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The building of minimal self-reproducing systems with a physical embodiment (generically called
protocells) is a great challenge, with implications for both theory and applied sciences. Although the
classical view of a living protocell assumes that it includes information-carrying molecules as an
essential ingredient, a dividing cell-like structure can be built from a metabolism–container coupled
system only. An example of such a system, modelled with dissipative particle dynamics, is presented
here. This article demonstrates how a simple coupling between a precursor molecule and surfactant
molecules forming micelles can experience a growth-division cycle in a predictable manner, and
analyses the influence of crucial parameters on this replication cycle. Implications of these results for
origins of cellular life and living technology are outlined.
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1. INTRODUCTION
The transition from non-living to living systems covers a
broad spectrum of increasingly complex organization
(Smith & Szathmary 1995). One of such first steps in this
transition leads from ordinary chemical auto-catalysis to
self-replication. The latter can be distinguished from the
former by the existence of self-bounded entities which
produce copies of themselves, rather than a mere increase
in chemical concentration. Therefore, self-replication
relies on organization principles unlikely to be found in
homogeneous solutions. Within the last few years,
increasing attention has been paid to the possibility of
building small-scale protocells, in particular using a
bottom-up approach (Szostack et al. 2001) where the
building blocks (not necessarily from biotic origin) would
assemble spontaneously and, under appropriate con-
ditions, develop a growth–fission cycle. While extensive
research has been performed on the self-reproducing
capabilities of biopolymers (Kiedrowski 1986; Tjivikua
et al. 1990), evenmuchsimpler systemscanbedriven into
dynamics that we identify as self-replication. In this
context, micelles have been proposed to serve as life-like
structures able to undergo self-reproduction (Bachmann
et al. 1992).

These micellar systems can be considered to be
simpler in organization than biopolymers because they
lack any genetic information that could be passed from
one generation to the next. In this context, protocellular
entities lacking information would be under the umbrella
of Oparin’s views of life origins (Oparin 1936), who
suggested that primitive self-replicating vesicles would
have predated information-based cells. Similarly, other
authors have advocated for this scenario under a
computational perspective. Under this view, Dyson
(1999) indicated that current cells involve both software
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(DNA and RNA) and hardware (protein machinery).
Although hardware can exist under the absence of
software, the opposite is not allowed to occur. We can
add the picture of cells to this, in that the presence of a
container is a very important piece for the hardware to
properly work: only when the pieces are close together
can we expect the machinery to operate.

The nanocellular system discussed here is based on a
micelle that is coupled to a minimal metabolism
(figure 1). The system is constantly driven away from
equilibrium by the supply of precursors, which are
supposed to have higher internal energy than the
surfactants that build up the micelles. The metabolism
transforms precursor molecules into new building blocks
of the nanocell. The metabolic turnover is thereby
enhanced by its own outcome or—in other words—the
metabolism is an auto-catalytic turnover of precursors
into new surfactants. This system resembles the one
studied experimentally by Bachmann et al. (1992).
However, in their work the catalytic effect is a feature of
the micelles (probably due to milieu effects), while in our
system it is a feature of the molecules themselves.

Either way, the replication mechanism of micelles
envisioned both in Bachmann’s as well as our system is
the following: micelles incorporate hydrophobic pre-
cursor molecules where they are afterwards trans-
formed into new surfactants. Owing to this process, the
number of surfactants increases while, at the same
time, the volume of the hydrophobic core becomes
smaller. It is assumed that when a critical ratio of
surfactants versus core volume is passed, the aggregates
become unstable and will divide into two daughter
cells. Whether or not the experimental system follows
this pathway has, to our knowledge, never be clarified.
However, once such a replication mechanism is
considered the basis for a more complicated protocell
design, knowledge of the exact replication kinetics
becomes crucial.
This journal is q 2007 The Royal Society
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Figure 1. The basic model of nanocell replication explored in
this paper. Here small-sized micelles are formed by
amphiphiles (indicated as H–T connected pairs of balls).
These amphiphiles have a hydrophilic head (H) and a
hydrophobic tail (T). Precursor molecules are also shown as
two connected, smaller open balls, both of hydrophobic
character. Under the presence of catalytically active amphi-
philes, precursors are transformed into additional amphi-
philes. Incorporation of many such building blocks allows the
nanocell to grow in size. When a critical size has been
reached, the nanocell looses its stability and divides into two
smaller aggregates thereby closing the replication cycle.
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Together with experimental approaches aimed to find
the conditions for protocell replication to occur, there is
an increasing need of appropriate, well-grounded
theoretical and computational models. Such models
can help in understanding the constraints that might
operate in the self-assembly of micelles and other
molecules, and how they can properly trigger growth
and splitting. Our work is a first step in this direction.
2. DISSIPATIVE PARTICLE DYNAMICS
NANOCELL MODEL
In this paper, we consider a dissipative particle
dynamics (DPD) approach to modelling embodied
protocells employing a physically and chemically
simplified formalism. This is one possible approach
that can be used in order to tackle the complexities of
molecular aggregates. Other approaches include mol-
ecular dynamics (MD), Brownian dynamics (BD) and
Monte Carlo algorithms. Each of these methods has its
own advantages and drawbacks (Heermann 1990;
Binder & Heermann 1997) and a compared analysis
has been presented elsewhere (Chen & Szostak 2004).

Previous work done by Ono & Ikegami (1999)
involved lattice-based, protocell dynamics. These
structures display a special type of cell-like replication.
While they are remarkable in their self-organizing
behaviour, the underlying rules of interaction and the
special properties of the membrane-like structures
restrict their relevance to the arena of artificial life. By
using more appropriate molecular interactions within a
three-dimensional, water-filled environment (see for
example Rasmussen and Nilsson’s cellular automata
approach to self-assembly; Rasmussen et al. 2003), we
seek toprovide the (as far aswe know) first computational
evidence that such a simple protocellular cycle is feasible.
Phil. Trans. R. Soc. B (2007)
(a) Dissipative particle dynamics

DPD is a coarse-grained, particle-based simulation
technique comparable to BD. It was proposed by
Hoogerbrugge & Koelman (1992) and gained significant
theoretical support in the late 1990s (Español & Warren
1995; Groot & Warren 1997; Marsh 1998). In the
context of biological systems, DPD models have been
successfully used to capture the dynamics of membranes
(Venturoli & Smit 1999), vesicles (Yamamoto et al. 2002;
Yamamoto & Hyodo 2003) and micelles (Groot 2000;
Yuan et al. 2002).

A DPD simulation consists of a set of N particles
that are described by their type, mass mi , position ri

and momentum qiZmivi. These particles—usually
called ‘beads’ throughout the literature—are not
meant to represent individual atoms. Instead, they
represent groups of atoms within a molecule (like
several CH2 groups within a hydrocarbon chain) or
even a group of small molecules such as water.

Newton’s law of motion is used to determine the
trajectory of each individual bead:

d2ri

dt2
Z

1

m
Fi : ð2:1Þ

The force Fi that acts on particle i is expressed as the
superposition of pairwise interactions

Fi Z
XN

jZ1

Fij : ð2:2Þ

In Newtonian dynamics, the (central) force F C
ij can be

expressed as the negative gradient of a potential fij,
namely

F C
ij ZKVfij : ð2:3Þ

The resulting dynamics are conservative and obey the
Hamiltonian

H Z
1

2

XN

iZ1

mivi C
1

2

XN

i; jZ1

fij : ð2:4Þ

While this approach is undertaken in MD simulations,
coarse-grained simulation techniques try to aggregate
some of the molecular degrees of freedom by the use of
the so-called Langevin formalism: additional forces FD

ij

and FR
ij are added to the conservative force to express

friction and thermal motion. They introduce energy
flows between the explicitly modelled mesoscale and
the underlying microscale. Together, they act as a
thermostat to regulate the effective temperature, i.e.
mean velocity, of the system.

The thermostat used in the DPD formalism is given
by the equation

FD
ij CFR

ij Z ðhuðrijÞðnij$vijÞCsu2ðrijÞxijÞnij ; ð2:5Þ

where rijZjriKrjj is the distance; nijZ(riKrj)/rij the
(unit) direction; and vijZviKvj the relative velocity
between beads i and j. h Is the friction coefficient of the
fluid and s the amplitude of thermal motion. xij Is a
random variable with xijZxji , and otherwise Gaussian
statistics. u Is a distance weighing function usually
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defined as

uðrÞZ 2 1K
r

rc

� �
; ð2:6Þ

where rc is a cut-off range used to limit the maximal range
of all interactions for performance reasons. It can be
shown that the equilibrium temperature of the system
tends towards kbTZs2/2h (Español & Warren 1995).

While there is a variety of other thermostats used in
coarse-grained particle simulations, the above
mechanism is unique in that it conserves both linear
and angular momenta and fulfills the fluctuation–
dissipation theorem. As a consequence of the former,
the resulting dynamics are consistent with the Navier–
Stokes equations and hence preserve laminar flow
properties of the system. The latter property ensures an
energy distribution in the system following Maxwell–
Boltzmann statistics. The overall dynamics, therefore,
capture both hydrodynamic and thermodynamic traits
of the systems.

In almost all DPD studies, the conservative force is
derived from a soft-core potential of the shape

fijðrÞZ
1

2
aij rc 1K

r

rc

0
@

1
A

2

if r% rc

0 if rO rc

:

8>><
>>:

ð2:7Þ

The potential energy expressed by fij should not be
understood as the mechanical energy, i.e. enthalpy, of
the system, but rather as its free energy contribution
(Pagonabarraga & Frenkel 2001). Following this
rationale, the interaction parameters aij are used to
express dissimilarities of substances due to high
enthalpy as well as entropy contributions, respectively.
Therefore, they can be related to Flory–Huggins
coefficients known from polymer theory.

For the study of lipids and surfactants, covalent bonds
between beads are commonly introduced as harmonic
spring forces: on top of the above interactions, bonded
beads interact according to the potential

fB
ij ðrÞZ

brb

2
1K

r

rb

� �2

; ð2:8Þ

where b is the strength and rb the optimal distance of
covalent bonds. As usual, we use rc, m and kbTas units of
space, mass and energy, respectively. The time unit
follows from equation (2.1) as tZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kbT

p
rc.

To model the system under consideration, we define
beads of type W (water), H (hydrophilic ‘heads’) and T
(hydrophobic ‘tails’ of amphiphiles) with interaction
parameters taken from Groot (2000), unless otherwise
specified.

W H T

W 25kbT 15kbT 80kbT

H 15kbT 35kbT 80kbT

T 80kbT 80kbT 15kbT :

All beads have mass 1m. Precursor molecules are
modelled as dimers of bonded T beads, surfactants as
dimers of one T and one H bead. Here we have
bZ125kbT and rbZ0.5rc for all covalent bonds.
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The objective behind this parameter set is to model
surfactants that form spherical micelles. To achieve
this, the effective head area must be large compared
with the volume of the hydrophobic core (packing
parameter 1/3). This is expressed by aTT!aWW!aHH.
Furthermore, surfactant heads have a high affinity to
water (aHW!aWW), which is usually due to charges in
the hydrophilic groups of the molecules. This assump-
tion ensures that aggregates with high surface area
(spherical micelles) are preferred over aggregates with
less surface area (rod-like micelles) in the process of
total energy minimization.

(b) Incorporation of chemistry

The metabolic reaction under consideration takes the
following form

TKT/HKT: ð2:9Þ

This reaction is modelled by a stochastic process that
has formerly been used in BD simulations (Ono 2001).
In between every two steps of the numerical integrator
for the DPD equation of motion, each precursor dimer
can be transformed into a surfactant molecule with a
spontaneous reaction rate k b. The spontaneous
reaction can be catalytically enhanced by nearby
surfactants whose catalytic influence decreases linear
with the distance to the reactant up to a certain
threshold rcat. For simplicity, the effect of several
catalysts is modelled as a superposition

k Z kb C
X
i2C

ks
1K

rC
rcat

0
@

1
A if r! rcat

0 otherwise

;

8>><
>>:

ð2:10Þ

where rC is the distance of the catalyst and k s the
maximal catalytic rate per catalyst. For clarity of the
results, we set the spontaneous reaction rate in our
simulations to 0tK1. In the upcoming simulations, kcat

is set to 1.0tK1, rcat to 1rc. If a reaction occurs, the type
of one random T bead is changed to H, but positions
and momenta are preserved.

We also introduce particle exchange into the model
to mimic the support of new precursors into the system:
During the simulation, two water beads can be
exchanged by precursor dimers with the probability
2.5!10K5tK1 per water bead within a region of radius
2rc. Again, bead positions and momenta are preserved.
3. RESULTS
We implemented the DPD method using a velocity
Verlet integrator (lZ0.5) with a step width of 0.04t.
The spatial domain is three-dimensional, with periodic
boundary conditions and size (10rc)

3. In all the
following simulations, the system is initialized with
one surfactant dimer and 2998 water molecules adding
up to a mean particle density of 3rK3

c . Unless otherwise
specified, simulations have been run for 0t%t%1000t
(25 000 iterations).

For simulation runs with the parameter set given in
§2, we typically get the following behaviour: water beads
are successively exchanged by precursors in the
exchange region of the system. When diffusing through
the system, the precursors form droplets due to their
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Figure 2. Evolution of bead numbers with time for hydrophobicity values (a) 80 kbT and (b) 120 kbT (aHT and aWT). The
constant supply of precursors is counteracted by their transformation into surfactants. This transformation happens in spurts
rather than continuously, as the precursor forms droplets in the aqueous solution. Size and frequency of these spurts depend on
the hydrophobicity of the tail beads.
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hydrophobic trait. Once such a droplet reaches the

initial surfactant, the precursors are turned into

surfactants. The turnover happens fast when compared

with supply and diffusion of the precursor. New

surfactants quickly arrange into a micellar shape with

hydrophobic beads in the interior and hydrophilic beads

towards the surface of the assembly. With the

parameters introduced before, this rearrangement

takes only few time-steps and is thus fast compared

with the metabolic turnover. Such spontaneously

formed nanocells diffuse through the system space as

aggregates and eventually incorporate additional pre-

cursor droplets in their interior, where the metabolic

process is repeated. The evolution of the overall system

composition (number of beads per type) traces the

different processes on their respective time-scales

(figure 2 for aHTZaWTZ80kbT (a) and aHTZaWTZ
120kbT (b)). As one can see, the overall production

of surfactants is limited by a linear growth that results

from the constant supply of precursors. Locally,

however, when a single droplet is consumed by a

nanocell, the metabolic turnover exhibits a logistic

growth, which is suspected from resource limited auto-

catalysis. The logistic growth can be best seen in

figure 2b around tZ700t.

On the level of individual micelles, the metabolic

process increases the aggregate number, i.e. the

number of surfactants per micelle. In a pure water–

surfactant system, micelles would reject the surplus of

surfactants into the bulk phase. In an oil–surfactant–

water system, such as the one under consideration, the

hydrophobic core formed by the precursors stabilizes

the assembly far beyond its original aggregate number.

As a consequence, we could observe that nanocells

increase in aggregate number when new surfactants are

synthesized. While the precursor : surfactant ratio

shifts, the nanocell changes its shape from a spherical
Phil. Trans. R. Soc. B (2007)
to a rod-like micelle. When all or nearly all of the
precursor is turned into surfactant, the nanocell finally
becomes unstable and divides into two smaller
aggregates (figures 3 and 4). The nanocell division
occurs in the cylindrical middle part of the rod-like
aggregate by indentation of surfactant heads. It induces
vibrating modes into the daughter aggregates as they
rearrange back to a spherical shape. Although this
vibration is successively dissipated into undirected
motion, it sometimes leads back to short series of
temporary fusion and fission of the daughter cells.

Elongated micellar structures are well known from
worm-like micelles, which usually consist of two
surfactants with different curvature. Such worm-like
micelles are stable equilibrium aggregates and exhibit
an exponential size distribution (Kröger & Makhloufi
1996). In the system studied in this work, however, the
elongated aggregate is not stabilized by different
curvature values of the components, but by the
hydrophobic core. Accordingly, once the precursor is
turned over into new surfactant molecules, the
elongated structure looses its stability.

There is a second pathway, however, that might
jeopardize the above scenario: once in a while
throughout our simulations, nanocells loose individual
surfactants into the bulk phase. If this relaxation
process happens fast compared with the metabolic
turnover, the nanocells might not be able to reach the
division size. Surfactants in the bulk phase may
however metabolize precursor droplets and spon-
taneously form nanocells on their own.

Formally, fission events can be written in the form of
a chemical reaction

SnCm $$%
kKm;n

Sn CSm; ð3:1Þ

where Sn, Sm and SnCm are aggregates of size n, m and
nCm, respectively; and kKm;n is the fission rate. For
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Figure 3. Here, the size evolution of figure 2b is tracked for individual nanocells: each line designates the size evolution of a single
aggregate. Horizontal lines result from fission (or dissociation) events, after which two lines indicate the fate of the daughter cells.
Isolated dots denote short-term vibrations during which nanocells divide and fuse within less than 1t. For clarity, such horizontal
lines have been suppressed for such vibrations. As one can see, only two daughter cells result from a true fission event (at tZ722t).
The other two result from dissociation of single surfactants that start to turn over precursor droplets found in bulk phase. These
surfactant dissociations happen at tZ324t and tZ684t. Furthermore, two nanocells fuse at tZ655t.
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( f )
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Figure 4. Metabolism and fission of a nanocell (T beads are shown in light grey, H beads in dark grey, water not shown): the initial
surfactant metabolizes a precursor droplet and turns it into a functioning nanocell (panels a–c). While the precursor is consumed, the
nanocell elongates to account for the changing precursor surfactant ratio (panel d–e). Such elongated structures can be stable for
several time units, until—when all precursors are turned into surfactants—the nanocell divides into two daughter cells ( f ).
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mZ1, one obtains dissociations as a special case.
Analogously, association and fusion events take the form

Sn CSm $$%
kC

m;n

SnCm: ð3:2Þ

In order to quantify micellar fission and surfactant
dissociations, nanocells have been identified by a variant
of the flood fill algorithm: every two T beads within a
distance of 1rc or less have been considered to belong to
the same aggregate. The aggregate number is defined as
the number of participating surfactants. This allows for
tracking individual aggregate sizes and their transitions
through time. Each of the above reaction schemes results
in two transitions, given by

Sn/SnCm; Sm/SnCm; ð3:3Þ

and

SnCm/Sn; SnCm/Sm: ð3:4Þ

Furthermore, the turnover of precursors results in the
transition

Sn/SnC1: ð3:5Þ

Not all transitions can be expressed by the chemical
reaction scheme given by equations (3.1) and (3.2).
Phil. Trans. R. Soc. B (2007)
Those transitions are of the type

SnCm CSl/Sn CSmCl ;

as well as fissions into and fusions from more than two
aggregates. For all the simulations performed, such
outliers amount to less than 0.3% of the total transitions.
They have been neglected for further analysis.

In the remainder of this work, we will analyse two
key parameters of the model and their influence on the
dynamics of the system. Thereby, we will put our
attention on the fission pathways discussed above. The
first parameter we analyse is the hydrophobicity, i.e. the
values aTW and aTH. This parameter is related to
the dissimilarity between surfactant tails and water. For
most surfactants the hydrophobicity is solely a function
of the length of the hydrocarbon chains (Evans &
Wennerström 1999). The value is thus easily adjustable
in experimental set-ups.

Second, we analyse the influence of the catalytic rate
kc—hence, the speed of metabolic turnover—on the
division pathwayof the nanocell. Aswe did not specify the
molecular implementation of precursor and surfactant, it
is conceivable that in an experimental set-up, one can
choose from a wide range of catalytic efficiencies.
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(a) Influence of hydrophobicity on nanocell

dynamics

For three hydrophobicities, 40, 90 and 120kbT, histo-

grams of such transitions are shown in figure 5. The

figures reveal a clear trend both in aggregate numbers as

well as transition types. For hydrophobicity 40kbT, the

system is almost entirely composed of single surfactants

and small aggregates in bulk phase. Of the transitions,

33.4% are dissociations and associations of two single

surfactants. For the few bigger aggregates, transitions are

distributed more or less homogeneously, i.e. surfactant

dissociation is as likely as proper aggregate fission. Thus,

for weak hydrophobicities, the system resembles a

homogeneous solution without significant formation of

structures. For 120kbT, on the other hand, the transition

histogram looks completely different. Associations or

dissociations of two isolated surfactants make only 3.7%

of the transitions for this parameter. The most promi-

nent transition type is the turnover of a precursors within

nanocells that range in size from 1 to 25 surfactants

(20.6% of all transitions), represented by high values in

the lower secondary diagonal. The absence of an upper

secondary diagonal reveals that there are no surfactant

dissociations except some between aggregate numbers 8
Phil. Trans. R. Soc. B (2007)
and 16. Owing to the higher stability of aggregates, there

are far less overall transitions than in the previous case

(321 compared with 24 743), which poses a problem

when trying toobtain smooth histograms. Although there

are distinct cases of proper fission events (e.g. S25/
S14CS11, S20/S11CS9), it is hard to tell from the

histograms whether such fission is more probable than

single surfactant dissociation. Varying the hydrophobi-

city between these two extrema yields traits of both other

histograms. One example is given in figure 5 for 90kbT.

As new precursors are constantly supplied and

nanocells grow and divide over time, it is somewhat

difficult to capture mean aggregate numbers of the

assemblies. Nevertheless, these values are prominent

characteristics in the study of micellar systems and their

knowledge can help to get insight into the system under

consideration. To gain aggregate numbers, we compute

the average value mCn for all transitions of the form

SmCn/SnCSm, i.e. we average aggregate numbers

only in moments of fission or dissociation. The results

can be regarded as the mean maximal aggregation

number of nanocells. Figure 6 shows results for

hydrophobicity values from 40kbT to 120kbT together

with a simple average of all aggregate sizes in the
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system. Both maximal and average values increase
constantly from 1.68 (3.59) for 40kbT to 18.04 (17.51)
for 120kbT. It becomes apparent that for very weak
hydrophobicities, most of the surfactants are either
isolated in bulk phase or in very small assemblies. For
strong hydrophobicities, aggregates are very distinct
and single surfactants in bulk phase are rare. There is,
however, no sharp boundary or phase transition
between small sub-micellar assemblies and proper
micelles, but rather a continuous transition.

Going back to the issue of nanocell division, we want
to distinguish proper fission into nanocells of approxi-
mately equal size from dissociation of sub-micellar
aggregates. The previous analysis revealed that one
cannot use absolute aggregate numbers, as they exhibit
a trend for stronger hydrophobicity. Therefore, we
characterized each event of the form of equation (3.1)
by the function

Qðm; nÞZ 1K
mKnj j

mCn
; ð3:6Þ

which denotes the relative fission quality. Q(m, n)Z1
for mZn, i.e. when the resulting nanocells are equal in
size. Q becomes smaller as daughter cells become less
alike. We have averaged Q as a function of the
hydrophobicity over all fission events in the simulation
runs discussed before. Mean and standard deviation
are shown in figure 7. hQi varies between 0.41 and 0.65
with no significant trend for weak or strong hydro-
phobicities. Moreover, standard deviation is very high.
This reveals that fission into any two daughter cells is
equally probable, no matter the ratio of their sizes. In
terms of fission rates this finding can be written as

kKm;nekKðmCnÞ; ð3:7Þ

for the system under consideration.
(b) Influence of the catalytic rate on nanocell

dynamics

The catalytic rate has been varied from 2K6tK1 to
4.0tK1 in exponential steps. Hydrophobicity has been
set to 80kbT. Global surfactant dynamics are shown in
figure 8. For slow metabolic turnover (!0.125tK1),
the exponential shape of surfactant production
becomes apparent, i.e. the constant precursor supply
of precursors does not limit surfactant production over
the simulated time span. This is tantamount to saying
that unmetabolized precursor droplets are present
throughout the whole simulation. Deceleration of the
global dynamics is reflected in slower fission rates of
individual nanocells. For example, we observed that
the first fission event is retarded by 180t on average
Phil. Trans. R. Soc. B (2007)
when catalytic rates are halved. For kc!0.03125tK1,
no fission occurs during the simulated time span.

Figure 9 shows mean aggregation numbers as a
function of the catalytic rate. As one can see, slow
metabolic turnover increases both maximal and
average aggregation numbers (from 9.45 (5.27) for
0.5tK1 to 18.55 (9.66) for 0.03125tK1). The trend
becomes less apparent for faster metabolic turnover
(1.0tK1 to 4.0tK1). For kcZ0.125tK1, the maximal
aggregation number is slightly higher than a monotonic
trend would imply—a fact that we relate to statistical
deviations, as fission events are considerably rare for
small catalytic rates. The increase in both aggregation
numbers is a natural consequence of the decelerated
metabolism: when the precursor is metabolized slowly
while its supply is held constant, the size of the
hydrophobic core increases and offers a bigger area
for surfactants to attach. Hence, the maximal aggregate
numbers increase.

For the above runs, the number of fission and fusion
events has been measured (figure 10). For all
simulation runs, fusion and fission events are more or
less balanced. This reveals that most of these events
result from surfactant exchange with the bulk phase or
from series of temporary fission and fusion during a
single division process rather than from proper nano-
cell divisions. For low catalytic rates (0.03125tK1

%kc%0.25tK1), the number of such balanced tran-
sitions falls significantly from 1028 for k cZ0.5tK1 to
only 8 for k cZ0.03125tK1. As in the case of
aggregation numbers, the trend in transition numbers
can be related to the hydrophobic core: the more
hydrophobic particles in the interior of a nanocell, the
less dissociations occur on its surface. A strong anti-
correlation between aggregation numbers and the
number of fission/fusion events (with a correlation
coefficient of K0.917) justifies this hypothesis.

It has to be pointed out, however, that the catalytic
rate might affect nanocellular dynamics only during a
certain transient time. It has been shown how the
nanocellular dynamics depend on the ratio between
metabolic turnover and precursor supply. Precursors
are supplied by diffusion. Therefore, the rate of their
incorporation into an individual cell depends on the
overall concentration of nanocells. Once a critical cell
concentration is reached, precursor incorporation
might be slower than its metabolic turnover, which
would undermine the above discussed effect. While the
duration of such transient will depend on the ratio of
precursor supply and turnover, dynamics after the
transient might be little affected again. Ideally,
simulations would be performed in a homeostatic
system, with an influx of precursor solution at one
side and an outflux of reaction products at the opposite
site of the system. Up to now, however, little is known
about the performance of DPD in such open systems.
4. DISCUSSION
In this paper, we have presented an information-
free nanocell based on a micellar system and a single
auto-catalytic reaction that serves as metabolism.
This simple system can be understood as a minimal
self-replicating chemical system. As such, it denotes the
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boundary between pure auto-catalysis and a more

complicated self-reproducing system that would also

include inheritable information. We analysed the

dynamics of this nanocell using a DPD approach.

This simulation technique can cover the relevant time-

scale, while it has been shown to be still physically

accurate compared with other simulation techniques.

As a consequence, we have been able to perform

analyses of the system in a level of detail that has—as

far as we know—not been reached before in the study

of self-replicating entities.

The general replication cycle of micellar nanocells

by metabolic turnover and division is very robust

against changes in hydrophobicity and catalytic rates. It

has been shown that the mean aggregation number of

nanocells depends on the hydrophobicity of the

surfactant (and precursor) as well as on the catalytic

rate of the metabolism. For increasing hydrophobicity,

a monotonic change in aggregation number with

no sudden phase transition has been observed,

ranging from a nearly homogeneous solution with

only sub-micellar aggregates for weak hydrophobicities

to the formation of distinct micelles in surfactant-free
Phil. Trans. R. Soc. B (2007)
water for a very high hydrophobicity. The same

monotonic increase in aggregation number could be

observed for increasing catalytic rates, i.e. fast meta-

bolic turnover.

It has been found that the rate of nanocell fission and

surfactant dissociation depends on the size of the

hydrophobic core of the nanocells, and is more likely to

occur for small values in hydrophobicity and slow

metabolic turnover. Daughter cells resulting from a

fission event have been shown to vary significantly in

size. There is neither a trend in the average size ratio of

fission products nor in its variance.

Our work shows that the envisioned replication cycle

of nanocells—namely incorporation and turnover of

precursor droplets followed by eventual aggregate

division—is achievable over a wide range of parameters.

In fact, there is no parameter combination for which the

general replication cycle has been rendered impossible:

although we have been able to decrease mean aggregation

numbers and increase dissociation rates up to a point

where the system obeys no clear structures, we could not

observe that dissociation of single surfactants jeopardizes

the growth of an otherwise stable nanocell.
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We have demonstrated the feasibility of a self-
replicating system in the absence of genetic information.
Although such a system is not able to evolve towards
higher complexity, it could have served as a functioning
sub-system providing metabolism and embodiment for
subsequent protocells of higher evolutionary complexity.
It is conceivable that independently evolved information
systems like RNA might have become incorporated into
such functioning replicators. When the two formerly
independent replication cycles of container and genome
are orchestrated by coupling, such that each daughter cell
of the dividing container is loaded with exactly one copy
of the genomic information, one would obtain a true
self-reproducing protocell with the ability to metabolize,
divide and evolve.

Apart from prebiotic scenarios in which micelles are
considered as possible ancestors of subsequent vesicle-
based organisms, such systems are explored in the
context of so-called living technology, i.e. artificial
systems that mimic life-like behaviour. Our results
suggest that the generic replication cycle of micellar
nanocells is a robust basis for artificial life forms. We are
currently exploring one design of such an artificial
protocell in which genomic information is coupled to a
micellar self-replicating system similar to the one
presented here.

The authors would like to thank the members of the Complex
Systems Lab for useful discussions. This work has been
supported by grants FIS2004-0542, IST-FET PACE project
of the European Community funded under EU R&D
contract FP6002035 and by the Santa Fe Institute.
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