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Abstract

Background: The Polycomb Repressive Complex 2 (PRC2) functions as a transcriptional repressor through a mechanism that
involves methylation of Histone H3 at lysine 27. The PRC2 complex activity is essential for cellular proliferation,
development, and cell fate decisions. PRC2 target genes include important regulators of development and proliferation as
well as tumor suppressor genes. Consistent with this, the activity of several Polycomb group (PcG) proteins is deregulated in
human cancer suggesting an important role for PcGs in tumor development. Whereas the downstream functions of PcGs
are well characterized, the mechanisms of their recruitment to target genes and the regulation of their activity are not fully
understood.

Principal Findings: Here we show that the two PRC2 components SUZ12 and EZH2 are sumoylated in vitro and in vivo.
Among several putative sumoylation sites we have mapped the major site of SUZ12 sumoylation. Furthermore, we show
that SUZ12 interacts with the E2-conjugating enzyme UBC9 both in vitro and in vivo and that mutation of the SUZ12
sumoylation site does not abolish this binding. Finally, we provide evidence that the E3-ligase PIASXb interacts and
enhances the sumoylation of SUZ12 in vivo suggesting that PIASXb could function as an E3-ligase for SUZ12.

Conclusions: Taken together, our data identify sumoylation as a novel post-translational modification of components of the
PRC2 complex, which could suggest a potential new mechanism to modulate PRC2 repressive activity. Further work aimed
to identify the physiological conditions for these modifications will be required to understand the role of SUZ12 and EZH2
sumoylation in PcG-mediated epigenetic regulation of transcription.
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Introduction

Polycomb group proteins (PcG) are evolutionarily conserved

regulators of development [1–5]. PcGs function as transcriptional

repressors and directly regulate the expression of genes involved in

differentiation, development, cell fate decisions and stem cell self

renewal [6–8].

PcGs form two distinct multiprotein complexes named–Poly-

comb Repressive Complex 1 and 2 (PRC1 and PRC2). PRC1 is a

large complex and consists of more than 10 different subunits

including the oncoprotein BMI1, CBX2, CBX4, CBX7, CBX8,

SCML, HPH1-3 and RING1A-B [9,10]. The PRC1 complex

catalyzes the ubiquitylation of histone H2A through the ubiquitin

E3 ligase activity of the RING1A and RING1B subunits [11]

which may lead to gene silencing through the induction of

chromatin compaction [12].

PRC2 is a smaller and highly conserved complex. The core of

the PRC2 complex is formed by the three PcG proteins EZH2,

EED and SUZ12 and by the histone binding protein RbAp48/46

[13–16]. The PRC2 complex catalyzes the tri-methylation (me3)

of histone H3 on Lysine (K) 27 [13–16]. The activity of PRC2 is

required for the recruitment of PRC1 to target genes [11] through

a mechanism that most likely involves the binding of PRC1 to

H3K27me3 [15,16]. Although EZH2 is the catalytic component

of PRC2, all three PcG components of the PRC2 complex are

essential for EZH2 Lysine histone Methyl Transferase (KMT)

activity and for mouse embryonic development [3,17].

The expression of EZH2, EED, and SUZ12 is controlled by the

pRB/E2F pathway and PRC2 activity is essential for the

proliferation of primary and cancer cell lines [3,18]. Consistent

with this, direct deregulation of different PcGs have been reported

in human cancers [3,19]. We and others have demonstrated that

BMI1, CBX7, CBX8 and EZH2 have growth promoting and

oncogenic effects, which in part can be ascribed to the ability of

PcGs to repress the expression of the tumor suppressor proteins

p16 and ARF [9,18,20,21].

Despite the key role of the PcGs in regulating cellular

homeostasis, we know relatively little about the mechanisms by

which PcG-mediated silencing is established and maintained.

Recent studies have shown that AKT-dependent EZH2 phos-
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phorylation inhbits EZH2 recruitment to chromatin and thereby

indirectly its repressive activity [22]. It is likely that other post-

translational modifications could be involved in the regulation of

PcG activity. For example, it was shown that CBX4/HPC2, a

component of the PRC1 complex, is sumoylated and functions as

a SUMO E3 ligase facilitating the SUMO modification of the

transcriptional repressor CtBP and of the kinase HIPK2 [23,24].

The conjugation of SUMO to target proteins involves four

enzymatic steps after which SUMO is covalently attached by an

isopeptidic bond to a lysine residue [25–27]. The target lysine is

often found in a consensus sequence YKXE/D. A recent study

has revealed an extended consensus motif consisting of a cluster of

acidic residues downstream of the YKXE/D motif leading to a

more accurate prediction of SUMO modification sites [28]. An

ATP dependent cascade of the E1 activating enzyme (SAE1-

SAE2), the E2 conjugating enzyme (UBC9) and of E3 ligases,

covalently binds the C-terminal cystein of the small SUMO

protein to the target lysine [26]. Protein modification by

sumoylation can have several different outcomes. Reported effects

of sumoylation include change of conformation, stability, interac-

tions and localization of the target proteins [25–27,29]. Several

transcription factors have been reported to be SUMO modified

and such modifications mainly correlate with repression of

transcription [27,29].

The identification of novel post-translational modifications of

PcG proteins could improve our understanding of the mechanisms

of PcG-mediated epigenetic regulation of transcription. Here we

demonstrate that two subunits of the PRC2 complex (SUZ12 and

EZH2) are sumoylated in vitro and in vivo. Moreover, we map the

site of sumoylation in SUZ12 and we show that SUZ12 can

interact with UBC9 in vivo and in vitro. Furthermore, we have

investigated the upstream regulatory pathways to SUZ12

sumoylation and found that the E3 ligase PIASXb, but not

CBX4, enhances the sumoylation of SUZ12. Together, our data

identifies sumoylation as a novel post-translational modification of

different PRC2 components, which could open new possibilities to

understand the regulation of PcG activities.

Results

EZH2 and SUZ12 are sumoylated in vivo and in vitro
To understand if members of the PRC2 complex are potential

targets for sumoylation, we analyzed the amino acid sequence of

SUZ12, EZH2, EED and RbAp48 with the SUMOplotTMAna-

lysis Program (Abgent; www.abgent.com/doc/sumoplot). This

analysis revealed that all four proteins contain one or more

SUMO consensus motifs (data not shown), suggesting that all

components of the PRC2 complex could be targets of sumoylation.

Thus, we tested if endogenous SUZ12, EZH2, EED and RbAp48

could be SUMO modified in vivo. Most of the sumoylated proteins

reported in the literature present a very low pool of protein

conjugated with SUMO [25]. In order to raise the proportion of

modified endogenous substrate we transfected 293T cells with

SUMO-1 and UBC9 (Fig. 1A). Western blot analysis detected

Figure 1. SUZ12 and EZH2 are sumoylated in vivo and in vitro. (A) Western blot analysis of 293T cells transfected with SUMO-1 and UBC9
showing sumoylation of endogenous SUZ12 and EZH2. Arrows indicate the SUMO modified forms. Molecular weight markers are indicated to the
right. (B) In vitro sumoylation assay of 35S-labeled in vitro translated SUZ12, RbAp48, EED and EZH2, showing sumoylation of SUZ12 (C) In vitro
sumoylation assay of the recombinant PRC2 complex showing sumoylation of SUZ12, EZH2 and EED.
doi:10.1371/journal.pone.0002704.g001

SUMO Modifications of PRC2
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slower migrating forms of SUZ12 and EZH2 upon SUMO and

UBC9 expression with a molecular weight consistent with SUMO-

conjugation (Fig. 1A). EED is present in the cells in at least 4–5

different isoforms [30,31] and it is difficult to determine the

existence of SUMO-conjugated EED forms. Despite this, we were

unable to detect any modifications of the slowest migrating EED

isoforms suggesting that these isoforms are not SUMO modified in

vivo (Fig. 1A). Finally, SUMO and UBC9 expression never led to

any RbAp48 modifications indicating that RbAp48 does not

undergo SUMO conjugation in vivo (Fig. 1A). Together, these data

suggest that EZH2 and SUZ12 can be targets for SUMO

modifications in vivo.

To confirm the SUZ12 and EZH2 sumoylation, we tested if the

components of the PRC2 complex could be SUMO modified in

vitro. For this, we reconstituted an in vitro SUMO system by

purifying from bacteria recombinant SAE1/SAE2 heterodimer

(the E1 activating enzyme), UBC9 (the E2 conjugating enzyme)

and SUMO-1. As substrate for the reaction we used in vitro

translated (35S-radio-labeled) components of the PRC2 complex.

The reaction products were separated by SDS-PAGE and radio-

labeled proteins were visualized by autoradiography. As shown in

Fig. 1B, SUZ12 can be efficiently attached to SUMO in vitro, while

EZH2 cannot (Fig. 1B). EED did not show substantial modifica-

tions, but a weak modified band could be detected (Fig. 1B). This

may suggest that EED can be sumoylated in vitro with low

efficiency. Finally, RbAp48 did not show any form of SUMO

modification in agreement with the in vivo data (Fig. 1B).

A possible explanation for the lack of EZH2 sumoylation in vitro

could be that EZH2 is not folded correctly, when in vitro translated,

and therefore not recognized efficiently by the sumoylation

machinery. Alternatively, other components of the PRC2 complex

could be required for EZH2 sumoylation. To test this, we

performed the in vitro sumoylation reaction using recombinant

PRC2 complex purified from insect cells [3] as substrate. As shown

in Figure 1C, both SUZ12 and EZH2 were SUMO modified

under these reaction conditions, confirming the in vivo results

presented in Figure 1A. EED was also sumoylated, confirming that

EED can be sumoylated in vitro. Finally, in agreement with the

results presented in Figure 1A and 1B, we did not observe any

modifications of RbAp48. Together, these results demonstrate that

SUZ12 and EZH2 can be SUMO modified both in vitro and in vivo,

whereas we have been unable to detect sumoylated forms of EED

in vivo and of RbAp48 in vitro and in vivo. In addition, SUZ12

always presents a single SUMO modified form (Figure 1A–C),

suggesting that it contains a single site of sumoylation. Differently,

EZH2 shows multiple bands of modification (Fig. 1C), suggesting

that EZH2 can have different sites of SUMO modification and or

multiple sumoylations on a single site.

Identification of SUZ12 SUMO conjugation site
Since SUZ12 appears to have one single site of SUMO

modification, we chose to focus on characterizing this. To test if

the slower migrating band of SUZ12 corresponds to a SUMO-

conjugated form, we expressed Flag-tagged SUZ12 in 293T cells

together with SUMO-1 and UBC9. Subsequently, we immuno-

precipitated SUZ12 from these lysates using an antibody specific

for the Flag tag epitope and analyzed the precipitates by western

blotting using SUMO-1 and Flag specific antibodies. As shown in

Figure 2A, the slower migrating form appearing when SUMO-1

and UBC9 are expressed, corresponds to SUZ12 conjugated to

SUMO.

The prediction of potential SUMO sites in the SUZ12 protein

identifies more than 10 different potential SUMO consensus

motifs. To identify the sites of SUMO modification experimen-

tally, we expressed SUMO-1 and UBC9 together with three

different SUZ12 fragments: a N-terminal fragment (amino acids,

aa 1–283), a middle fragment (aa 250–550) and a C-terminal

fragment (aa 500–739). The different fragments were expressed in

293T cells, immunoprecipitated with a Flag specific antibody and

used as substrate for the in vitro sumoylation reaction while

immobilized on Flag-beads (Fig. 2B). This experiment demon-

strates that only the N-terminal fragment of SUZ12 is SUMO-

modified in vitro, and suggests that the site of sumoylation is within

the first 283 amino acids (Fig. 2B). This fragment still contains 6 of

the predicted SUMO consensus sites, but only the site predicted at

lysine (K) 75 contains an upstream acidic patch consisting of an

aspartic and a glutamic acid residue (Fig. 2C). This cluster of

acidic residues has been shown to function as an extended SUMO

recognition motif that enhances the specificity of SUMO

conjugation [28]. Interestingly, two additional lysine residues

(K72 and K73) are found adjacent to the K75 (Fig. 2C). In order

to test if K75 is the site of SUZ12 SUMO modification, we

substituted K72, K73 and K75 with arginines (R) by site-directed

mutagenesis and tested the ability of the single K75R, the double

K72R, K73R and the triple K72R, K73R, K75R mutants to be

SUMO modified. As shown in Fig. 2D, mutation of K75 strongly

reduces the sumoylation of SUZ12, whereas mutation of K72 and

K73 only lead to a slight reduction in sumoylation. This suggests

that K75 is the preferential site of modification, however that also

K72 and K73 can function as alternative sites for SUZ12

sumoylation. Consistent with this, mutations of all three lysines

completely abrogate the sumoylation of SUZ12.

To understand if the same lysines are used as in vivo sumoylation

sites, we expressed the different SUZ12 mutants as full-length

proteins together with SUMO-1 and UBC9 in 293T cells. As

shown in Fig. 2E these experiments showed that the 3 lysines are

used as sites of sumoylation in vivo and confirmed that K75 is the

major site of SUMO modification, also in vivo. Importantly, the

alignment of the amino acid sequences between SUZ12

orthologues from different organisms revealed that K75 and the

residues that form the acidic patch are highly conserved

throughout evolution (Fig. 2F). In order to exclude any possible

SUZ12 sumoylation in the following experiments we decided to

use the triple K72R, K73R, K75R mutations and we refer to this

mutant as SUZ12 3KR.

SUZ12 interacts with UBC9
Differently from the ubiquitylation pathway, the SUMO

conjugating enzyme UBC9 can interact directly with its substrate

and, at least in vitro, the activity of E3 ligases is limited to enhancing

the efficiency of the sumoylation reaction [32,33]. Therefore, we

tested if UBC9 can bind directly to SUZ12. For this, we performed

an in vitro binding assay using 35S-radio-labeled in vitro translated

SUZ12 together with recombinant GST-UBC9 or GST-SUMO

purified from bacteria (Fig. 3A). As shown in Fig. 3B, UBC9, but

not SUMO, can bind to SUZ12 in vitro.

To test if this interaction can occur in vivo, we co-expressed

SUZ12 together with UBC9 alone or in combination with SUMO

and UBC9. To exclude that K75 (and K72, K73) is involved in the

interaction between SUZ12 and UBC9, we also included the

SUZ12 3KR mutant in this experiment. As demonstrated in

Fig. 3C, UBC9 can bind efficiently to SUZ12, but only when it is

co-expressed with SUMO. Moreover, this interaction is not

affected by the 3KR mutation (Fig. 3C). These results confirm that

SUZ12 can interact with UBC9 in vivo and that the K72, K73 and

K75 are not required for this interaction. Furthermore, the fact

that efficient UBC9 binding was only observed when co-expressed

SUMO Modifications of PRC2
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Figure 2. Identification of SUZ12 sumoylation site. (A) Immunopreciptaion (IP) Western blots using antibodies against SUMO-1 and the Flag
epitope of 293T cells expressing Flag-SUZ12, SUMO-1 and UBC9, showing that the slower migrating form of SUZ12 corresponds to SUMO-SUZ12. (B)
In vitro sumoylation assay of Flag immobilised N-terminal (aa 1–283), middle (aa 250–550) and C-terminal (aa 500–739) SUZ12 fragments purified
from 293T cells, mapping the SUZ12 SUMO modification site in the first 283 aa. NT-non transfected. (C) Schematic representation of the putative

SUMO Modifications of PRC2
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with SUMO, suggests that loading of SUMO to UBC9 leads to a

switch of UBC9 binding affinity for SUZ12.

To better characterize the SUMO modification of SUZ12, we

tested if SUMO-SUZ12 can be incorporated into the PRC2

complex. The fact that SUZ12 can be sumoylated in vitro when

assembled into the recombinant PRC2 complex (Fig. 1C) supports

this possibility. To address this in vivo, we expressed the three

PRC2 members EED, EZH2 and SUZ12 together with SUMO

and UBC9 in 293T cells. The result shows that the sumoylated

form of SUZ12 could be co-immunoprecipitated by an antibody

specific to EZH2 demonstrating that SUZ12 sumoylation does not

exclude the protein from the PRC2 complex (Fig. 3D).

PIASXb is an E3 SUMO ligase for SUZ12
In vitro sumoylation does not require the presence of E3 ligases,

but in a physiological context these proteins play an essential role

in regulating post-translational sumoylation of proteins [34,35].

Few proteins have been identified to function as SUMO E3 ligases

and these include the members of the PIAS protein family and the

PcG protein CBX4. CBX4 is a subunit of the PRC1 complex and

since the PRC1 and PRC2 complexes share common target genes

and regulatory pathways and since interactions between compo-

nents of the two complexes have been observed [36], we

speculated that CBX4 could function as E3 ligase for SUZ12.

For this, we tested if overexpression of CBX4 could enhance

Figure 3. SUZ12 interacts with UBC9 in vitro and in vivo. (A) Input of recombinant GST-tagged proteins purified from bacteria. (B) In vitro
binding of in vitro translated SUZ12 with GST, GST-SUMO and GST-UBC9, showing that SUZ12 can bind to UBC9. (C) Western blot analysis using the
indicated antibodies of SUZ12 immunoprecipitations (IPs) from protein extracts of 293T cells transfected with the indicated constructs showing in
vivo binding between SUZ12 and UBC9. (D) Western blot analysis using the indicated antibodies of EZH2 IPs from protein extracts of 293T cells
transfected with the indicated constructs showing co-immunoprecipitation of the SUZ12 sumoylated form. Mouse Ig served as negative control.
doi:10.1371/journal.pone.0002704.g003

SUMO site predicted at lysine 75 and the three different K to R substitutions to inactivate the potential target lysine. The predicted consensus site is
highlighted in italics, the putative target residues are indicated in blue, the acidic patch is indicated in green and the different arginine substitutions
are indicated in red. (D) In vitro sumoylation assay of the different Flag immobilised SUZ12 mutants shown in panel C, showing that K75 is the
preferential site of sumoylation. (E) In vivo sumoylation as in panel A of the different SUZ12 mutants shown in panel C, expressed as full-length SUZ12
proteins, demonstrating that K75 is the preferential SUMO site in vivo. (F) Alignment of the sequences surrounding K75 between different SUZ12
orthologues. The K75 residue is shown in bold. The full-length SUZ12 homology is indicated on the right as percentage (%) of identities.
doi:10.1371/journal.pone.0002704.g002
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SUZ12 sumoylation in vivo. We performed this experiment either

upon expression of both SUMO and UBC9 (Fig. 4A) or upon

expression of SUMO alone (Fig. 4B). In both cases CBX4

overexpression did not enhance SUZ12 sumoylation suggesting

that CBX4 does not function as a SUMO E3 ligase for SUZ12.

Consistent with this, we did not detect any interactions between

SUZ12 and CBX4 (Fig. 4C).

Next, we focused our attention on the PIAS protein family.

PIAS are proteins with RING-finger-like domains that have been

associated with the sumoylation of a number of different targets.

First, we tested if any of the five different PIAS proteins (PIAS 1,

Xa, Xb, 3 and PIASc) could interact with endogenous SUZ12.

Immunoprecipitations of the different PIAS proteins expressed in

293T cells showed that SUZ12 can interact with all members of

the PIAS family (Fig. 4C). This interaction is specific since CBX4

expression did not co-precipitate SUZ12 (Fig. 4C). To test if any of

these proteins could enhance endogenous SUZ12 sumoylation, we

co-expressed the five different PIAS proteins together with SUMO

in 293T cells and assayed the levels of SUZ12 sumoylation

(Fig. 4D). This experiment demonstrates that PIASXb expression

can specifically enhance the sumoylation of endogenous SUZ12

(Fig. 4D). Together these results suggest that all PIAS proteins

have binding affinity for SUZ12, but that only PIASXß can

enhance endogenous SUZ12 sumoylation in these conditions.

Figure 4. PIASXb is a potential SUMO E3 ligase for SUZ12. (A) Western blot analysis of 293T cells transfected with SUMO and UBC9 with or
without CBX4 expression. (B) Western blot analysis of 293T cells transfected with SUMO with or without CBX4 expression. The SUZ12 SUMO modified
form (arrow) and unspecific bands (*) are indicated. (C) Western blot analysis of immunoprecipitations with a Flag-tag specific antibody from 293T cell
extracts expressing the indicated Flag tagged proteins showing that endogenous SUZ12 interacts specifically with the members of the PIAS protein
family. (D) IP-western blots for endogenous SUZ12 from 293T cells expressing SUMO together with the indicated protein showing that specific
expression of PIASXß enhances endogenous SUZ12 sumoylation (arrow).
doi:10.1371/journal.pone.0002704.g004
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SUZ12 3KR mutant does not affect localization and PRC2
activity

To identify a physiological function for SUZ12 sumoylation, we

first tested if this modification could affect SUZ12 cellular

localization. For this, we stably expressed SUZ12 WT or 3KR

mutant in U2OS cells and showed by immunofluorecence staining

that mutation of SUZ12 sumoylation site did not affect SUZ12

nuclear localization (Fig. 5A). Secondly, we tested if SUZ12

sumoylation is required for the enzymatic activity of the PRC2

complex. For this, we stably expressed SUZ12 WT or 3KR

mutant in mouse Suz12 2/2 Embryonic Stem (ES) cells [37] and

analyzed H3K27me3 levels by western blotting (Fig. 5B). As

shown in Figure 5B, re-expression of both WT and 3KR mutant

SUZ12 restores physiological H3K27me3 levels suggesting that

SUZ12 sumoylation is not required for PRC2 enzymatic activity in

vivo. Finally, we tested if SUZ12 sumoylation could be important

Figure 5. SUZ12 K75 sumoylation is not required for PRC2 activity. (A) Immunofluorecence with a Flag antibody of U2OS cells stably
expressing WT or 3KR SUZ12 mutant. (B) Western blot analysis for SUZ12 and H3K27me3 of different Suz122/2 mouse ES cell clones (SBE8) stably
expressing either WT or 3KR SUZ12. Suz12+/+ ES cells (E14) served as positive control. Western blots for ß-Tubulin and Histone H3 served as loading
control. (C) Expression analysis of Gata4 in the different clones presented in B by real time quantitative PCR. Relative transcription is normalized to
GAPDH expression.
doi:10.1371/journal.pone.0002704.g005
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for the repressive activity of PRC2. For this we tested if the re-

introduction of the 3KR mutant, like wild type SUZ12, could lead

to the repression of the PRC2 target gene, Gata4 [6]. Expression

analyses by real-time quantitative PCR show that re-expression of

SUZ12 WT and 3KR mutant lead to comparable repression of

Gata4 expression (Fig. 5C). Taken together these data suggest that,

under the tested conditions, SUZ12 sumoylation is not required

for SUZ12 localization and the catalytic activity of PRC2.

Discussion

The role of Polycomb group proteins in controlling the

expression of a wide range of genes has been extensively studied.

These studies have proposed that PcG activity is required for the

establishment of specific transcription programs that control cell

fate decisions during development [6–8,37]. Consistent with this,

loss of PcG function results in embryonic lethality during the

gastrulation stage [2,3,5,38]. Although much is now known about

the processes controlled by Polycomb complexes, the molecular

mechanisms that regulate their recruitment and activity are still

not well understood. One possibility could be that post-

translational modifications of different PcG proteins may be

involved in regulating their activity. For example, phosphorylation

of EZH2 mediates its displacement from chromatin and

fluctuation of BMI1 phosphorylations during the cell cycle

correlates with BMI1 chromatin association [22,39]. The

identification of novel post-translational modifications of PcG

proteins is an important challenge that may help to better

understand the mechanisms that regulate PcG activity.

In this study we demonstrate that two members of the PRC2

complex, SUZ12 and EZH2, can be sumoylated in vitro and in vivo.

We have shown that SUZ12 contains one single modification site,

that EZH2 contains multiple sites of modification and that EZH2

in vitro modification requires the assembly of the PRC2 complex.

Furthermore, we have mapped the SUZ12 sumoylation site to

lysine 75, shown that SUZ12 can interact with UBC9 and

identified PIASXß as a potential SUMO E3 ligase for SUZ12.

We have not been able to identify a physiological function for

the SUMO modification of SUZ12. Our results suggest that

SUZ12 sumoylation is not essential for PRC2 activity in ES cells,

but the general low abundance of SUMO modified proteins

together with the difficulties in identifying processes where SUZ12

and EZH2 undergo physiological sumoylation make this question

extremely difficult to address. Our results indicate that SUZ12

sumoylation is not essential for PRC2 activity in ES cells, however

the sumoylation of SUZ12 could be required for specific processes

and or in other cellular contexts. Moreover, previous data have

shown that protein sumoylation can be transient and that this can

be required to mediate specific protein-protein interactions [25–

27]. A possibility could be that sumoylation of PRC2 is required to

provide specific binding affinities. Furthermore, it is possible that

sumoylation of the entire PRC2 complex may be required for its

activity and that the SUZ12 mutation alone may not be sufficient

to lead to a clear phenotype.

In this work we have also identified PIASXß as a potential E3

ligase for SUZ12 suggesting that PIASXß could function as a

regulator of PcG activity. The two splice variants of PIASX (Xa
and Xb) are mainly expressed in adult testis in the Sertoli cells, in

the germ cells and in the spermatocytes [40,41]. It is possible that

SUZ12 sumoylation may have a role in this specific process and it

would be interesting to analyze the PRC2 activity at target genes

during spermatogenesis in the absence of functional PIASX

proteins. Furthermore, it would also be interesting to analyze the

role of SUZ12 sumoylation during spermatogenesis, as well as in

other developmental processes, by creating mouse models

harboring the SUZ12 3KR mutation.

The fact that K75 is conserved in SUZ12 orthologues with low

overall identity (Fig. 2F) suggests that SUZ12 sumoylation could

be a conserved feature during evolution. Moreover, the Glutamic

(E) and Aspartic acid (D) residues forming the acidic patch C-

terminal to the SUZ12 sumoylation site are also highly conserved

and, when lost, are substituted with an equivalent acidic residue (E

to D substitution in Drosophila melanogaster and in Drosophila

pseudoobscura, Fig. 2F). This could suggest that the acidic patch

plays an important role in the sumoylation of SUZ12.

SUZ12 expression is regulated by the pRB/E2F pathway and is

required for cellular proliferation of normal and cancer cell lines

[3,18]. Consistent with the role of PcG proteins in cancer formation,

the SUZ12 gene locus is translocated in human Endometrial Stromal

Sarcomas (ESS) with high frequency leading to the expression of an

uncharacterized fusion protein [42]. Recently it was further proposed

that the selection for the expression of the SUZ12 fusion protein in

ESS occurs during the benign to malignant transition of these tumors

[43]. It is interesting to note that the part of SUZ12 that is involved in

this translocation exclude K75 suggesting that the physiological

functions of SUZ12 sumoylation will be lost in cancers harboring this

translocation. This does not link SUMO directly with the oncogenic

effect of this translocation, but highlights that, if SUMO has a role in

regulating PRC2 activity, this will be lost in the development of ESS

expressing this translocation. Therefore the understanding of the

biological role of SUZ12 sumoylation could also contribute to the

understanding of the role of this translocation in ESS.

It was reported that a small proportion of the PRC2 complex is

present in the cytoplasm of different cell types [44]. In this work it

was shown that cytosolic PRC2 regulates Actin polymerization

through its ability to bind the guanine nucleotide exchange factor

VAV1 and that this activity is linked to Ezh2 requirement for T-cell

development in vivo [44]. An additional possibility could be that

PRC2 sumoylation may play a role in regulating non-chromatin

associated PRC2 functions. The fact that we detect sumoylation of

nuclear SUZ12 upon SUMO and UBC9 overexpression (data not

shown) does not support this but further experiments in this

direction will be required to validate such hypothesis.

In conclusion, we have identified a novel potential post-

translational modification of components of the PRC2 complex,

which may lead to a better understanding of the mechanisms of

PcG-mediated regulation of transcription during processes such as

proliferation, development, cell fate decision and tumorigenesis.

Materials and Methods

Plasmids and antibodies
All constructs encoding the PRC2 complex components have

been described previously [3]. All constructs for SUMO, UBC9,

SAE1/SAE2 expression were described [45]. Expression con-

structs for PIAS proteins were described [46]. SUZ12 3KR

mutations were obtained by site-directed mutagenesis using the

Quick-Change Site Directed Mutagenesis kit (Stratagene). SUZ12

WT and 3KR ORFs were inserted into the HA/Flag EF1-ires-

PURO lentiviral expression construct [47] by BamHI subcloning

from the pCMV expression constructs described above.

Immunoblottings were performed with the following antibodies:

rabbit anti-Suz12 (Upstate), mouse anti-SUZ12 BC23 [48], rabbit

anti-b-tubulin (Santa Cruz), mouse anti-EZH2 BD43 [3], mouse

anti-EZH2 AC22 [3], mouse anti-EED AA19 [18], rabbit anti-

RbAp48 13D10 (Upstate), rabbit anti-HA (Babco), rabbit anti-

Flag (Sigma), rabbit anti-Myc (Santa-Cruz), mouse anti-SUMO-1

(Zymed), mouse anti-Cbx4 [9], rabbit anti-H3K27me3 (Upstate),
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rabbit anti-histone H3 (Abcam), mouse anti-SUZ12 BC23 was

generated using recombinant GST-SUZ12 as antigen as described

previously [9]. Immunoprecipitations were performed with the

following antibodies: mouse anti-Flag M2 (Sigma), mouse anti-

EZH2 AC22 [18], mouse anti-SUZ12 2AO9 [48].

Cell culture and lentiviral production
293T and U2OS cells were cultured in DMEM (Gibco)

supplemented with 10% FCS (Hyclone), Pen/Step (Gibco),

Glutamax (Gibco). Mouse ES cells were cultured as described

[37]. Lentiviral production was carried out as described [49].

Western blotting and immunoprecipitations
For Western blotting cells were lysed in high salt buffer S300P

(50mM Tris-HCl, 300mM NaCl, 0.5% Igepal, 1mM EDTA,

1mM DTT, 1mM PMSF, 1 mg/ml leupeptin, 1 mg/ml aprotinin).

For immunoprecipitations, protein G-agarose beads (Zymed) were

pre-coupled O/N with the indicated antibodies. Alternatively,

mouse anti-Flag M2 beads (Sigma) were used when indicated.

Equal amounts of protein lysates (S300P buffer) were used for each

immunoprecipitation. Immunoprecipitates were eluted from beads

and analyzed by western blotting with the indicated antibodies.

Expression of recombinant proteins and in vitro
sumoylation assay

GST-UBC9, GST-SUMO-1 and heterodimeric GST-SAE1-

SAE2 fusion proteins were expressed in E. coli BL21 for 4 hours at

37uC by addition of 0.2 mM IPTG (Sigma). Recombinant

proteins were purified on glutathione-Sepharose beads (Amer-

sham). SUZ12, RbAp48, EED and EZH2 in vitro translation was

performed with TNTH coupled reticulocyte lysate system

(Promega) in the presence of [35S]Methionine (Promix, Amer-

sham). The recombinant PRC2 complex expressed in insect cells

was prepared as described [3].

The sumoylation reaction was carried out as follows in a total

volume of 20 ml at 30uC for 2 hours: 56reaction buffer (500 mM

Tris pH 7.5, 50 mM MgCl2, 20 mM ATP, ddH2O) 2–5 ml 35S-

labeled in vitro translated target protein or 0.1 mg of recombinant

PRC2 complex, 1 mg UBC9, 2 mg SUMO-1 and 0.4 mg SAE1-

SAE2 recombinant proteins. The reaction was analyzed by

autoradiography for radiolabeled substrates or by western blotting.

In vivo sumoylation
293T cells were transfected with 5 mg of SUMO-1 and 5 mg of

UBC9 and harvested after 48 hours. Cells were lysed in

denaturing SDS buffer (2% SDS, 100 mM Tris-HCl pH 7.5,

7.5% Glycerol, 40 mM NaCl, 0.4% Igepal, 0.4% deoxycolate,

1mM EDTA, 1mM PMSF, 1 mg/ml leupeptin, 1 mg/ml aprotinin,

15 mM N-ethylmaleimide (NEM)). Immunoprecipitations from

samples lysed in denaturing SDS buffer were carried out by

diluting the samples 15 times in E1A buffer (50 mM Hepes

pH 7.0, 250 mM NaCl, 0.1% Igepal, 5 mM EDTA, 1mM PMSF,

1 mg/ml leupeptin, 1 mg/ml aprotinin) prior to addition of the

indicated antibodies.

GST in vitro binding assay
5 ml of [35S]Methionine-labeled in vitro translated SUZ12 was

incubated with 10 mg of GST, GST-SUMO or GST-UBC9 in

1 ml of RV buffer (50 mM Hepes pH 7.5, 150 mM NaCl, 1 mM

EDTA, 2.5 mM EGTA, 0.1% Tween-20, 1 mM PMSF, 1 mg/ml

leupeptin, 1 mg/ml aprotinin) for 16 hours at 4uC. Samples were

centrifuged at 20.000 g for 15 minutes to remove precipitates and

incubated with glutathione-Sepharose beads (Amersham) for

2 hours, washed and the immunoprecipitates analyzed by

autoradiography.

Immunofluorescence
U2OS cells were fixed for 10 minutes in Lillie’s fixation solution

(Merck), permeabilized 5 minutes in 0,1% TritonX-PBS, incubat-

ed with the indicated antibodies in 10% FBS for 1 hour, incubated

with Alexa Fluor 594 (Invitrogen) secondary antibody for

30 minutes and counterstained with DAPI.

Quantitative PCR and primers
cDNA preparation and real-time quantitative PCR were

performed following manufacturer’s instructions (Applied Biosys-

tems). The analysis was performed as described [18]. The primer

sequences used for the real-time quantitative PCR were described

previously [37].
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