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METHODS ARTICLE

Regression Tree Boosting to
Adjust Health Care Cost Predictions
for Diagnostic Mix

John W. Robinson

Objective. To assess the ability of regression tree boosting to risk-adjust health care
cost predictions, using diagnostic groups and demographic variables as inputs. Systems
for risk-adjusting health care cost, described in the literature, have consistently em-
ployed deterministic models to account for interactions among diagnostic groups, sim-
plifying their statistical representation, but sacrificing potentially useful information. An
alternative is to use a statistical learning algorithm such as regression tree boosting that
systematically searches the data for consequential interactions, which it automatically
incorporates into a risk-adjustment model that is customized to the population under
study.

Data Source. Administrative data for over 2 million enrollees in indemnity, preferred
provider organization (PPO), and point-of-service (POS) plans from Thomson Medstat’s
Commercial Claims and Encounters database.

Study Design. The Agency for Healthcare Research and Quality’s Clinical Classi-
fication Software (CCS) was used to sort 2001 diagnoses into 260 diagnosis categories
(DCs). For each plan type (indemnity, PPO, and POS), boosted regression trees and
main effects linear models were fitted to predict concurrent (2001) and prospective
(2002) total health care cost per patient, given DCs and demographic variables.
Principal Findings. Regression tree boosting explained 49.7-52.1 percent of con-
current cost variance and 15.2-17.7 percent of prospective cost variance in independent
test samples. Corresponding results for main effects linear models were 42.5-47.6
percent and 14.2-16.6 percent.

Conclusions. The combination of regression tree boosting and a diagnostic grouping
scheme, such as CCS, represents a competitive alternative to risk-adjustment systems
that use complex deterministic models to account for interactions among diagnostic
groups.
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Models that use diagnoses from claims to risk-adjust health care cost predic-
tions are widely employed by health services researchers and public and
private payers. In provider profiling applications, risk-adjustment models are
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used to estimate an expected cost for each of a provider’s patients, to be
compared with each patient’s observed cost. Comparisons of observed and
expected costs are then aggregated across a provider’s patient sample to yield
an overall assessment of provider performance (Powe et al. 1996; Thomas,
Grazier, and Ward 2004a; Robinson, Zeger, and Forrest 2006). In capitation-
setting applications, risk-adjustment models are used to estimate an expected
annual cost for each patient to be enrolled in a prepaid health plan. Expected
costs are then summed to yield an expected annual cost for the entire enroll-
ment (Fowles et al. 1996; Ash et al. 2000; Mark et al. 2003). Here prediction
refers to model-based estimation of an observation’s value, regardless of its
timing.

Diagnoses are recorded on claims in the United States using the Inter-
national Classification of Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM). Owing to the vast number (over 14,000) of ICD-9-CM diagnoses
(Iezzoni 2003), risk-adjustment systems generally begin by sorting them into
a manageable number of mutually exclusive groups, based on similarity of
clinical features and resource demands. For example, three risk-adjustment
systems, Adjusted Clinical Groups (ACGs) (Weiner et al. 1991; Health Ser-
vices Research and Development Center 2001), Diagnostic Cost Groups/
Hierarchical Condition Categories (DCG/HCCs) (Ash et al. 2000), and Clin-
ical Risk Groups (CRGs) (Hughes et al. 2004), sort the ICD-9-CM diagnoses
into 32, 118, and 534 diagnostic groups, respectively.

The ACG, DCG/HCC, and CRG systems are proprietary. An alterna-
tive grouping scheme that is in the public domain is the Clinical Classification
Software (CCS), developed and continually updated by the Agency for
Healthcare Research and Quality (AHRQ) (Elixhauser, Steiner, and Palmer
2005). CCS sorts the ICD-9-CM diagnoses into 260 mutually exclusive di-
agnosis categories (DCs) based on clinical similarity. The DCs have been used
for risk adjustment by representing each as a dummy variable onto which cost
is regressed (Cowen et al. 1998), making the implicit assumption that each
DC’s effect on cost is independent of the presence of any other DC. This
amounts to adjusting for the main effects of DCs but not for interactions
among them (Searle 1971).
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INTERACTIONS AMONG DIAGNOSTIC GROUPS

Interactions correspond clinically to the effects of comorbidity and compli-
cations. Positive interaction occurs when two diagnoses are more costly to
manage together in one individual than separately in two. For example, a
respiratory tract infection and chronic obstructive pulmonary disease occur-
ring together in the same person would be much more likely to require hos-
pital admission than either condition alone. Negative interaction occurs when
two conditions are less costly to treat together in one individual than separately
in two, such as when the same procedure is needed to manage each of two
pathologically independent conditions. If a patient’s diagnoses belong to more
than one diagnostic group, analogous interactions can occur at the diagnostic
group level.

The number of potential interactions among diagnostic groups is vast,
even if only low-order interactions are considered. For example, restricting
attention to interactions involving six or fewer diagnostic groups still yields
over 500 million potential interactions among the 32 diagnostic groups in the
ACG system. However, even if it were feasible to represent every low-order
interaction by a model parameter, it would not be desirable to do so, because
only a small fraction of interactions are likely to be consequential in any
particular application. Thus, an approach is needed for selecting consequen-
tial interactions to incorporate into a risk-adjustment model. In general, two
alternatives are possible: (1) create a deterministic model that explicitly or
implicitly anticipates the magnitude and direction of every possible interac-
tion in any application, or (2) employ a statistical learning algorithm that
systematically explores the data at hand, finds consequential interactions, and
automatically incorporates them into a risk-adjustment model (Breiman 2001;
Hastie, Tibshirani, and Friedman 2001).

The first approach has been consistently employed by risk-adjustment
systems described in the literature. For example, under the DCG/HCC sys-
tem, cost is regressed on dummy variables for the 118 diagnostic groups,
termed “condition categories,” to estimate a main-effects risk-adjustment
model. However, before assigning values to the 118 dummy variables, each
person’s set of condition categories is modified using a system of hierarchical
rules that has the effect of accounting for selected potential negative interac-
tions. For example, if a person with metastatic cancer has diagnoses in con-
dition categories representing both the primary cancer and metastatic spread,
only the condition category representing metastatic spread is assigned to that
person (Ash et al. 2000).
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Under the ACG and CRG systems, clinical reasoning and historical data
analysis have been used to map every possible combination of diagnostic
groups, age, and gender to one of a collection of mutually exclusive risk
categories: the 93 ACGs or 1,075 CRGs. Thus, each risk category represents
potentially millions of different combinations of diagnostic groups, all of
which are assumed to share the same effect on cost. Estimates of cost effects of
risk categories are obtained by regressing cost on dummy variables repre-
senting the categories (Weiner et al. 1991; Health Services Research and
Development Center 2001; Hughes et al. 2004). The above is not meant to
imply that the only purpose of ordering diagnostic groups into hierarchies or
assigning them to risk categories is to handle potential interactions. In some
instances, these strategies have been used to thwart the anticipated effects of
redundant diagnoses on cost predictions (Ash et al. 2000).

REGRESSION TREE BOOSTING

The examples just described use deduction and historical data analysis to
create a deterministic model of interactions among diagnostic groups. How-
ever, it might not be possible to devise a deterministic model that adequately
represents such a large and complex system and is sufficiently flexible to adapt
to different populations and conditions. An alternative approach is to forgo
attempting to forecast the magnitude and direction of interactions a priori, and
instead use a statistical learning algorithm that systematically explores the data
at hand, finds consequential interactions, and automatically incorporates them
into a risk-adjustment model, which is thus customized to the population and
conditions under study.

Regression tree boosting, which involves the iterative fitting of many
small regression trees, is a statistical learning method that is especially useful
for prediction of a continuous variable, such as cost, based on the values of a
very large number of potentially interacting categorical and continuous vari-
ables (Friedman 2001; Hastie, Tibshirani, and Friedman 2001). Figure 1 shows
the first of many regression trees from a boosting sequence fit to predict total
health care cost given demographic variables and prior-year DCs. The tree
contains 11 internal nodes, each associated with a splitting variable and split
point, and 12 terminal nodes, each associated with a dollar-valued coefficient.
The tree divides the sample into 12 disjoint subsamples, each defined by a
unique combination of splitting variable values, and assigns a coefficient to
each. The coefficients incorporate both main effects of splitting variables and
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Figure 1: Regression Tree Example.
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First of 232 regression trees from final boosted regression trees model for 2002 cost
prediction among preferred provider organization members. Boxes represent internal
nodes and contain names of splitting variables. Lines projecting below boxes are
accompanied by splitting variable values that fall on either side of split point. Dollar
figures correspond to terminal node coefficients. Clinical Classification Software di-
agnosis categories (DCs), coded 1 if present and 0 if absent, are as follows: CCS
158 = chronic renal failure; CCS 99 = hypertension with complications and secondary
hypertension; CCS 45 = maintenance chemotherapy and radiotherapy; CCS 42 = sec-
ondary malignancies; CCS 157 = acute and unspecified renal failure; CCS 133 =
other lower respiratory disease; CCS 49 = diabetes mellitus without complication;
CCS 205 = spondylosis, intervertebral disk disorders, and other back problems.



760 HSR: Health Services Research 43:2 (April 2008)

interactions among them. The number of internal nodes determines the high-
est possible order of interaction that a coefficient can represent. Because this is
the first tree, each coefficient represents the predicted cost for all observations
in the corresponding subsample.

The tree in Figure 1 was “grown” using a best-first strategy (Friedman,
Hastie, and Tibshirani 2000), whereby internal node splits are accomplished
one at a time. At each step, for each currently terminal node, the splitting
variable and split point are identified that would achieve the greatest im-
provement in overall fit between tree-based predictions and observed values.
The potential improvements are compared, and a split is carried out at the
currently terminal node whose split results in the greatest improvement in fit.
To lessen the potential influence of any extreme outlier, a minimum terminal
node size is set, for example at 10 observations, thus restricting eligible splits to
those that yield at least this minimum number of observations on either side.
The process ceases when a predetermined number of terminal nodes is
reached. The internal node splitting variables and split points and the terminal
node coefficients are the estimated parameters that define the fitted tree.

For tree boosting, the predicted costs due to fitting the first tree are
subtracted from corresponding observed costs and a second tree is fitted to the
resultant residuals. The second tree, which generally splits on different vari-
ables than the first, divides the sample into 12 disjoint subsamples and assigns
a coefficient to each. To “boost” the cost prediction for each observation, a
fraction—termed the scaling fraction, with a typical value of 0.1—of the
appropriate coefficient from the second tree is added to the prediction from
the first tree. The resultant boosted predictions are, on average, closer to the
observed costs than predictions based on only the first tree. The boosted
predictions are then subtracted from observed costs, yielding new residuals, to
which a third tree is fitted, and so on.

This process is repeated until additional trees no longer improve the fit
between observed and predicted costs in a validation sample that has been
randomly drawn from the same population as the training sample that has been
used to estimate the tree parameters (Friedman 2001; Hastie, Tibshirani, and
Friedman 2001). The reason for using an independent validation sample to
assess fit is to avoid selecting a final set of tuning parameters (e.g., number of
terminal nodes per tree, scaling fraction, minimum number of observations per
terminal node) that predicts well in the training sample, but not in a fresh sample
from the same population. A final boosted trees model comprises additive con-
tributions from typically hundreds of small trees and, thus, can be represented as
an additive model (Friedman 2001; Hastie, Tibshirani, and Friedman 2001).
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Formed in this manner, a final boosted trees model is intended to give an
accurate and precise cost prediction but not intended to describe the true
mechanism that generates cost from diagnostic mix. However, an interpre-
tation of the influence on cost of each of the diagnostic groups and other
independent variables is provided by relative importance statistics, which are
described in “Methods.”

I have been unable to find a published use of regression tree boosting to
risk-adjust health care cost predictions using diagnostic data. Regression tree
boosting has been successfully used to predict the cost of inpatient rehabil-
itation given age, type of impairment, and continuous measures of motor and
cognitive functioning (Relles, Ridgeway, and Carter 2002), and a related
technique, classification tree boosting, has been shown to predict mortality in
intensive care more accurately than logistic regression given age, gender, and
12 clinical measures (Neumann et al. 2004). Both of these applications
involved far fewer independent variables than are needed to represent the
260 DCs.

The principal aim of this study is to assess the ability of regression tree
boosting to risk-adjust concurrent and prospective health care cost predictions
using diagnostic groups and demographic variables as inputs. A secondary
aim is to assess the ability of regression tree boosting to identify consequential
interactions among diagnostic groups and incorporate them into a risk-ad-
justment model. This latter ability can be measured by comparing the fit of
boosted regression trees models with main effects linear models, which do not
account for interactions.

METHODS
Data Source and Variables

To demonstrate the use of regression tree boosting, I employ Thomson Med-
stat’s MarketScan Commercial Claims and Encounters Database (2004),
which includes demographic information and claims histories for all persons
enrolled in selected health plans of 45 private and public employers. The
database includes specific information about each enrollee’s benefits, but does
not name the employers or health plans or provide enrollees’ insurance iden-
tification numbers. All 50 states and the District of Columbia are represented.

Dependent variables are total paid costs for 2001 and 2002, including
inpatient, outpatient, and pharmacy costs. Independent variables for predicting
2001 total cost are gender, age, 2001 diagnoses, months enrolled in 2001, and
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2001 region of residence, and for predicting 2002 total cost are gender, age, 2001
diagnoses, months enrolled in 2002, and 2002 region of residence. (“Months
enrolled” refers to enrollment duration, measured in number of months.)

I included in the study sample only persons who were enrolled in a
health plan for at least 1 month of both 2001 and 2002, so that both years’
predictions would be based on the same mix of 2001 diagnoses. I included
only persons who were enrolled in plans that had a pharmacy benefit and did
not capitate payments to providers, so that total costs would be available.
Because the database does not include Medicare claims, I included only per-
sons who would turn 65 after 2002. The Commercial Claims and Encounters
database contains 2,758,476 persons meeting these inclusion criteria. Of these,
2,320,043 (84.1 percent) had a claim in 2001 and were thus eligible for in-
clusion in the study sample. Persons without a 2001 claim were not included,
because doing so would have meant using the absence of a 2001 claim to
predict 2001 cost, a circular function that would have artificially inflated the
precision of 2001 cost predictions.

All 2001 claims for services involving face-to-face encounters with
health care practitioners were used to create each person’s list of diagnoses.
Then, using each list and the CCS (Elixhauser, Steiner, and Palmer 2005),
values were assigned to dummy variables representing the 260 DCs.

The dependent variable, total annual paid cost, representing the sum
of plan and enrollee liabilities, incorporates contractual discounts applied
by health plans to providers’ fees. Because the fraction of claims involving
such discounts likely differs by type of plan—for example, indemnity
plans generally employ less discounting than preferred provider organization
(PPO) and point-of-service (POS) plans (Dudley and Luft 2001)—paid costs
represent different quantities under different types of plan. Hence, I fit sep-
arate models for each type of plan that was well represented in the study
sample.

Boosting Algorithms

I wrote programs in SAS Interactive Matrix Language (SAS Institute 2004a)
that implement the “LS_Boost” and “M-Tree Boost” algorithms outlined by
Friedman (2001). The algorithms both use a best-first strategy for fitting each
tree, but use different criteria to optimize tree fit. LS_Boost minimizes the sum
of squared residuals, the familiar criterion used to fit linear models. However,
the sum of squared residuals can be excessively influenced by observations
with unusually large residuals (Huber 1980). To constrain the influence of



Regression Tree Boosting 763

extreme residuals, M- Tree Boost uses Huber loss as its fit criterion, whereby the
contribution of the very largest residuals is set proportional to their absolute
rather than squared values (Friedman 2001). The fraction of residuals that
have their influence constrained in this manner, referred to here as the break-
down fraction, is a tuning parameter of the boosting algorithm.

I found that A+ Tree Boost with a breakdown fraction of 0.0001 consis-
tently resulted in a better validation sample fit than L.S_Boost, thus all reported
results are based on M-Tree Boost with a breakdown fraction of 0.0001,
meaning that the influence of the 1 in 10,000 largest residual costs was con-
strained in the fitting of each sequential tree. (Larger breakdown fractions
improved the precision of cost prediction, but introduced a significant
negative bias.)

For each of the six combinations of health plan type (indemnity, PPO,
and POS) and dependent variable (2001 and 2002 total cost) for which models
were to be estimated, I randomly divided the relevant portion of the study
sample into training, validation, and test samples, containing 50, 25, and
25 percent of observations, respectively (Hastie, Tibshirani, and Friedman
2001). Trees were fitted to training sample observations only. During each run
of a boosting algorithm, observations in the validation sample were “run-
down” successively fitted trees, meaning that the internal node parameters
from each tree fitted to the training sample were used to divide the validation
sample into disjoint subsamples to which the terminal coefficients from the
fitted tree were applied, thus continually updating predicted values in the
validation sample. When additional trees no longer improved the overall fit
between observed and predicted values in the validation sample, the algo-
rithm was stopped.

The validation samples were also used to select a best-fitting final boost-
ed regression trees model for each plan type and cost year, defined by values
of the tuning parameters: number of terminal nodes per tree, scaling fraction,
minimum number of observations per terminal node, loss criterion (sum of
squared residuals or Huber), and breakdown fraction (for Huber loss). Typ-
ically, five to 10 boosting runs were needed to identify optimal values of the
tuning parameters for a combination of plan type and cost year. Once a final
model had been selected, the relevant test sample was “run-down” that mod-
el’s tree sequence, yielding an assessment of the model’s predictive ability that
could be generalized to an independent sample from the same population as
the training sample. (The validation sample could not have been used for this
purpose, because it had been used to select a final model [Hastie, Tibshirani,
and Friedman 2001].)
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Model Assessment

As ameasure of the predictive ability of regression tree boosting, let the percent
of variance explained by tree boosting be defined as {1-[(sum of squared resid-
uals from a boosted regression trees model)/(sum of squared residuals from an
intercept-only model)]} x 100 percent, where “residuals” refers to test sample
residuals. This quantity is conceptually equivalent to the multiple correlation
coefficient, R?, which it would equal were the boosted trees model replaced
with a linear model and the training sample reused as the test sample (Searle
1971). Under an intercept-only model, the residual for each test sample ob-
servation is the difference between its observed value and the mean cost in the
corresponding training sample.

For benchmarks against which to compare the predictive ability of tree
boosting, I fit main effects linear models to each of the six training samples, by
regressing cost on dummy variables for the 260 DCs, gender, age (classified in
decades), region of residence, and months enrolled (classified as 1-3, 4-6, 7-9,
or 10-12 months) using the SAS GLM procedure (SAS Institute 2004b). Each
of the six main effects linear models was used to compute a percent of variance
explained in the appropriate test sample, for comparison with the percent of
variance explained by tree boosting.

For each final boosted trees model, the relative importance of each
independent variable to model fit was measured as suggested by Friedman
(2001). First, for each independent variable, the reduction in Huber loss was
summed across all internal nodes, of all trees, that split on that variable and
divided by the total number of internal nodes (number of internal nodes per
tree X number of trees), yielding a squared importancefor that variable. Once a
squared importance had been obtained for each variable, the square root of
the largest squared importance was divided into the square root of each other
squared importance to obtain a relative importance for each independent vari-
able, in the range of 0-100 percent.

RESULTS
Sample Characteristics

Table 1 presents sample characteristics stratified by 2001 plan enrollment. Of
the 2,320,043 persons in the sample, 30.4, 47.9, and 19.6 percent were
enrolled in indemnity, PPO, and POS plans, respectively, and the remaining
2.1 percent changed plans during the year. More than 20 percent of patients
in each plan type had diagnoses in six or more DCs, and 9 percent of the total
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Table 1: Sample Characteristics by 2001 Plan Enrollment (N= 2,320,043)

Plan Type

Indemnity PPO PoS Mixed
(n=704198)  (n=1,111,690) (n=454237) (n=49978)

Total annual cost (dollars)

Mean 3,972 3,163 2,823 3,186
Median 1,258 993 834 986
90th percentile 8,874 7,079 6,227 7,248
99th percentile 42,577 32,642 29,901 33,025
Characteristic (%)
Gender
Female 55.6 54.5 57.2 54.5
Age
0-17 17.9 22.8 25.1 23.9
18-39 21.0 24.1 31.2 25.6
40-49 18.4 20.0 21.4 17.6
50-63 42.7 33.0 22.3 32.9
Region
Northeast 4.0 10.5 9.1 24
North Central 70.0 29.0 25.3 10.3
South 22.8 43.8 51.3 39.6
West 3.0 16.6 14.3 474
Unknown 0.1 0.1 0.0 0.2
Months enrolled
1-3 1.9 24 2.4 1.6
4-6 2.0 3.4 2.8 1.5
7-9 1.7 2.7 3.8 3.0
10-12 94.4 91.5 91.0 93.9
No. of DCs*
0 12.5 7.0 7.5 6.8
1-2 34.3 35.6 35.1 34.3
3-5 30.7 33.9 34.3 35.3
6-10 17.6 18.7 18.7 19.0
11+ 4.9 4.8 4.4 4.6

*Number of Clinical Classification Software diagnosis categories (DCs).

POS, point-of-service; PPO, preferred provider organization; ‘“Mixed” includes persons who
changed plans during 2001.

sample had no diagnosis assigned, due to having a claim but no face-to-face
clinical encounter (e.g., claims for laboratory services only).

Between 2001 and 2002, 12 percent of the sample changed plans, re-
sulting in decreases in indemnity and POS enrollment, an increase in PPO
enrollment, and enrollment in exclusive provider organizations (EPOs), a plan
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type not represented in 2001. In 2002, 27.5, 52.4, 14.8, and 4.2 percent of the
sample were enrolled in indemnity, PPO, POS, and EPO plans, respectively,
and 1.1 percent changed plans. Mean 2002 costs were $4,188, $3,907, $2,969,
and $3,474 in indemnity, PPO, POS, and EPO plans, respectively. Distribu-
tions of other sample characteristics in 2002 were similar to 2001.

Predictive Performance

I fit boosted regression trees and main effects linear models to the six sub-
samples enrolled in indemnity, PPO, and POS plans in 2001 and 2002. Per-
sons who had changed plans during a given year were excluded from that
year’s analysis, and EPO enrollees were excluded from the 2002 analysis.
Based on validation sample fit, a final boosted trees model was selected for
each combination of plan type and cost year. Results for the final boosted
regression trees and main effects linear models are shown in Table 2.

As noted in “Methods,” Huber loss with a breakdown fraction of 0.0001
consistently yielded the best validation sample fit, as did specifying a min-
imum of 10 observations per terminal node and a scaling fraction of 0.1. Thus,
the only tuning parameter that differed among the final boosted trees models

was the number of terminal nodes per tree. Values for this tuning parameter
are included in Table 2.

Table2: Final Boosted Regression Trees and Main Effects Linear Models

Mean Cost (Dollars)”

Percent of Variance

Explained’ Predicted
Boosted ~ Main . Boosted ~ Main
Year  Plan Type  Nodes/Tree* Trees Effects  Gain*  Observed ~ Trees  Effects
2001  Indemnity 9 49.7 47.2 2.5 4,005 3,986 4,007
PPO 9 52.1 47.6 4.5 3,141 3,136 3,157
POS 6 49.8 42.5 7.3 2,787 2,783 2,805
2002  Indemnity 8 17.7 16.6 1.1 4,141 4,184 4,216
PPO 12 152 14.2 1.0 3,898 3,885 3,910
POS 2 152 14.8 0.4 2,953 2,982 2,994

*Number of terminal nodes per tree in final boosted regression trees model.

Based on test samples.

!Gain = percent of variance explained by tree boosting minus percent explained by main effects.
POS, point-of-service; PPO, preferred provider organization.
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Table 2 shows that the percent of variance explained by tree boosting
ranges from 49.7 to 52.1 for concurrent risk adjustment and from 15.2 to 17.7
for prospective risk adjustment. These quantities consistently exceed the cor-
responding percentages for main effects linear models, by 2.5-7.3 percent for
concurrent prediction and by 0.4-1.1 percent for prospective prediction.
Table 2 also shows that mean predicted costs in the test samples based on
boosted trees and linear models are similarly unbiased for mean observed
costs. Thus, the gain in precision due to tree boosting is not accompanied by
any loss of overall accuracy.

The number of terminal nodes per tree ranges from 6 to 12 for all but one
of the final boosted trees models; thus interactions involving as many as five to
11 DCs are able to contribute to cost prediction in five of six final models. The
number of additive trees in a final model, which is inversely related to the
number of nodes per tree, ranges from 232 in the 2002 PPO model, with 12
terminal nodes, to 798 in the 2001 POS model, with six terminal nodes,
indicating that a very large number of interactions among DCs contribute to
the fit of these five models. (The numbers of trees are 296, 335, and 624 in the
2002 indemnity, 2001 PPO, and 2001 indemnity final models, respectively.)
The sixth final model, for prospective prediction among POS plan members,
comprises 1,644 trees, each with one internal node (and two terminal nodes),
thus incorporating no interactions. Not surprisingly, this model shows the
smallest gain in percent of variance explained over the corresponding main
effects linear model.

Relative Importance of Independent Variables

Figure 2 displays the relative importance of independent variables for 2001
and 2002 risk adjustment, based on the final boosted regression trees models
for PPO members, ordered by 2001 relative importance. Only the 44 inde-
pendent variables for which 2001 relative importance is largest are included in
Figure 2. (Relative importance of all 264 variables can be found in
“Supplementary Material.”) Of greatest importance for concurrent (2001)
risk adjustment are diagnosis groups representing very serious conditions,
many of which might involve admission to intensive care. Most of these same
conditions are important for prospective (2002) risk adjustment, but to a
lesser extent. Acute conditions tend to be more important for concurrent
risk adjustment, whereas chronic conditions tend to be more important for
prospective risk adjustment, as exemplified by comparison of relative impor-
tance patterns for acute and chronic renal failure. Analogous importance charts
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Figure2: Relative Importance of Independent Variables for Predicting 2001
and 2002 Total Health Care Cost for Preferred Provider Organization
Enrollees Based on Final Boosted Regression Trees Models.

Independent Variable

Respiratory failure; insufficiency; arrest (adult)

Complication of device; implant or graft

Pleurisy; pneumothorax; pulmonary collapse

Complications of surgical procedures or medical care

Septicemia (except in labor)

Maintenance chemotherapy; radiotherapy

Acute and unspecified renal failure

Secondary malignancies

Other lower respiratory disease
Rehabilitation care; fitting of prostheses; and adjustment of devices

Chronic renal failure

Coronary atherosclerosis and other heart disease
Other aftercare

Congestive heart failure; nonhypertensive
Other gastrointestinal disorders
Respiratory distress syndrome
Nonspecific chest pain

Deficiency and other anemia

Acute myocardial infarction

Residual codes; unclassified

Acute cerebrovascular disease
Abdominal pain

Other circulatory disease
Fever of unknown origin
Intestinal obstruction without hernia
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Other connective tissue disease

Spondylosis; intervertebral disc disorders; other back problems
Fluid and electrolyte disorders

Pneumonia (except that caused by tuberculosis or STD)

Other and ill-defined heart disease

Cardiac and circulatory congenital anomalies

Other nervous system disorders

Retinal detachments; defects; vascular occlusion; and retinopathy
Other nutritional; endocrine; and metabolic disorders

Short gestation; low birth weight; and fetal growth retardation
Region of residence

Biliary tract disease

Cardiac dysrhythmias

Diseases of white blood cells

Other nontraumatic joint disorders
Other fractures
Affective disorders
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Independent variables are listed in order of importance for predicting 2001 cost.
Only the 44 variables for which 2001 relative importance is largest are shown. Region
of residence is for the corresponding year. (A figure displaying relative importance of
all 264 independent variables can be found in “Supplementary Material.”)
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based on final boosted trees models for indemnity and POS samples demon-
strate similar findings (and are available in “Supplementary Material”).

DISCUSSION

Regression tree boosting, using CCS DCs and demographic variables as in-
puts, explained 50-52 percent of the variance in concurrent annual health care
cost and 15-18 percent of the variance in prospective annual cost. Compar-
ison of these results with results reported using other risk-adjustment methods
must be undertaken cautiously, because the percent of variance explained by
any risk-adjustment procedure depends partly on the population cost distri-
bution, which differs between studies. Nevertheless, the percent of variance
explained by regression tree boosting appears to equal or exceed results re-
ported using deterministic models that rely on diagnostic groups, age, and
gender as inputs (Weiner et al. 1991; Fowles et al. 1996; Ash et al. 2000,
Hughes et al. 2004; Thomas, Grazier, and Ward 2004b).

Regression tree boosting appears to be a very effective means of finding
consequential interactions among diagnostic groups and incorporating them
into risk adjustment, as evidenced by its substantial advantage over main
effects linear models, which do not account for interactions. The advantage of
boosted regression trees over main effects linear models is more pronounced
when predicting cost concurrently than prospectively, evidently because in-
teractions among diagnostic groups are more predictive of concurrent than
prospective cost.

A small portion of the advantage of boosted regression trees over main
effects linear models is apparently due to features unrelated to representing
interactions. The best-fitting 2002 POS model, with just one internal node per
tree, does not model interactions, yet explains slightly more variance than the
corresponding main effects linear model. Features of the boosting algorithm
that might explain this advantage include the use of Huber loss, which con-
strains the influence of extremely high-cost observations (without trimming
them), and fractional scaling, which has an effect akin to parameter shrinkage
(Hastie, Tibshirani, and Friedman 2001). Both of these features resist over-
fitting the training sample.

The results reported here suggest that regression tree boosting
may obviate the need to process diagnostic groups through a deterministic
interaction model before using them for risk adjustment. Deterministic inter-
action models are labor intensive to develop, involving teams of health



770 HSR: Health Services Research 43:2 (April 2008)

services researchers and clinical specialists (Weiner et al. 1991; Ash et al. 2000;
Hughes et al. 2004), and incorporate scores of assumptions and restrictions
that limit their adaptability to different populations and conditions. On the
other hand, absent any prior assumption about the direction or magnitude of
any potential interaction, tree-boosting algorithms effectively identified con-
sequential interactions and automatically incorporated them into risk-adjust-
ment models. As a result, risk adjustment was accomplished very efficiently
and flexibly, using a publicly available diagnosis classifier and an algorithm
implemented by a single researcher.
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