growth
factor-β1 (TGF-β1) [2] and S100B [3], glial proteins such
as glial fibrillary acidic protein (GFAP) [4] and neurofila-
ment light chain (NF-L) [5], and enzymes such as tissue
transglutaminases (tTGs) [6], β-amyloid precursor pro-
teins (AβPPs) [7], tau [8], and ubiquitin [9]. Many, if not
all, of these injury-associated factors have the capacity to
detrimentally affect the central nervous system (CNS).

TGF-β1 is involved in regulating the brain's response to
inflammation and injury. Increased levels of TGF-β1 have
been correlated with deposition of scar materials after
traumatic CNS injury, and overexpression of TGF-β1 in
the CNS might lead to reduced microglial activation and
reduced induction of proinflammatory chemokines after
severe hypoxic-ischemic injury [10]. The S100B protein,
abundant in glial cells of the CNS, predominately in astro-
cytes, belongs to a multigenic family of calcium-binding
S100 proteins. There is substantial evidence that it also
exerts a neuropathological influence on the CNS [3].

Astrocytes are supportive structural elements of the nerv-
ous system. They play active roles in normal brain physi-
ology and in certain pathological conditions. Reactive
astrocytes with increased expression of GFAP are com-
monly found in cerebral infarction and many areas of
brain damage [11]. NF-L is a major component of neuron
intermediate filaments, is known to contribute to the
rigidity and tensile strength of axons and dendrites, and
may play a role in intracellular transport. It has often been
found in excess in axons after diffuse brain injury and in
abnormal amounts in Alzheimer's disease (AD) [12].

tTG, a Ca2+-dependent enzyme, can catalyze the incorpo-
ration of a polyamine into polypeptide-bound glutamine
leading to the formation of a (γ-glutamyl) polyamine
bond resistant to proteolytic cleavage, and may serve not
only to stabilize proteins against degradation, but may
also alter their functions. Elevated expression of tTG has
been observed after traumatic BI (TBI) [6] and cerebral
ischemic injury [13]. AβPPs, produced by different cell
types including the endothelium, glia, and neurons, are
large transmembrane proteins that are thought to play
roles in intra- and interneuronal signaling, synaptic trans-
mission, neural growth, as well as plasticity, learning, and
memory. AβPPs have been widely detected in a variety of
CNS injuries, including brain ischemia and trauma [7],

and when aberrantly processed or overproduced, can lead
to neurotoxic β-amyloid (Aβ) protein production [14].

The normal function of the tau protein, an important
structural element in neuronal cells, is to assemble and
stabilize microtubules, but in certain BIs (e.g., TBI or AD),
it is redistributed to cell bodies where it accumulates and
forms insoluble, fibrillary deposits [15]. The ubiquitin-
proteasome system (UPS) functions in cellular quality
control by degrading misfolded, unassembled, or dam-
aged proteins that could otherwise form potentially toxic
aggregates. Ubiquitin is a small and highly conserved pro-
tein found in all eukaryotic cells. One of its major func-
tions is to act as a proteasome pathway, wherein
ubiquitination serves as a signal for the target protein to
be degraded. The presence of elevated ubiquitin conju-
gates associated with intracellular deposits of aggregated
protein in diseased neurons in nearly all sporadic and
hereditary neurodegenerative diseases has long suggested
a linkage between UPS dysfunction and pathogenesis,
e.g., TBI [9] and AD [16].

Toxocara canis is an intestinal nematode of canines, and its
embryonated eggs are infectious to both final and
paratenic hosts including humans and rodents. Toxocara
canis larvae, measuring 357~414 μm in length × 13~17
μm in width [17], may invade the brains of paratenic
hosts and cause BI, which then may result in cerebral tox-
ocariasis (CT) [18]. However, its effects on the brain are
likely to be too cryptic to be clinically detected in humans
with CT because the parasitic burden is light; thus, the
neuropathogenesis and sequelae of subtle BI in CT
remains largely unclear [19-21]. Since CT in humans and
mice share similar pathologies involving T. canis larvae
and migratory pathways [18], it may be possible to detect
BIAB and UPS function in a murine model as a means of
investigating the pathogenesis of CT.

In this study, we investigated the pathogenesis of CT and
the extent of neural damage caused by T. canis larvae by
measuring levels of BI-associated indicator molecules of
TGF-β1, S100B, GFAP, NF-L, tTG, AβPP, and tau as well as
UPS function by assessing ubiquitin expression in
infected mice brains.

Methods
Parasites and the experimental protocols used to induce 
CT
Toxocara canis eggs were obtained from adult female
worms, and embryonated eggs were prepared as previ-
ously described [22]. Female ICR mice aged 6~8 weeks
were obtained from the Center for Experimental Animals,
Academia Sinica, Taipei, Taiwan. Mice were housed in the
animal facility of Taipei Medical University and main-
tained on commercial pellet food and water ad libitum.
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The viability of T. canis embryonated eggs was assessed by
the light stimulation method immediately before use.
Each mouse was infected by oral intubation with about
250 embryonated eggs in 100 μl of water [22].

Infected mice were deeply anaesthetized with ether and
killed by heart puncture on day 3 and at weeks 1, 4, and 8
post-infection (dpi or wpi). On each date, three infected
mice and two age-matched uninfected mice were killed,
and their brains were excised for further experimentation.
As shown in Figure 1, each brain was divided into four
parts. The first part of the brain was processed for histolog-
ical and immunohistochemical studies, and the second
part underwent acid-pepsin digestion for larval recovery.
The third and fourth parts were processed for Western
blotting and reverse-transcription polymerase chain reac-
tion (RT-PCR), respectively (Fig. 1). All animal experi-
ments were carried out in accordance with institutional
Policies and Guidelines for the Care and Use of Laboratory Ani-
mals, Taipei Medical University and all effort was made to
minimize animal suffering.

Toxocara canis larval invasion assessed by a larval 
recovery study
Whether the larvae had successfully invaded the brain was
confirmed using a previously described method [23].
Briefly, a brain specimen from each infected mouse was
individually ground in a Waring blender (Tatung, Taipei,
Taiwan) and then digested in 50 ml of a pepsin/HCl solu-
tion (pH 1~2, 10,000 IU, Sigma, Steinheim, Germany) for
3 h at 37°C. Water (50 ml) was added, the mixture was
centrifuged (at 250 g for 10 min), and the larvae in the
sediment were counted in a Petri dish placed under an
inverted microscope (Olympus, Tokyo, Japan) at 100×
magnification.

Cerebral injury assessed by pathological changes and 
astrogliosis detected by the expression of GFAP
A brain specimen from each mouse was separately fixed in
10% neutral buffered formalin for at least 24 h and
embedded in paraffin for pathological studies and immu-
nohistochemical detection of GFAP. Five-micrometer
brain sections were processed using standard procedures
and stained with hematoxylin-eosin (H&E) for the histo-
logical study. For the immunohistochemical studies,
brain sections from infected and uninfected mice were
deparaffinized and rehydrated using descending ethanol
gradients before further processing. Immunohistochemi-
cal detection of GFAP was performed as described by
Balasingam et al. [24]. Briefly, endogenous peroxidase
activity was blocked by 3% hydrogen peroxide (Merck,
Taufkirchen, Germany). An avidin/biotin blocking kit
(SP2001, Vector, Burlingame, CA, USA) was used to block
the endogenous avidin/biotin activity to reduce back-
ground staining. To eliminate non-specific staining, Fc
receptors were blocked with diluted normal goat serum
(X0907, Dako, Carpentaria, CA, USA) for 30 min at room
temperature in a humid chamber. Sections were then
incubated for at least 12 h at 4°C with rabbit anti-mouse
GFAP polyclonal antibodies (cat. no. RB-087, Neomark-
ers, Fremont, CA, USA) diluted in phosphate-buffered
saline (PBS) at 1: 160. Sections were then washed with
0.05% Tween 20 Tris-HCl buffer three times for 5 min
each. Immunohistochemical detection kits (K4003,
Dako) were used to detect GFAP-expressing cells by incu-
bation with horseradish peroxidase-conjugated goat anti-
rabbit antibodies for 40 min at room temperature. The
presence of peroxidase was detected using chromogen
3,3-diaminobenzidine (DAB) (K3468, Dako). Sections
were counterstained with Gill's hematoxylin (H3401, Vec-
tor), dehydrated, and mounted in mounting medium
(H5000, Neomarkers). In order to confirm the results of
the staining, a normal mouse brain section was used as a
positive control. Specificity was ascertained by treating
positive control sections as described above but omitting
the primary antibodies. In addition, for negative controls,
we used normal mouse sections subjected to normal rab-
bit serum as the primary antibody.

Expressions of TGF-β1, S100B, GFAP, NF-L, tTG, AβPP, Aβ, 
total (t) and phosphorylated (p) tau proteins, and UPS 
function as assessed by Western blotting and ELISA
Western blotting was performed as described by Ueber-
ham et al. [25] with modifications. Briefly, brain speci-
mens from infected and uninfected mice were
homogenized and lysed in radioimmunoprecipitation
assay buffer containing a protease inhibitor cocktail
(Sigma, Saint Louis, MO, USA) on ice for at least 1 h, after
which the proteins were harvested by centrifugation at
10,000 g at 4°C for 10 min, and stored at -80°C for fur-
ther studies. Before being loaded onto the gel, the protein

The relative locations of a mouse brain used for various assays in this studyFigure 1
The relative locations of a mouse brain used for vari-
ous assays in this study. 1, the first part for pathological 
study; 2, the second for larval recovery study; 3, the third for 
Western blotting; and 4), the fourth for RT-PCR analysis.
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extracts were boiled for 5 min. In each lane, 50 μg of pro-
teins in loading buffer was boiled and then electro-
phoresed in a 6%~18% SDS/PAGE mini gel. The proteins
were then electrically transferred onto a Hybond-P polyvi-
nylidene fluoride membrane for 2 h. Membranes were
blocked in 10% PBS/skimmed milk, and then mouse anti-
TGF-β1 monoclonal antibodies (mAbs) (cat. no. T0438,
Sigma, USA), mouse anti-S100B mAbs (cat. no. S2532,
Sigma), mouse anti-tau mAbs (cat. no. T9450, Sigma),
mouse anti-β-actin mAbs (cat. no. A5441, Sigma), goat
anti-tTG polyclonal antibodies (pAbs) (cat. no. T7066,
Sigma), goat anti-NF-L pAbs (cat. no. sc12980, Santa Cruz
Biotechnology, Santa Cruz, CA, US), rabbit anti-GFAP
pAbs (cat. no. RB087A1, NeoMarker, Fremont, CA, US),
mouse anti-AβPPs mAbs (cat. no. Mab348, Chemicon,
Billerica, MA, US), mouse anti-Aβ mAbs (cat. no.
AB5078P, Chemicon), or mouse anti-ubiquitin mAbs
(cat. no. MAB1510, Chemicon) were added for 2 h at
37°C. After several washes with PBS-Tween 20, a peroxi-
dase-conjugated secondary antibody was added, and the
membrane was hybridized at 37°C for 30 min. Immuno-
reactions were detected with a Western Lightning® kit (Per-
kin Elmer Life Sciences, Boston, MA, USA). The secondary
antibodies, rabbit anti-mouse immunoglobulin G (IgG),
goat anti-rabbit IgG (Sigma), and donkey anti-goat IgG
(Santa Cruz), were used at 1: 10,000 dilutions. The optical
density of the immunoreactive band was measured with a
Typhoon 9000D cabinet equipped with ImageQuant soft-
ware (GE Life Sciences, Fairfield, CT, US). Relative
amounts of the targeted proteins were expressed as optical
density (OD) relative to that of the control group of unin-

fected mice. If the p-tau was undetectable by Western blot-
ting, any p-tau proteins in the brains were subjected to
further quantitative analysis using an enzyme-linked
immunosorbent assay (ELISA) kit (Sigma), which has the
ability to detect a minimal dose of p-tau of > 7.4 pg/ml.

Expressions of TGF-β1, S100B, GFAP, NF-L, tTG, and AβPP 
mRNA as assessed by RT-PCR
Total RNA was isolated from murine brains using the
GenElute™ Mammalian Total RNA Miniprep Kit (Sigma)
according to manufacturer's instructions. RT-PCR was per-
formed using a JumpStart™ RED HT RT-PCR Kit (Sigma).
One microgram of total RNA was reverse-transcribed
using oligo (dT)23 as the primer and enhanced avian
myeloblastosis virus reverse transcriptase (eAMV-RT)
(Sigma) in a 20-μl reaction mixture. The resulting comple-
mentary (c)DNA was amplified using JumpStart REDTaq®

DNA polymerase. The primers are indicated in Table 1.
Amplified products were resolved on 1.5% agarose gels
containing ethidium bromide and visualized in an UV-
transilluminator. The optical density of bands was deter-
mined with a Typhoon 9000D series (GE Life Sciences).
Relative amounts of targeted genes were expressed as an
optical density relative to that of GAPDH. Three inde-
pendent cDNA preparations were analyzed in each exper-
iment.

Data analysis
All data of duplicate tests performed in ELISA, Western
blotting, and RT-PCR were reported as the mean OD ±
standard deviation (SD), and the statistical difference

Table 1: Primers of biomarkers, and their source, PCR conditions, and expected size.

Targets Primer sequence 5'-3' Annealing temperature Cycle number Expected size (bp) Reference

TGF-β1 sens-AGACGGAATACAGGGCTT TCGATT CA 55°C 35 492 [73]
antisens-CTTGGGCTTGCGACCCAGTAGTA

GFAP sens-GAATGGCCACTAAGGCAGTC 58°C 35 400 [74]
antisens-TGCACTCCCTCTCTCCTGTT

S100B sens-GACTCCAGCAGCAAAGGTGAC 58°C 35 211 [75]
antisens-CATCTTCGTCCAGCGTCTCCA

tTG sens-AGGCCAACCACCTGAACAAA 60°C 35 475 [76]
antisens-CATACAGGGGATCGGAAAGT

NF-L sens-AGCAGAATGCAGACATTAGCG CC 57°C 38 200 [77]
antisens-TGGTCTCTTCGCCTTCC AAGA GT

AβPP69 sens-GCACTAACTTGCACGACTAT 
GGCATGCTGCTGCCCTG

70°C 35 401

antisens-GCTGGCTGCCGTCGTGG 
GAACTCGGACTACCTCCTCCAC A

AβPP75 1 sens-CTACCACTGAGTCTGTGGAG 64°C 45 222 [50]
antisens-GCTGGCTGCCGTCGTGG 
GAAACACGCTGCCACACACCGC C

AβPP77 0 sens-CTACCACTGAGTCTGTGGAG 64°C 45 242
antisens-CTTGAGTAAACTTTGGGA 
TGACACGCTGCCACACACCGCC

GAPDH sens-ACCACAGTCCATGCCATCAC 60°C 27 452 [75]
antisens-TCCACCACCCTGTTGCTG TA
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between the experimental group of infected mice and con-
trol group of uninfected mice could be calculated by the
mean OD values obtained from ELISA, Western blotting,
or RT-PCR from each experimental group of 3 mice. Those
that were greater than or equal to the mean OD value plus
2, 3, or 4 SDs of the negative control group of 8 uninfected
mice were considered to be statistically significant (P <
0.05, P < 0.01, or P < 0.001, respectively), according to a
method suggested by Richardson et al. [26] and Tijssen
[27].

Results
Number of T. canis larvae accumulating in the brain 
increased with time in experimental CT
No larvae were recovered in brains at 3 dpi. The mean (±
SD) number of T. canis larvae recovered at 1 wpi was 0.33
0.58, which gradually increased to 0.67 0.58 at 4 wpi. The
count had increased to 5.0 7.0 by 8 wpi (Fig. 2). All of the
recovered larvae were viable as judged by their motility.

Areas around the choroid plexus invaded by T. canis 
larvae showed cerebral injury as evidenced by apparent 
astrogliosis with increased expression of GFAP
No inflammatory cell infiltration was found in the exper-
imental groups of infected mice at 3 dpi or 1 wpi (data not
shown). Although larvae were found in or close to the

choroid plexus, no leukocyte infiltration was seen in
infected mice at 4 (Fig. 3A) or 8 wpi (Fig. 3B) as analyzed
by H&E-stained sections. The immunohistochemical
assessment showed that infected mice had many astro-
cytes with significant expression of GFAP in the cerebral
parenchyma near the choroid plexus at 4 (Fig. 4A) and 8
wpi (Fig. 4C). However, weak GFAP expression was also
detected in the age-matched control group of uninfected
mice at either 4 (Fig. 4B) or 8 wpi (Fig. 4D).

Induction of enhanced expressions of TGF-β1, S100B, 
GFAP, NF-L, tTG, AβPP, and -tau and p-tau proteins 
accompanied by impairment of the UPS during T. canis 
larval invasion of the mouse brain
When T. canis larvae invaded the mouse brains, there were
no changes in the level of either TGF-β1 or S100B
cytokines at 1 wpi (Figs. 5A,B). However, the levels of
both cytokines had significantly increased by 4 and 8 wpi.
TGF-β1 increased by 5.3- and 11.8-fold and S100B by 3.0-
and 5.8-fold, respectively (Fig. 5A, B). Expression of GFAP
was slightly evident at 3 dpi at 3.0-fold, and levels were
significantly higher at 4 (78.9-fold) and 8 wpi (142.0-
fold) but not at 1 wpi (Fig. 6A, B). NF-L expression also
greatly increased over time, with 1.4- and 7.5-fold
increases at 4 and 8 wpi, respectively (Fig. 6A, B).

Recovery numbers of larvae from the brains of T. canis infected miceFigure 2
Recovery numbers of larvae from the brains of T. canis infected mice. Larval numbers are presented as the mean + 1 
standard deviation (S.D.) of larvae harvested from the brain of mice infected with embryonated eggs, from 3 days to 8 weeks 
post infection (dpi or wpi).
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After infection, enzyme tTG levels had increased 1.6- and
1.5-fold by 4 and 8 wpi, respectively (Fig. 7A, B). Com-
pared with levels found in uninfected controls, ubiquitin
increased significantly from 3 to 8 wpi. Conjugated ubiq-
uitins were more abundant at 4 and 8 wpi (Fig. 7A, B).

Levels of the neurotoxic protein, AβPP, progressively rose
after infection with increases ranging 5.0~7.4-fold (Fig.
8A, B). Post-infection levels of t-tau also increased from
19.5-fold at 4 wpi to 30.6-fold at 8 wpi (Fig. 8A, B).
Because expression of p-tau was undetectable by Western
blot analysis, an ELISA kit was used to detect its expres-
sion. In brains from infected mice, p-tau was found to be
68.81 ± 2.06 ng/ml at 4 wpi (P < 0.001) and 85.11 ± 0.96
ng/ml at 8 wpi (P < 0.001), both significantly higher than
those found in uninfected mice (55.25 ± 2.34 ng/ml) (Fig.
8C). However, no Aβ protein was detected (data not
shown).

Enhanced expressions of TGF-β1, S100B, GFAP, NF-L, tTG, 
and AβPPs mRNA during T. canis larval invasion of the 
mouse brain
RT-PCR revealed that the mRNA expression of the
cytokines, TGF-β1 and S100B (Fig. 5C, D), glial proteins,
GFAP and NF-L (Fig. 6C, D), and enzyme, tTG (Fig. 7C,
D), coincided with their protein levels, with significantly
elevated levels of mRNA seen at 1 and 4 wpi. By 8 wpi, all
had steeply declined.

AβPP770, AβPP751, and AβPP695 levels significantly
increased from 3 dpi to 4 wpi, followed by a significant
decline at 8 wpi (Fig. 8D, E).

Discussion
Although many cases of children and adults with CT clin-
ically characterized by severe neurological disorders such
as eosinophilic meningitis, encephalitis, myelitis, arach-
noiditis, cerebral vasculitis, and dementia have not
uncommonly been reported recently in developed coun-
tries, e.g., Austria [28], Belgium [29], France [30], Ger-
many [31], Japan [21], and Switzerland [32] as well as in
tropical developing countries, e.g., Brazil [33,34] and Tur-
key [35], the actual number of reported cases of cerebral
infection with T. canis is still limited. In addition, brain
involvement is likely too cryptic or not easily detected in
humans with CT; thus, the underlying mechanism behind
the pathogenesis and sequelae of subtle BI in CT has
remained largely unclear. Because it is not easily detected,
the actual number of cases of subtle BI caused by this tiny
parasite has probably been underestimated. Worldwide,
many asymptomatic cases of toxocariasis have been con-
firmed to be positive by serology [36], although in light or
old infections, the dormant Toxocara larvae embedded in
internal organs may be reactivated at any time and
migrate again to the brain [37,38]. Despite the difficulties
in detection, it is possible to use a murine model to study
the underlying mechanism behind the pathogenesis of CT
[19].

Although Hamilton et al. [19] recently indicated that
BALB/c inbred strain mice are susceptible to T. canis infec-
tion and it seems that larvae remain in brains of BALB/c
mice for a longer time compared to other strains of mice,
using ICR mice as an animal model is still adequate to
study CT. In fact, our previous study indicated that the lar-
val recovery rate at a range of 2.9%~3.8% from the brain
of ICR mice [39] was very close to that (4.4%) from the
brain of outbred LACA mice inoculated with a low dose of
100 ova by Cox and Holland [40], who explored some
effects on learning and memory of LACA mice with CT; in
addition, Good et al. [41] also used CD1-ICR outbred
mice to assess the larval distribution in the brain and
found that the dose and brain region were significant fac-
tors. It is noteworthy that Cox and Holland [40] also,

Brain sections of T. canis infected miceFigure 3
Brain sections of T. canis infected mice. Larvae 
(arrows) present in or in the vicinity of the choroid plexus, 
showing that there is no inflammatory cell infiltration in the 
brains of infected mice at 4 wpi (A) or 8 wpi (B). Tissue sec-
tions were stained with hematoxylin-eosin. Bar = 50 μm.
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however, indicated that particularly in mice inoculated
with a low dose of T. canis eggs, the low burden of T. canis
larvae (an average larval burden of 6 larvae/brain; range,
0~15 larvae/brain) appearing in the brain and causing
changes in murine behavior is likely to more realistically
reflect the situation in humans and wild rodents with tox-
ocariasis. Our present results of a mean larval burden per
brain of 2.9 ± 3.0 larvae in ICR mice are close to that
reported by Cox and Holland [40]. In addition, Dubinsky
et al. [42] examined brains of 476 small mammals from
Slovakia and found the numbers of larvae to range from 1
to 13 per brain, with a peak average being 4.2 ± 4.1 larvae/
brain in animals collected from a suburban location. The
low numbers of larvae harbored by brains of infected mice
described in this paper are also very similar to those
described by Dubinsky and colleagues. In answering why
variations in larva recovery rates exist in individual brains,
Kayes and Oakes [43] indicated that fluctuations in larval

number might reflect the ability of larvae to migrate into
and out of sampled tissues including the brain over time.

We found that T. canis larvae increasingly migrated to the
brains over time, although our H&E staining showed no
leukocyte infiltration or pathological changes in areas
near the choroid plexus, the site of the T. canis invasion.
The reason that inflammatory cell infiltration was not
seen in the injured brain caused by T. canis larvae might
be that the T. canis larvae mimic host tissue antigenic com-
ponents and escape immune recognition or perhaps some
mechanisms in the brain diminish inflammation in order
to protect it from severe injuries caused by inflammatory
storms [18]. However, there was cerebral injury, as evi-
denced by the apparent astrogliosis with enhanced expres-
sion of GFAP extending around injured areas where the
increases appeared to be correlated with the number of
larvae migrating into the brain over time, as seen from 4
to 8 wpi. These increases may be a response to help protect

Immunochemical staining of the glial fibrillary acidic protein (GFAP) in mouse brainFigure 4
Immunochemical staining of the glial fibrillary acidic protein (GFAP) in mouse brain. Astrogliosis with apparent 
GFAP expression (arrow) was observed in the parenchyma near to the choroid plexus in the brains of infected mice at 4 wpi 
(A) or 8 wpi (C). However, weak GFAP expression was also detected in the brains of age-matched uninfected mice at 4 wpi (B) 
and 8 wpi (D). Bar = 50 μm. Inserts are higher magnifications of GFAP expression from the same panel.
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Expression of TGF-β1 and S100B in the brains of T. canis infected miceFigure 5
Expression of TGF-β1 and S100B in the brains of T. canis infected mice. (A) Protein levels of TGF-β1 and S100B in 
the brains of T. canis infected mice from 3 dpi to 8 wpi assessed by Western blotting. β-actin was used as a loading control. (B) 
Relative times were generated by comparing intensities between infected and uninfected mice. The error bars indicate the 
standard deviations and the superscript indicates significant differences from control; #P < 0.001. (C) Expression levels of TGF-
β1 and S100B in the brains of infected mice from 3 dpi to 8 wpi were examined by RT-PCR. GADPH was used as a reaction 
control. (D) The relative amounts of TGF-β1 and S100B mRNA were calculated based on the optical density relative to that of 
the GAPDH. The error bars indicate the S.D. and the superscripts represent significant differences from the control; *P < 0.05, 
#P < 0.001. Three to eight mice per group were examined.
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Expression of GFAP and NF-L in the brains of T. canis infected miceFigure 6
Expression of GFAP and NF-L in the brains of T. canis infected mice. (A) Protein levels of GFAP and NF-L in the 
brains of infected mice from 3 dpi to 8 wpi assessed by Western blotting. (B) Relative times were generated as described in Fig. 
5B. The error bars indicate the S.D. and the superscript indicates significant differences from the control; #P < 0.001. (C) 
Expression levels of GFAP and NF-L in the brains of infected mice from 3 dpi to 8 wpi were assessed by RT-PCR. (D) The rel-
ative amounts of GFAP and NF-L mRNA were calculated based on the optical density relative to that of the GAPDH. The 
error bars indicate the S.D. and the superscripts represent significant differences from the control; +P < 0.01, #P < 0.001. Three 
to eight mice per group were examined.
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Expression of tTG and ubiquitin in the brains of T. canis infected miceFigure 7
Expression of tTG and ubiquitin in the brains of T. canis infected mice. (A) Protein levels of tTG and ubiquitin (arrow 
head) and ubiquitylated protein (thick arrows) expression in the brains of infected mice from 3 dpi to 8 wpi were assessed by 
Western blotting. (B) Relative times were generated as described in Fig. 5B. The error bars indicate the S.D. and the super-
scripts represent significant differences to the control; +P < 0.01, #P < 0.001. (C) The expression levels of tTG in the brains of 
infected mice from 3 dpi to 8 wpi were assessed by RT-PCR. (D) The relative amount of tTG mRNA were calculated based on 
the optical density relative to that of the GAPDH. The error bars indicate the S.D. and the superscript represents significant 
differences from the control; +P < 0.01. Three to eight mice per group were examined.
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Expression of AβPP and Tau in the brains of T. canis infected miceFigure 8
Expression of AβPP and Tau in the brains of T. canis infected mice. (A) Protein levels of AβPP and Tau in the brains 
of infected mice from 3 dpi to 8 wpi were assessed by Western blotting. (B) Relative times were generated as described in Fig. 
5B. The error bars indicate the S.D. and the superscript represents significant differences to the control; #P < 0.001. (C) Con-
centrations of phosphorylated Tau in the brains of infected mice from 3 dpi to 8 wpi were assessed by ELISA. The error bars 
indicate the S.D. and the superscript represents significant differences from the control; #P < 0.001. (D) mRNA levels of AβPP 
expressions in the brains of infected mice from 3 dpi to 8 wpi were assessed by RT-PCR. (E) The relative amount of AβPP 
mRNA was calculated based on the optical density relative to that of the GAPDH. The error bars indicate the S.D. and the 
superscript represents significant differences from the control; #P < 0.001. Three to eight mice per group were examined.
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the brain from damage in experimental CT, as many stud-
ies have indicated that reactive astrocytes rapidly increase
by producing massive GFAP in response to brain injury.
They can extend far from the actual site of damage,
thereby forming a glial scar that can act as a physical bar-
rier between damaged and healthy cells and help reestab-
lish an intact blood-brain barrier (BBB) [11,44].
Modulation of astrogliosis with enhanced GFAP expres-
sion which is responsible for brain injury in experimental
CT was proposed to occur by TGF-β1 since some evidence
has revealed that astrocytes treated with TGF-β1 exhibit a
rapid and dose-dependent increase in the expression of
GFAP mRNA, and this increase is translated into a change
in the steady-state level of GFAP protein [45,46].

Although TGF-β1 is often considered an anti-inflamma-
tory molecule, we still propose that enhanced TGF-β1
expression may play a certain role in promoting inflam-
mation in acute brain injury associated with experimental
CT. Substantial evidence indicates that injection of an
antiserum directed against TGF-β1 reduces inflammation
in the CNS after traumatic injury [47,48], and astroglial
overproduction of TGF-β1 enhances inflammatory CNS
disease in transgenic mice [49]. In addition, Lesne et al.
[50], working with murine and human astrocyte cultures
cultured with TGF-β1, suggested that TGF-β1 can be harm-
ful because it promotes perivascular inflammation, inter-
actions with and increased production of AβPP, and
subsequent Aβ generation. Moreover, TGF-β1 has also
been implicated in the pathogenesis of neurological dis-
eases through its modulation of massive extracellular
matrix (ECM) production and has been identified in amy-
loid plaques of AD brains. ECM proteins appear to play a
central role in the deposition of Aβ [51].

Elevated expression of AβPP should have deleterious
effects on the acute brain injury of experimental CT. This
postulation was confirmed by AβPP being involved in cer-
ebral falciparum malaria (CFM) which causes disruption
of axonal transport leading to neurological dysfunction as
supported by the frequency and extent of AβPP staining
being more severe in patients with than in those without
CFM [52]. It is noteworthy that an increase of isoform
AβPP751/770 protein levels but a decline in the main
neuronal isoform AβPP695 protein level was observed to
progress over time in experimental CT, changes that are
very similar to those seen in the rat brain after TBI [53].
AβPP transgenic mice overexpressing human AβPP695
had an accentuation of presynaptic terminal loss with no
sprouting re action in the outer molecular layer of the hip-
pocampus following perforant pathway transaction, com-
pared to non-transgenic controls, which had a normal
reinnervation pattern [54]. Moreover, brains of human
AβPP751-expressing transgenic mice were shown to be

labeled by antibodies directed against Aβ, possibly con-
sistent with early AD-type CNS alterations [55].

Enhanced expression of AβPP appears to make possible
AβPP intraneuronal processing through which Aβ pep-
tides, which are potentially detrimental to the brain, are
produced [14]. Although we found increased protein lev-
els of AβPP, we found no Aβ peptides in the brains used
in this study examining experimental CT. The absence of
these peptides might be partly due to larvae not having
resided in the brains for a sufficiently long period for dep-
osition of Aβ to become visible, or perhaps because Aβ
expression is barely detectable in normal non-transgenic
mice. Previous studies reported Aβ expression to be unde-
tectable in standard rodent models of focal brain trauma
and suggested that this might be explained by differences
in rodent and human metabolism of Aβ [56].

The role of tTG induction in the neural response to injury
in experimental CT is not clear. Some studies found
upregulation of tTG after TBI [6]. tTG expression has also
been implicated in the cellular pathogenesis of AD as evi-
denced by tTG-specific immunoreactivity observed in
neuritic plaques and amyloid cores, and tau was found to
readily be cross-linked by tTG [57,58]. In the present
study, we observed 20~30-fold increases in total protein
levels of tau at 4 and 8 wpi in experimental CT, possibly a
consequence of nerve cell damage. Similar findings were
reported in AD, Creutzfeldt-Jakob disease, Guillain-Barré
syndrome, TBI, and severe cerebral falciparum malaria
[59,60]. It is noteworthy that we also found greater levels
of hyperphosphorylated tau protein in the brains of
infected mice than in those of uninfected mice at 4 and 8
wpi. Nevertheless, due to the lack of direct evidence of
neurofibrillary tangle (NFT) deposition in the brain, we
do not know whether hyperphosphorylated tau plays a
role in promoting the development of an AD-like syn-
drome in experimental CT. It was suggested that hyper-
phosphorylated tau, probably initiated by amyloid
deposition, might cause NFT in AD [15].

Similarly, it was suggested that elevated S100B levels are
involved in the development of Down's syndrome and
AD [61]; its expression was also correlated with the den-
sity of dystrophic neuritis with overexpressed AβPP [62].
Recent evidence indicates that high levels of S100 B in CSF
increase the risk of repeated seizures in children with
severe P. falciparum infection due to axonal injury [60]. It
was found that excess accumulation of NF-L has a detri-
mental effect on nerve cells resulting from NF-L inclusions
in axons mechanically blocking the transportation of par-
ticles through axons, which eventually leads to neuronal
death and to abnormalities in and degeneration of motor
neurons [63]. Excess accumulation of NF-L was also
observed in several neurodegenerative diseases, e.g.,
Page 12 of 15
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amyotrophic lateral sclerosis, AD, Lewy bodies in Parkin-
son's disease, Charcot-Marie-Tooth disease, and giant
axonal neuropathy [12].

Interestingly, while mRNA expressions of TGF-β1, S100B,
GFAP, N F-L, tTG, and AβPP markedly declined in brains
of the experimental CT mice at 8 wpi, their corresponding
proteins remained abundantly present at that time. One
possibility for this might be that transcription of those
BIABs, which began from 4 wpi onwards, had ceased by 8
wpi. The fact that these proteins were still detectable at 8
wpi may be explained by the time lag in translating
mRNAs or by the stability and persistence of the proteins.
We explored the possibility that some protein degradation
systems, e.g., the UPS, were disabled or impaired in brains
of the experimental CT mice between 4 and 8 wpi. Ubiq-
uitin conjugates as well as elevated ubiquitin levels in our
study were found to be increased in brains of experimen-
tal CT mice, indicating impairment of the UPS's process-
ing of excess unwanted proteins [16]. Several studies
proposed that intracellular deposition of ubiquitylated
proteins and increased ubiquitin contents are a promi-
nent cytopathological feature of AD [64,65]. However,
further studies are needed to clarify the link between
enhanced BIAB expression and UPS impairment. Why are
levels of TGF-β1, S100B, and NF-L of infected mice at 3
dpi or 1 wpi lower than those of uninfected mice, or why
are there discrepancies between biomarker protein, TGF-
β1, S100B, and NF-L mRNA expressions at 8 wpi (Figs. 5A,
6A)? It is rather difficult to explain why mRNA or protein
expressions of those biomarkers in infected mice are
weaker than those in uninfected mice in early infection,
e.g., at 3 dpi or late infection, e.g., at 8 wpi, since in early
infection, no or few larvae have invaded the brain, while
more larvae have migrated into the brain in late infection.
We, however, propose that in early or late infection some
unclear mechanisms, e.g., cytokines or stress may affect
the stability of TGF-β1, S100B, and NF-L mRNA, which
attenuates their expressions in the brains of infected mice;
however, this postulation and their corresponding patho-
physiological functions during those periods of infection
should be further tested.

Toxocara canis larvae have been shown to be non-ran-
domly distributed within the brain, with the telen-
cephalon and cerebellum being their preferred sites of
accumulation after at least 1 wpi, as evidenced by studies
using different strains of mice inoculated with a single
dose of T. canis eggs [66-68]. Considering that these brain
areas are associated with memory and coordination, cere-
bral infection with T. canis should have potent impacts on
different aspects of murine behavior. Several studies have
reported varying degrees of behavior changes, and others
have reported some level of memory impairment in either
inbred or outbred murine hosts infected with T. canis

[40,41,19]. Although several studies have indicated that
abnormal behavioral changes may be related to the larval
burden [41,19], there is no evidence that mechanical
damage caused by migrating larvae in the brain tissue is
the main cause of symptoms in experimental CT [69].
Since several studies on other parasitic infections of the
CNS have demonstrated that cytokines produced in
response to infection are often responsible for the induc-
tion of pathologies and neurodegeneration [70-72], and
in addition, it was recently proposed that immune
responses elicited by cytokines, interleukin-5, interferon-
γ, and inducible nitric oxide synthase in the brain may be
other factors influencing abnormal behavior changes or
pathology in mice with CT [20], we propose that
enhanced BIAB expressions in brains of mice with T. canis
infection in the present study may provide more insights
to better understand the pathogenesis of CT and its links
with the possible development of neurodegeneration.

Conclusion
To the best of our knowledge, this is the first study to pro-
vide clear evidence of the concomitant presence of
enhanced BIAB expression and UPS impairment during T.
canis larval invasion of the brain. Although further studies
regarding the relationship between the expressions of var-
ious BIABs and behavior disorders in experimental CT are
required, results of the present study and those of the oth-
ers cited in this paper suggest the possibility that cerebral
infection by T. canis can have deleterious consequences
and may increase the risk that CT will develop into neuro-
degenerative-like disease such as AD. This cannot be com-
pletely excluded because neurodegeneration is associated
with the emergence of AβPP and phosphorylated tau in
the brains of experimental CT mice.
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