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Objective. To examine the implications for statistical power of using predicted prob-
abilities for a dichotomous independent variable, rather than the actual variable.
Data Sources/Study Setting. An application uses 271,479 observations from the
2000 to 2002 CAHPS Medicare Fee-for-Service surveys.
Study Design and Data. A methodological study with simulation results and a sub-
stantive application to previously collected data.
Principle Findings. Researchers often must employ key dichotomous predictors that
are unobserved but for which predictions exist. We consider three approaches to such
data: the classification estimator (1); the direct substitution estimator (2); the partial information
maximum likelihood estimator (3, PIMLE). The efficiency of (1) (its power relative to testing
with the true variable) roughly scales with the square of one less the classification error.
The efficiency of (2) roughly scales with the R2 for predicting the unobserved dichot-
omous variable, and is usually more powerful than (1). Approach (3) is most powerful,
but for testing differences in means of 0.2–0.5 standard deviations, (2) is typically more
than 95 percent as efficient as (3).
Conclusions. The information loss from not observing actual values of dichotomous
predictors can be quite large. Direct substitution is easy to implement and interpret and
nearly as efficient as the PIMLE.
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Health services researchers often face measurement errors in the independent
variables they wish to use in regression models. In particular, analysts might
not observe a dichotomous (or categorical) variable identifying group mem-
bership for every observation, but might have estimates of p, the probability
of being in the group from a rich model estimated on auxiliary data. This
situation arises in many settings. For example, in the illustration presented
later in this paper, researchers developed a model for predicting depression
that can be used to measure the association between depression and
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evaluations of care for beneficiaries in other Medicare databases. Diagnostic
status as measured by a short screening instrument or demographic charac-
teristics measured by geocoding from Census block groups are other examples
of error prone categorical variables used in health services research.

Current approaches typically classify probabilistic information about
category membership and then analyze the data as if these characteristics were
measured without error. However, several approaches exist for testing hy-
potheses about the coefficient of the unobserved dichotomous predictor in
linear models for an outcome of interest. Three estimators summarize the
range of possible approaches. These are (1) the classification estimator, which
classifies observations as zero or one on the basis of whether the probability
that the unobserved variable is one exceeds a threshold; (2) the direct substi-
tution estimator, which uses the observed probability p in place of the unob-
served predictor in a regression of the outcome on p; and (3) the partial
information maximum likelihood estimator (PIMLE) which is the maximum like-
lihood estimator given that we only know p. We will compare these three
estimators to a reference estimator that is only possible when the dichotomous
predictor is known, which we call the full information estimator.

The classification and direct substitution estimators can be implemented
using standard linear regression software without additional coding, and are
the most widely used methods in practice. Classification has the additional
appeal of providing intuitive groupings of all observations, so that simple
summaries can be used in conjunction with modeling. Modeling with the
probabilities is easy to implement, but less appealing to some analysts because
the model is fit with a continuous variable and because the data are not
categorized. Although optimization algorithms are available in common sta-
tistical software packages, maximum likelihood estimation, such as that used
with the PIMLE, requires greater quantitative expertise to implement than the
other methods. As a result, it is less accessible to many analysts who none-
theless routinely employ estimated dichotomous predictors.

Classification by the probability of an unobserved dichotomous predic-
tor results in measurement error in the independent variables of the analysis
for which there is an extensive literature (Fuller 1987 provides a good intro-
duction to this literature). The three approaches considered here are each
analogous to particular methods in the broader measurement error literature;
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here we discuss these approaches in a unified context. The classification es-
timator has the same properties as regression with error-prone dichotomous
independent variables. The direct substitution estimator is analogous to a two-
stage instrumental variables (IV) estimator, where the probabilities from the
external source in our problem are like the probabilities estimated using the
IV in the first stage of the IV estimator (Fuller 1987). The PIMLE is analogous
to using an IV via maximum likelihood estimation (Fuller 1987), except that in
our problem we observed the probabilities rather than the IV. The PIMLE
is also analogous to imputing the unobserved dichotomous variable using
multiple imputation (Rubin 1987).

In general the literature finds that measurement error can result in loss of
power for testing hypotheses; Tavere, Sobel, and Gilles (1995) specifically
discuss the loss in power from modeling with an error-prone dichotomous
predictor. However, a review of this literature did not find direct guidance for
choosing among the straightforward and somewhat more complex approach-
es (e.g., PIMLE) in terms of the power of each approach.

This paper specifically addresses the power for testing hypotheses using
the alternative approaches for the problem of unobserved dichotomous pre-
dictor values. We provide analytic formulas for the loss in power from using
classification or direct substitution relative to the power from the full infor-
mation estimator. Through a simulation study, we compare the power of these
methods to those of the PIMLE. As the literature predicts, the loss of power
from measurement error can be substantial and PIMLE provides more power
than the alternatives. Somewhat surprisingly, the power of the direct substi-
tution estimator and the PIMLE are quite similar when the true effect size of an
unobserved dichotomous predictor is small to moderate.

The next section presents details of the estimators and analytic results.
The following section describes a simulation study. The last section provides
an empirical illustration of these results, and the paper concludes with a dis-
cussion of the implications of our findings.

POWER OF CLASSIFICATION, DIRECT SUBSTITUTION,
AND PARTIAL INFORMATION MLE

We consider the following simple linear model for a continuous dependent
variable Yi:

Yi ¼ aþ bZi þ ei ð1Þ
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for i 5 1, . . ., n where Zi is a dichotomous predictor that is independent
of ei. The ei have mean zero and variance s2 and Pr(Zi|Xi, ei) 5 Pr(Zi|Xi)
for a given set of variables, X, used to predict the dichotomous predictor.
We assume that Zi is unobserved but that pi 5 Pr(Zi 5 1|Xi) is observed. We
will primarily treat pi as known without estimation error. We assume that
the average of the pi equals p, the overall mean of Zi. The goal of the study
is to make inferences about b, the difference between the means of the
groups defined by Z. In particular, we will consider testing the null hypothesis,
H0: b5 0.

Our interest is in determining the power of tests based on the
methods presented above. The power of the test depends on the parameter
T, which is equal to the expected value of the estimator of b divided by
its standard error (Steel and Torrie 1980). Thus for each method, we will
determine T and compare it with T0, the parameter for a test based on
modeling with the unobservable Zs. To make this comparison more
readily interpretable, we consider the square of the ratio of T to T0, which
we call the efficiency of the method. The reciprocal of the efficiency equals
the ratio of the sample sizes required to achieve equal power using one
of the methods based on the predicted values and an analysis using the
unobservable Zs.

Classification Estimator

Properties. The classification estimator of b when Z is unknown classifies pi to
create dichotomous predictors, Ui 5 1 when pi is greater than threshold pn,
and 0 otherwise. Testing employs a standard independent sample t-test, with
Ui in place of the unobserved Zi.

One challenge for this method is how to select pn; a variety of
procedures are commonly employed to choose this value. Selecting an
approach is not straightforward, because the rule that yields the most power
depends on the distribution of pi, which itself is likely to be a function of both
its true mean and the method by which it was estimated. We briefly discuss
four common cutoffs for dichotomous classification. Simulations not
presented here1 suggest that none of these cutoffs is uniformly superior to
the others, but we focus on one that generally performed the best.

Perhaps the most common approach is to split at pn 5 .5. This
approach fares very poorly when p is near 0 or 1, as it can result in massive
misclassification. A second approach, meant to minimize variance, sets pn

at the median of the pi. A third approach assumes bimodality in the
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pi corresponding to true values of Zi, and so sets pn at the percentile of the pi

that corresponds to the mean of the pi. The fourth and generally best of these
approaches sets pn at the mean of the pi. This approach takes advantage of the
pi as unbiased estimators of p.

As detailed in Section A.1 of the supplementary appendix, the
classification estimator results in an attenuated estimate of the effect of
the independent variable. The expected value of the classification estimator is
the product of the true effect size and an attenuation factor equal to the
difference in the proportion of true ‘‘1s’’ among those classified as ‘‘1’’ and
those classified as ‘‘0.’’ The classification estimator may have more or less
variance than the full information estimator, because (a) the variance of
the estimator is closely tied to the proportion of cases treated as ‘‘1,’’ and
(b) the proportion classified as ‘‘1’’ may differ between classification and the
full-information approach.

The efficiency from classification on U rather than Z (assuming the
variance is known) is

Classification efficiency ¼ r1 � r0ð Þ2að1� aÞ
r0 1� r0ð Þa þ r1 1� r1ð Þ 1� að Þ½ �E2 þ 1f gp 1� pð Þ

ð2Þ

where E 5 b/s is the true effect size, a is the proportion of observations
classified as ‘‘1,’’ r1� r0 is the attenuation factor with r1 equal to the proportion
of cases classified as ‘‘1’’ that are true ‘‘1s,’’ and r0 equal to the proportion of
cases classified as ‘‘0’’ that are true ‘‘1s.’’ The appendix shows that the power
from classification equals that from the full information estimator only under
perfect classification; otherwise classification efficiency is o1.

Attenuation is the major source of loss of power. Correcting for
attenuation by dividing estimates by the amount of attenuation merely
exchanges bias for variance and does not change the power of the test. The
efficiency decreases with the true effect size, E, because there is a greater
information loss due to misclassification as E increases.2 In cases where pn

is chosen to match the true population proportion (i.e., a 5 p as is
approximately true for the fourth and recommended threshold setting
approach) then

Classification efficiency ¼ r1 � r0ð Þ2

r0 1� r0ð Þp þ r1 1� r1ð Þ 1� pð Þ½ �E2 þ 1f g ð3Þ
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The Direct Substitution Estimator

Properties. The direct substitution estimator uses the pis as independent
variables by fitting a linear regression model of the form

Yi ¼ a� þ bpi þ e�i ð4Þ

and tests the null hypothesis through a test of whether the regression
coefficient for pi is zero. As noted in Section A.2 of the supplementary
appendix, under conditions assumed earlier, the direct substitution estimator
is unbiased but has a variance inflated by misclassification. Hence, after
reduction (Section A.2 of the supplementary appendix), the efficiency of
direct substitution is given by

Direct substitution efficiency ¼ R2

1þ E2p 1� pð Þ 1� R2ð Þð Þ ð5Þ

where R2 ¼ VarðpiÞ=½pð1� pÞ� is the (‘‘pseudo’’) R2 from regressing Z on X,
and equals the correlation between the probabilities and Zi. Clearly, direct
substitution efficiency is �1 with some loss relative to full-information,
except when the observed variable can be predicted perfectly. When R2 is
small the loss in efficiency can be very large. If E is small, then direct
substitution efficiency approximates R2.

Single Imputation Estimator. A related approach sometimes used by
analysts who are uncomfortable using continuous probabilities in place of
truly dichotomous variables, is to create a single stochastic imputation
for each Zi. by drawing a random [0–1] variable, Wi 5 1 with probability pi.
Tests of the hypothesis that b5 0 are conducted using a standard t-test
based on classification by Wi and using the difference in group means
defined by Wi as the estimator of b. It can be demonstrated that this single
imputation estimator is attenuated through random misclassification and
is less efficient than direct substitution.3 To achieve equal power using
single stochastic imputation as is obtained by direct substitution would
require a sample that is 1/R2 times larger. In fact, under some circumstances,
a single stochastic imputation can result in less power than classification.
In general this method cannot be recommended for analysis. To be
efficient, stochastic imputation must use information in the outcomes
values (the ys), and multiple imputation is superior to single imputation for
this purpose.
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PARTIAL INFORMATION MAXIMUM LIKELIHOOD
ESTIMATION

Properties

The appeal of the previous methods is that they can be implemented
using standard regression package software without any custom program-
ming of function optimization. However, computational simplicity may
come at a cost of less power. Partial information maximum likelihood esti-
mation will provide more efficient estimates of the difference in means
and should provide greater power for testing hypotheses about this
difference.

The PIMLE achieves greater power by incorporating information
about Yi into an implicit iterative classification of observations into either
zeros or ones. To use this information about the outcomes, the PIMLE
requires assumptions about the distribution of both the outcome and the
missing dichotomous predictor. In this paper, we consider linear models
where the following assumptions are justifiable. Let Yi � Normal (a1bZi, s

2)
and Zi � Bernoulli (pi). Then the likelihood contribution for the i th
observation is

f ðYi ja; b; pi ; s2Þ ¼ pi fðYi jaþ b; s2Þ þ ð1� piÞfðYi ja; s2Þ ð6Þ

where f(Yi |a, s 2) is the normal density with mean a and variance s2. The
likelihood is a mixture of two normal with known mixing parameters, pi. As
shown in Dempster, Laird, and Rubin (1977), obtaining the MLE for such
problems requires a straightforward application of the EM algorithm. The
algorithm involves a series of iteratively reweighted least squares regression
problems where the weights involve the ratio of f(Yi |a1b, s2) to f(Yi |a, s2)
with the unknown parameters set to their values from the previous iteration.
The algorithm starts with a guess for the initial values and repeats iterations
until the estimates converge.

The choice among classification, direct substitution, and the PIMLE
may be guided by their relative power. The PIMLE will provide greater power
than the other methods, but the difference in power has not been explored for
this class of problems. Unlike the other estimators, the power of the PIMLE
cannot be determined analytically without consideration of the distribution
of pi; thus, in the next section we use a simulation study to calculate its relative
T statistic. We compare this statistic with those of the other estimators to
determine relative gains in power for the PIMLE.
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Multiple Imputation Estimator

Another alternative that analysts might consider is what we here call the
multiple imputation estimator——‘‘proper’’ multiple stochastic imputation (Rubin,
1987). This form of stochastic imputation uses information from the outcomes
when imputing the missing dichotomous predictors and provides multiple-
imputed values for each Zi. Asymptotically, as the number of multiple
imputations becomes sufficiently large the method has the same power
as the PIMLE.

SIMULATION STUDY

Design

We conducted a simulation study comparing the efficiency of (1) the classi-
fication estimator, (2) the direct substitution estimator, and (3) the PIMLE to
the full-information estimator. This simulation serves two purposes. First, it
provides a sense of how the key parameters that drive the formulas for clas-
sification efficiency and direct substitution efficiency vary with characteristics
of the distribution of the probabilities. Second, it serves to compare the PIMLE
to the full-information estimator over realistic parameter values to estimate its
efficiency as no closed-form formula exists, and then to compare this to the
efficiencies of the alternative estimators.

This simulation generated data sets according to equations (1) and (4) by
first simulating predicted probabilities, pi, then generating Zi, and finally gen-
erating the outcomes, Yi. To generate the predicted probabilities, the study
used a series of six mixtures of two beta distributions parameterized by two
means (Z1,Z2), two variances (n2

1, n2
2), and a mixing proportion l. These six

mixtures were selected to produce values of key parameters (r1� r0, and R2)
that span a realistic range of values. The values of Z1, Z2, and l used in the
simulations are presented in Table A1 of the supplementary appendix. All
simulations used n2

1 5 n2
2 5 0.01 because this provided interesting distributions

for the probabilities without unnecessary complexity.
For each mixture, we consider effects sizes of 0.2, 0.5, and 0.8 standard

deviations for generating the normal outcomes with variance one within each
group. On the basis of preliminary simulations, we determined that relative
efficiencies were invariant to sample sizes in the range of 200–1,600 obser-
vations. Consequently, for each design cell defined by a particular combina-
tion of effect size and distribution for pi, we generated 10,000 data sets of 400
observations each and calculated the PIMLE and full-information estimates
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for each simulated data set. Using these 10,000 estimated coefficients, we
calculated empirically the mean and standard error of the PIMLE and the full-
information estimators, the T statistics for both estimators and the efficiency of
the PIMLE as the square of the ratio of the T statistic for the PIMLE to the T
for the full-information estimator. For each cell, we also determined the value
of the attenuation factor (r1–r0) and R2 on the basis of the distribution for
the estimated probabilities and used these parameters to calculate the classifi-
cation and direct substitution efficiency using formulas (2) and (5), respectively.

Results

Tables 1A and 1B present the simulation results with a column for each of the
three effect sizes grouped by the distribution of the predicted probabilities. For
each block, we provide parameters (R2, r1� r0, and p) calculated analytically
from the density of probabilities. There is one value of each statistic for the
entire block of three effect sizes because these statistics depend only on
the density of the probabilities, and not on the effect sizes or values of Z and Y.
The tables also contain values of classification efficiency and direct substitu-
tion efficiency for each design cell. These values depend on both the density
and the effect sizes but not the values of Z and Y. The next row provides the
efficiency of the PIMLE.

The tables demonstrate that high values of R2 require extreme distri-
butions with probabilities all very close to either 0 or 1. In Set 1, the prob-
abilities cluster near the extremes, but R2 is only 0.46. In Set 2, the distribution
of probabilities is clearly bimodal and well separated, but R2 is only 0.20. Set 3
is similar to Set 2, except for having unequal modes, something that has little
effect on R2. In the remaining cases, the probabilities are not well separated
and R2 is below 0.10. The attenuation factor for classification (r1� r0)
correlates highly with R2; scenarios with the largest R2 also have the largest
values of this factor and the least attenuation.

As can be seen, the PIMLE has power equivalent to a sample
8–20 percent as large as modeling with a known predictor for five of the
mixtures (and as high as 46–48 percent for the easiest of the set). Unlike the
classification and substitution methods, performance of the PIMLE with re-
spect to full information increases slightly with the effect size. As given by (5),
direct substitution efficiency is essentially equal to R2. It is also essentially equal
to the efficiency of the PIMLE at effect sizes of 0.2 standard deviations for
all six designs, and is 96–99 percent as efficient as the PIMLE at effect sizes of 0.5
standard deviations, with the exception of one case with an 8 percent difference
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(Set 5). By 0.8 standard deviations, direct substitution is 87–90 percent as effi-
cient as the PIMLE, except for Set 5, where the difference is 23 percent.

As given by (2), classification efficiency is essentially equal to the square
of the attenuation factor. Classification is 37–80 percent as efficient as
the PIMLE, with somewhat lower relative efficiency at larger effect sizes (and
41–82 percent as efficient as direct substitution, with little variation by effect
size). Compared with the other estimation methods, classification had its best
relative efficiency in the symmetric case of Set 2 and its worst relative
efficiency in the asymmetric case of Set 1.

ILLUSTRATION WITH MEDICARE DATA

As an example of how this approach might be implemented, we describe an
application that uses a sample of 271,479 original (Fee-for-Service) Medicare
Beneficiaries surveyed as part of the 2000–2002 Consumer Assessment of
Healthcare Providers and Systems (CAHPS) Medicare Fee-for-Service
(MFFS) Surveys. The example considers an error-prone survey-based proxy
for the true dichotomous predictor of interest, diagnosed depression. The
MFFS survey includes items that allow calculation of the Mental Component
Score (MCS; Ware and Kosinski 2001). As described more fully elsewhere
(Health Services Advisory Group 2006), this file was merged with adminis-
trative records that provided a measure of true diagnosed depression. We used
these merged files to derive an MCS-based proxy for diagnosed depression in
the form of predicted probabilities. Such a measure could then be used to
assess the association between depression and self-reported outcomes such as
CAHPS ratings of health care, physical activity, or total utilization on any
survey that includes the MCS. Notice that an analysis that uses the probability
of depression is estimating the relationship between depression and an out-
come of interest, which is fundamentally different than simply estimating the
linear association between MCS and such an outcome.

To derive the predicted probabilities of depression, we calculated mean
MCS scores by decile. Pooling adjacent deciles where the depression pro-
portion did not decrease monotonically resulted in six ordered bins for MCS
scores: o40.5 (18.5 percent depression), 40.5–48.2 (12.6 percent depression),
48.2–52.1 (9.3 percent depression), 52.1–54.7 (6.3 percent depression), 54.7–
57.8 (4.5 percent depression), and greater than 57.8 (3.2 percent depression).

The pseudo R2 for these predicted probabilities was 10 percent, so that at
typical effect sizes the direct substitution approach would have the same power
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as a data set with known depression that was one-tenth the size. Thus, for a
given level of statistical power, sample sizes would need to be an order of
magnitude larger with proxy diagnosis than with actual diagnosis. Large sam-
ples like CAHPS MFFS would provide adequate power to detect even small
effects and in such cases direct substitution would likely be the method of
choice. In considerably smaller samples with power to detect only moderate to
large effects, PIMLE may be preferred given its somewhat greater efficiency
for effect sizes in this range.

DISCUSSION

All three methods (classification, direct substitution, and PIMLE) result in
substantial loss of efficiency relative to a known predictor (the full-information
estimator), due to loss of information. The R2 heuristic provides a good way to
estimate information loss for study design and correction of standard error.

In most situations of interest, direct substitution will be the method of
choice, as it is simpler to implement and was nearly as efficient as the PIMLE
when effect sizes were 0.2–0.5 standard deviations in each of six very different
distributions of predicted probabilities, with smaller losses when predicted
probabilities have clear bimodality and higher values of R2. As effect sizes
reach 0.8 standard deviations, the efficiency of direct substitution fell to 87–90
percent of the efficiency of PIMLE in most cases, faring better under the same
circumstances as before. It should be noted that such efficiency is likely to be
adequate under these undemanding circumstances. These patterns appear
to be independent of sample size and are mainly a function of the PIMLE’s
increasing efficiency with effect size (and to a lesser extent, a small corre-
sponding degradation in the efficiency of direct substitution). The relative
efficiency of PIMLE increases with the effect size because it implicitly uses
information from the outcomes in assessing group membership. The other
methods use only the information in the ps for this determination.

Classification is notably less efficient than direct substitution and PIMLE
are, due to inefficient use of the pi values. The relative performance of clas-
sification compared with direct substitution and PIMLE is insensitive to effect
size and sample size in the simulated ranges.

Direct substitution is like a two-stage IV technique for endogenous or
error-prone predictors. In all cases, the expected value of the independent
variable is used for regression rather than the variable itself. Our finding that
direct substitution results in substantial loss of efficiency compared with the
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full-information estimator corresponds to the well-known result that IV can
result in substantial loss of efficiency relative to experimental assignment, even
when there is good correlation between the instrument and the independent
variable of interest. In the IV literature, preference is now often given to
maximum likelihood methods because they are more efficient. However, our
results show that the PIMLE is likely to provide little additional power and
larger samples and very strong instruments are the only means to obtain
sufficient power for IV estimation.

Our results for classification suggest that even small measurement error
in dichotomous independent variables can have an important effect on re-
gression estimates. It is all too common that measurement error is considered
only with respect to meeting a threshold of acceptability (using ks, Cronbach’s
a, or test–retest reliability), and that no further accounting for that error in
sample design or analysis takes place. However, even measures that meet
these thresholds can reduce power and we encourage researchers to integrate
measurement error quantitatively into common metrics such as effective
sample size. This way the effective sample size per unit of cost can be max-
imized in a way that encompasses all aspects of a study and allows trade-offs to
be rationally evaluated.

We feel that the invisible nature of measurement error results in rela-
tively too much attention being given to sampling error and sample sizes while
underinvesting in the quality of the independent variables. Given that even
modest reductions in the measurement error of a fairly well-estimated but
error-prone measure can substantially increase the effective sample size, mea-
surement of key predictors should be an area of intense concern, one that
we hope will receive increased attention in the evaluation of proposals and
research manuscripts.

This paper clearly demonstrates that measurement error can greatly
reduce power for testing hypotheses and even the best methods, such
as the PIMLE, recover only a fraction of the information lost through
measurement error. However, the paper does have limitations. As with
any simulation study, only a limited range of possible values for sample sizes,
effect sizes, and the distribution of probabilities are considered. The study,
however, found that results are generally invariant to sample size and that
relative gains in efficiency for the MLE require rather substantial effect sizes
compared with those often found in health services and similar research.
Moreover, the relative efficiency of these three methods to each other is also
relatively stable across the substantial range in distributions of probabilities
used in this study.
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The paper considers only continuous outcomes and models without
additional predictor variables. If the predicted probabilities are highly collin-
ear with other variables included in the model, this might reduce the power
of models using the probabilities. Models for dichotomous outcomes require
more complex techniques because substituting predicted probabilities for
dichotomous independent variables in a nonlinear model such as logistic or
probit regression can yield inconsistent estimates (Bhattacharya, Goldman,
and McCaffrey 2006), so that more complex maximum likelihood methods
might be preferable.

We also treat the predicted probabilities as known and generated from
an external source, so sampling error in these values is ignored. In some cases
the probabilities might be estimated from the data. For example, latent growth
models (Haviland and Nagin 2005) might be used to estimate classes of growth
patterns in longitudinal data and class membership might then be used to
predict other outcomes or an outcome at a later time. In such a case, group
membership is latent, and only the probability of group membership is avail-
able for modeling. The resultant power might be less, because there is the
addition of uncertainty and misclassification due the estimation of the prob-
abilities. Uncertainty in the ps can easily incorporated into a fully Bayesian
model by treating these probabilities as prior information obtained by
elicitation or some another external source. Provided the prior distributions
on the regression coefficients are vague, the fully Bayesian estimates of
the regression coefficients should closely resemble the PIMLE except that the
posterior intervals will be somewhat wider than corresponding confidence
intervals because of the uncertainty in the ps.

The efficiency calculations assume no additional variables will be in-
cluded in the models for the outcomes. Variables used to derive the prob-
abilities are likely to be collinear with the probabilities, and this could degrade
efficiency if they are included in the model. Standard formulas for the power of
tests of coefficients in multiple regression models (Milton 1986) suggest that
the efficiency should be reduced in proportion to the R2 from regressing the
probabilities on other variables in the model.

This paper considers three common methods for using the probabilities.
Other methods exist that might be more efficient where applicable. For
example, if two sets of conditionally independent probabilities were available,
a method described by Kane, Rouse, and Staiger (1999) would apply.

We focused on situations in which the unobserved variable is dichot-
omous. Predicted values for unobserved polytomous variables are also of
interest. For example, race is not available in some administrative claims data,
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but it might be predicted by address and surname. Extension of the classi-
fication estimator to polytomous variables would be straightforward, although
classification rules would be more complicated. The extension of direct sub-
stitution would entail including in the model as independent variables the
group-inclusion probabilities for all but one of the possible groups as defined
by the polytomous variable. PIMLE also extends naturally. However, the
relative efficiency of the methods is likely to depend on complex combinations
of different types of misclassification and the multivariate distribution of the
probabilities. We expect that some results for dichotomous variables will have
analogs with polytomous variables (e.g., the advantages of PIMLE will be
minimal when differences among group means are small relative to the vari-
ance in the outcomes) but this is an important area for future research.
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NOTES

1. In a data set with n observations, one can empirically determine the optimal p for
given assumptions about the effect size because formula (2) can take on only n
distinct values.

2. Tavere et al. (1995) consider the efficiency loss due to measurement error in a
dichotomous independent variable for E 5 0. In this case, (2) simplifies to
(r1� r1)2a(1� a)/fp(1� p)g, which Tavere et al. (1995) and Schuster (2004)
show equals the Cohen’s k statistic (1960) for the reliability of the error-prone
dichotomous measure.

3. Let bw equal the single imputation estimator, straightforward algebra shows that
E(bw) 5 R2b and Var(bw) 5s2R2{11E2 p(1� p)(1�R2)}/{nVar(pi)}
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