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A self-consistent minimal cell model with a physically motivated schema for molecular interaction is
introduced and described. The genetic and metabolic reaction network of the cell is modelled by
multidimensional nonlinear ordinary differential equations, which are derived from biochemical
kinetics. The strategy behind this modelling approach is to keep the model sufficiently simple in order
to be able to perform studies on evolutionary optimization in populations of cells. At the same time,
the model should be complex enough to handle the basic features of genetic control of metabolism
and coupling to environmental factors. Thereby, the model system will provide insight into the
mechanisms leading to important biological phenomena, such as homeostasis, (circadian) rhythms,
robustness and adaptation to a changing environment. One example of modelling a molecular
regulatory mechanism, cooperative binding of transcription factors, is discussed in detail.
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1. INTRODUCTION
One of the great unsolved problems of biology is the

intricate procedure that transforms heritable genetic

information into the observable physical, chemical and

biological characteristics of an organism subsumed in

the phenotype. Unfolding a genotype in order to yield

the corresponding phenotype is commonly a complex

process that involves a great variety of molecular

players. In the case of multicellular organisms, this

process involves not only the formation of new cells by

division but also cell differentiation and development,

the next higher hierarchical level. Understanding the

unfolding of a genotype, often subsumed under the

notion of a ‘genotype–phenotype map’, is further

complicated by the fact that the ‘interpretation’ of the

genotype by the molecular machinery of the cell is

strongly influenced by environmental and epigenetic

factors. At the present state of knowledge, a theoretical

model that adequately describes the genotype–pheno-

type map at the molecular level for a whole organism

seems to be a hopeless task.

The simplest evolving entity one can think of,

comprises heritable information in a nucleotide

sequence and a phenotype derived from it in one and

the same object. The information stored in the

sequence materializes as a self-replicating molecular
tribution of 13 to a Theme Issue ‘Towards the artificial cell’.
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species in the form of an RNA molecule. The structure
of the RNA molecule is established by the interactions

of individual nucleotides joined by the polymer chain,
which determines the function of the molecule. In that
sense, the sequence carries the ‘heritable’ information

for the formation of the phenotype, which in turn is the
molecular structure upon which selection acts in the
evolution experiment (Biebricher 1983; Biebricher &

Gardiner 1997). The folding process of RNA at the
secondary structure level is also accessible to math-
ematical analysis and computer simulation; therefore,

it can be viewed as an abstract model of a genotype–
phenotype map (the ‘RNA model’ is described in
Schuster et al. (1994) and Schuster (2002)).

Intensive studies of the RNA sequence to structure
a map during the last decade revealed how the
properties of this map influence the dynamics of

evolutionary optimization. While being tremendously
successful in elucidating the mechanisms governing
molecular evolution (Fontana & Schuster 1998a;

Schuster 2001, 2003), many concepts of biological
genotype–phenotype maps, such as signal transduc-
tion or developmental processes, have no concrete

analogue (Fontana 2002) within the RNA model. The
restriction of the phenotype to the structure of a single
molecule makes it impossible to discuss aspects of
organization, since ‘division of labour’ is one of the key

issues in biology that determines the properties of
genotype–phenotype maps. In particular, the most
striking deficiency is the absence of any form of
This journal is q 2007 The Royal Society
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control and regulation in the RNA model. It is indeed
the regulatory network that builds the link between the
genotype and the observable features of the phenotype
(Davidson 2001; Banzhaf & Miller 2004).

In this paper, we describe a model that comes a step
closer to biological genotype–phenotype maps while
remaining sufficiently simple to allow for large-scale
evolutionary studies on the system.

The basic idea is to build a deterministic hierarchical
mapping, which in a sense encrypts a dynamical system
representing the phenotype within a string (being the
genotype). This approach separates the genotype, upon
which the genetic variation operators act, from the
phenotype that is under selection pressure. The
dynamical system itself is a minimal version of a gene
regulatory and metabolic network1 represented by a
system of ordinary differential equations (ODEs).
2. RELATED WORK
Our model follows the spirit of related work in the area of
artificial regulatory network (ARN) models. Kauffman
(1993) used random Boolean networks (RBNs) to
model gene regulatory networks. RBNs show a broad
range of dynamical behaviour from cyclic and multiple
attractors to chaos. However, most of these interesting
dynamical features vanish if the updating rule for the
temporal evolution of the network’s state is changed
from a synchronous to a biologically more realistic,
asynchronous one. Moreover, RBNs show only a limited
ability to structurally represent genes and genomes.

Reil (1999) introduced the concept of an artificial
genome to overcome this structural weakness of
RBNs. The artificial genome is essentially a biologi-
cally inspired representation of genes and their
interactions. The model allows manipulation of the
topology of the gene regulatory network at the level of
the genome (implemented as string of digits) by a set
of genetic variation operators that closely resemble
their natural counterparts. This permits study of
questions regarding the evolution of the ARN and its
quantized Boolean dynamics from the point of view of
the changing genome.

Dellaert & Beer (1996), Eggenberg (1997) and,
later, Bongard (2002) embedded an ARN, analogously
to Reil’s approach, into a hand-coded morphogenetic
system to evolve ‘multicellular’ objects capable of
performing some predefined tasks. Bongard showed
that within this framework, commonly termed artificial
embryogeny (see Stanley & Miikkulainen (2003) for a
recent review), gene reuse and modularity in terms of
regulatory circuits can arise.

Banzhaf (2003a) refrained from the Boolean para-
digm and expressed the dynamics of his ARN model in
ODEs. Many dynamical phenomena of natural gene
regulatory networks, i.e. point attractors, damped
oscillations and heterochronic control (Banzhaf
2003b), are reproduced by the ARN model. By
introducing an arbitrary ‘virtual’ binding site for a
desired output function, networks could be evolved
where the activation pattern of the virtual binding site
follows a predefined mathematical function (Kuo et al.
2004). The model we propose differs from prior work
with respect to the following points.
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First, the competition of molecular species that bind
to regulatory regions of genes is modelled explicitly in
mass-action-governed elementary reactions. The
reason for this decision lies in the facts that (i)
competition for a common resource is obviously one
of the core reactions in gene regulatory networks, which
warrants an accurate mechanistic description, and
(ii) mechanistic details can have unexpected conse-
quences (Kholodenko & Westerhoff 1995) in terms of
dynamic phenomena, especially if coarse-grained
approximations, i.e. Michaelis–Menten type kinetics
or concentration-weighted mean values, are used.

Second, the genome and the gene products are
modelled entirely in RNA molecules. At the level of
RNA secondary structure, efficient, well-established
algorithms exist to compute nearly any desired
molecular property. In particular, the statistical proper-
ties of the sequence to structure a map and its
implications for the evolutionary process have been
profoundly enlightened. Therefore, operations on
RNA molecules, as used in the presented model,
possess a certain degree of physical realism, which is
lacking if binary- or real-valued vectors are used.

Third, molecular interactions, another key feature of
gene regulatory networks, are modelled within the
framework of RNA secondary structures. This approach
provides us with a physically meaningful temperature-
dependent energy function, which is not given for
Hamming-distance-based approaches for bit strings.

Finally, the model is equipped with a minimal
version of a metabolism and a simple membrane
similar to that presented by Kennedy et al. (2001).
3. MODEL DESCRIPTION
A basic requirement for a model to be suitable for
studying evolution is to be self-contained in the sense
that it does not require input of parameters on the fly.
This has been achieved in the RNA model by defining
rules that provide the frame for the computation of the
required parameters. The development of our model
pursues the same strategy. In particular, the decoding
step is done in such a way that all the relevant
parameters required to compute the time evolution of
the dynamical system are calculated from within the
model. This enables the individual system to freely
explore genotype space2 by increasing its complexity
without imposing limitations from the exterior. In
molecular terms, the genotype is thought to be a DNA
or an RNA molecule that is transcribed in pieces to
yield RNA, which in turn is the source of various other
molecules in the system. Two different scenarios are
conceivable: (i) RNA is translated to yield protein
molecules or processed to yield regulatory RNA
molecules of the small interfering RNA type
(McManus & Sharp 2002) or (ii) all molecular species
of the gene regulatory and metabolic network are
entirely represented as RNA molecules. There are no
proteins involved in the second model and all
regulatory and housekeeping functions are executed
by ribozymes. Here, model (ii) is introduced. It is based
on the empirical evidence that naturally occurring
RNAs can fulfil a wide scope of different functions.



Table 1. Binding energies of random RNA pairs of length 25 to 2 URR RNAs of length 5. (Different base compositions in the
short RNA sequences from pure AU to pure GC were studied. The free energies for cooperative interaction (DGcoop) are
calculated for the conformations of lowest free binding energies (DGbind) as indicated in figure 2 and given with the standard
deviation.)

sequence
(%AU)

sample (no.
of URR)

sample size:
sequence
pairs

heterocooperativity self-cooperativity

stable (%)
KDGcoop

(kcal molK1)
KDGbind

(kcal molK1) stable (%)
KDGcoop

(kcal molK1)
KDGbind

(kcal molK1)

100 11 1 000 000 0.1G0.1 3.13G2.26 0.32G0.22 0.2G0.3 4.00G2.77 0.32G0.21
90 56 824 301 1.0G1.2 3.02G2.21 0.58G0.55 0.9G1.1 3.71G2.65 0.72G0.68
80 223 364 473 8.8G9.2 2.90G2.15 0.87G0.76 7.5G8.5 3.53G2.57 0.92G0.78
70 557 163 760 18.4G12.7 2.85G2.12 1.14G0.98 14.2G10.1 3.35G2.46 1.17G0.99
60 1021 62 027 31.6G14.3 2.80G2.10 1.45G1.17 23.9G11.7 3.24G2.39 1.47G1.18
50 1265 28 598 42.7G13.3 2.78G2.08 1.74G1.35 32.2G11.8 3.20G2.35 1.74G1.32
40 1007 16 860 53.8G11.0 2.75G2.07 2.09G1.50 41.6G10.9 3.17G2.33 2.03G1.45
30 574 14 305 60.9G9.6 2.75G2.07 2.43G1.66 48.4G10.2 3.21G2.34 2.33G1.59
20 238 13 105 65.7G8.6 2.75G2.06 2.69G1.76 54.0G9.6 3.27G2.37 2.55G1.67
10 35 12 054 70.9G7.0 2.76G2.07 3.07G1.91 58.9G9.1 3.31G2.39 2.85G1.80
0 8 11 860 73.3G8.4 2.85G2.11 3.51G2.07 66.0G4.1 3.67G2.63 3.29G1.98
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(a) The genotype–phenotype map

The genotype is represented by an RNA string of
appropriate length. The genes that may overlap along
the genome are structured as follows. The starting

point of a gene is marked by a short sequence pattern
that is reminiscent of the TATA box of eukaryotic

genes. Upstream of this sequence pattern, two regulat-
ory sites are located and in a downstream direction a

fixed-length coding region follows (figure 1).
Gene products fall into two major classes: (i)

transcription factors (TFs) and (ii) structural RNAs.
While the former constitute the gene regulatory net-
work, the latter fulfil metabolic tasks. The function of a

given RNA molecule is determined by means of an
energy-based comparison with classes of target

structures. The sequence is folded into all target
structures yielding a series of free energy values, and

the lowest free energy value determines the function of
the molecule. Since the probabilities of the predefined

target structures obtained by folding random sequences
are easily computable, the distribution of functions in
the ensemble of gene products can be influenced by

choosing target structures of different probabilities.
This approach is supported by the fact that the function

of naturally occurring RNAs is commonly determined
by the structure and not by the sequence. A point

mutation in a gene may or may not alter the function of
the transcript, depending on the degree of neutrality of

the structure formed by the gene product. This
procedure ensures a unique mapping (with the
exception of a rare event that two folds of the sequence

yield identical minimum free energies) and a tunable
degree of redundancy. Thereby, the problems arising

from direct encoding of the phenotype by the genotype
(Bentley & Kumar 1999) are avoided. Both unique

assignment and high degree of redundancy increase the
accessibility of phenotypes, leading to an increased

evolvability of the population (Ebner et al. 2001). The
latter effect is well known from simulation of RNA
optimization, where GC-only sequences are much

harder to optimize by evolution than AUGC
sequences because they have a lower degree of
Phil. Trans. R. Soc. B (2007)
neutrality (Schuster & Stadler 2006; for a discussion
on the parallels of the evolutionary search on neutral
networks between RNA and genetic programming, we
refer the reader to Banzhaf & Leier 2006).
(b) The gene regulation

TFs are grouped further into two types: activators
and repressors. These molecules bind to one of the
two binding sites in the upstream regulatory region
(URR) of the gene. The activity of the gene is
regulated by the fraction of repressors or activators
bound to the URR. For modelling the transcriptional
activity, we apply the common three-state-‘regulated
recruitment mechanism’ observed with bacterial
genes (Ptashne & Gann 2002): (i) free genes are
transcribed at a low basal rate, (ii) genes with
activators bound to the regulatory region are
transcribed at high rate, and (iii) genes with bound
repressors are silenced. The transcription rate itself
also depends on the concentration of active nucleo-
tides; the analytic expression of the dependence was
adopted from the mechanism of RNA replication by
the replicase of the phage Qb (Biebricher et al. 1983).

In order to regulate transcription, the binding
affinities of the whole ensemble of TFs have to be
transformed into a gene activity signal that falls into
one of the three transcription states: basal, active, and
silenced. Since the structure of the regulatory network
itself should be a target of evolution, a model based on
molecular interactions is required that decides upon
two questions: (i) which TF binds to the distinct URR
of the gene and (ii) to what extend is the URR bound
by the different TFs? Heteroduplex formation or
RNA–RNA hybridization (Dimitrov & Zuker 2004;
Bernhart et al. 2006) is used to quantify the binding
strength of a given TF to a given regulatory site. The
free binding energies computed in this way can be
used directly to calculate dissociation constants and,
under the assumption that association of the TF–URR
complex is limited by diffusion, rate constants for
complex formation and dissociation. Since compu-
tation of binding constants is straightforward, the
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Figure 1. Gene control structure of a typical gene in the
proposed model. Upstream of the coding sequence (green)
lies the promotor region or TATA box (red) and an upstream
regulatory region (URR; blue), consisting of two transcrip-
tion factor binding sites. The function of the gene transcript is
determined by folding into secondary structures representing
the different classes of functional RNAs.
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Figure 2. Cooperativity as modelled in the presented frame-
work. Two TFs bind to the URR. The stabilizing free energy
between the two functional structures enters additively into
the regulatory mechanism. DGcoop and DGbind, see table 1
legend.
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topology of the genabolic network is readily recalcu-

lated if some of the genes in the network changed

sequence upon action of the genetic variation

operators on the genome.
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Figure 3. A sketch of the chemical reaction network of the presente
fixed amount and recruited to the gene (green) promoter region (r
The RNA transcription rate depends on the concentration of activ
The RNAs decay to inactivated components (XI), which are reac
(EA). The gene products are categorized into structural (SR) and g
metabolites (EI) and the incorporation of membrane building bloc
coupled with the exterior pool ðMext

I Þ via diffusion through the me
regulatory regions and the catalytic efficiencies of structural protei
are therefore targets of evolution.
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The definition of the model parameters provides an

opportunity to design more complex regulatory

mechanisms. As an example, we present the consider-

ation of cooperativity in TF binding. There are several

possibilities to introduce cooperativity: (i) the effector

molecule itself is a dimer, tetramer or even higher

aggregate, and oligomer formation is a cooperative

process or (ii), alternatively, two molecules bind to the

binding sites within the URR and a stabilizing interaction

between the two ligands leads to cooperative binding as

sketched in figure 2. Whereas the first phenomenon

leading to cooperativity is well known in biophysics, the

direct cooperative interaction between two bound

molecules has been studied much less frequently. For

this reason, we performed a large-scale investigation with

random RNA sequences. Two molecules were bound to

the two URR binding sites and they are cofolded under

the constraint in such a way that their structures bound to

the URR sites are preserved. A negative free energy leads

to an additional stabilization of the TF–URR complexes

and results incooperative binding (table 1).The results in

the table present a ‘proof of concept’ of our model for

cooperative interactions. A reasonable fraction of ran-

dom sequences with sufficient GC content are suitable as

regulators with cooperative interactions since they form

stable aggregates. The fraction of stable complexes with

only AU base pairs is very low. Pure AU sequences are

characterized by relatively high free energies of coopera-

tive binding but very low energies of interaction with the

URR. In pure GC sequences, we find reasonably strong

binding to the URR and cooperativity of the same order

of magnitude. Mixed sequences may be preferable since

they have acceptable binding strength with still dominat-

ing cooperativity. The energetic differences between
RNAi
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heterodimers and homodimers (self-cooperativity in
table 1) are negligibly small.
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Figure 4. Activation of the ribozyme. The active structure
catalyses the metabolic reactions. The catalytic efficiency
of the ribozyme is derived from the free energy that is required
to form the secondary structure of the active ribozyme from
the minimal free energy secondary structure of the RNA.
(c) The metabolism

The metabolic RNAs are ribozymes that are capable of
catalysing either a chemical reaction that activates a
mediator molecule or a reaction that transforms
membrane precursor molecules into membrane build-
ing molecules (figure 3). The active mediator, in turn,
transfers energy to monomeric building blocks and
converts it into active species, which can be directly used
for transcription (or transcription and translation in
case we use a model with mRNAs and proteins).
Eventually we end up with biopolymers, RNAs
(or RNAs and proteins), which may enhance their own
production by producing more ribozymes in the manner
of an auto-catalytic cycle. Catalysts are assumed to
require specific predefined structural elements. The
catalytic efficiency of a molecule in the catalysis of a
metabolic reaction is derived from the activating energy
EaZ3nK30 that is required for the transition from the
minimum free energy structure into the (lowest)
suboptimal state, Sn, which carries the required element
and constitutes the active form of the ribozyme
(figure 4). This concept for the evaluation of catalytic
efficiency can also be interpreted as a distance
measure between structures on an energy scale. It is
preferred here over simpler distance measures like the
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Hamming-distance-based string comparison methods,

because it retains the useful and realistic statistical
properties of the RNA sequence to the secondary

structure map, as exemplified by the evolutionary fitness

landscape (Fontana & Schuster 1998a,b). Moreover,
the activation concept allows for an optimization of the
200 400 600 800 1000

time (arbitrary units)

fitness evaluation

e genabolic network together with the reaction parameters is
n ODE system, which after numeric integration provides the
phenotype) that in turn modulates via a fitness function the
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catalytic efficiencies of ribozymes through accumulation
of mutations that reduce Ea by stabilizing the sub-
optimal structure Sn relative to the minimum free energy
conformation S0. Ideally, if their minimum free energy
structure S0 is identical to the target structure Sn, then
exp(Ea/RT )Z1, and the ribozyme catalyses mediator
activation at maximum velocity.

After the determination of the parameters by the
respective mapping, the genabolic network is trans-
lated into a set of ODEs. In order to describe the
system in a general and easily accessible format, it is
implemented in the widely used systems biology
markup language (SBML; Hucka et al. 2003). From
the concentration time course, fitness values can be
deduced to drive an evolutionary optimization
procedure (figure 5). The integrator front-end
currently used is the SBML–ODE Solver, a versatile
integrator for continuous ODE systems (Machné
et al. 2006). Owing to the use of SBML a variety of
integrators and analysis software can easily be
adopted and a flexible handling is facilitated.
4. RESULTS
Mutation studies without selection have already been
performed, and they show that a sufficiently high fraction
Phil. Trans. R. Soc. B (2007)
of mutations gives rise to viable regulatory networks. To
test the capabilities of the model, we designed the
following experiment. We ask the question, is a cell with
an initial random genome capable of adapting its cell
volume to a predefined target volume during a muta-
tional adaptive walk? Figure 6 shows the dynamical
behaviour of the final cell of the adaptive walk. The
balance between regulatory and metabolic dynamics
indeed adjusts the cell’s volume exactly to the target
volume. Figure 7 shows the respective gene regulatory
and metabolic reaction network.

There is also a substantial fraction of neutral
mutations, which was found to be a conditio sine qua
non for efficient evolutionary optimization (Huynen
et al. 1996; Fontana & Schuster 1998a,b). In order to
study evolutionary phenomena, we also have to
consider genome replication and variation (mutation
and/or recombination). The secondary structure
computations can be readily extended to DNA–DNA
and DNA–RNA interactions since the same folding
routines can be used with other sets of empirical
parameters (SantaLucia et al. 1996; SantaLucia 1998).
The evolutionary evaluation of different genabolic
networks is based on their fitness that results from
a sophisticated interplay of replication rate and
metabolic efficiency.
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5. CONCLUSIONS AND OUTLOOK
With the presented model at hand, several pending
problems can be approached. The encryption of all
relevant system information within a string genome
allows the description and evolution of genabolic
networks in an entirely independent fashion. No
external sources of additive information are necessary;
the system is self-determined and closed as far as rules
and system-sustaining model functions are concerned.
In contrast to prior exclusively RNA-based auto-
catalytic systems, the genotype and the phenotype in
the presented model constitute separate objects.
This allows an unhindered evolvability of the minimal
cell on the way from a random dynamical network to an
adapted functional system.

Owing to the regulatory mechanisms implemented,
in particular the direct interaction of the TFs in a
cooperative manner, the model allows for studies of the
evolution of a great variety of regulatory networks.
Experiments regarding an optimization of certain
qualities or functions, for example high adaptability,
high robustness, insensitivity to environmental stress,
are conceivable.

The natural selection criterion is a short time of self-
reproduction for the individual system. This reproduc-
tion efficiency will be a function of the cell’s replication
machinery and the cellular metabolism. Our model
encodes all these features in the genome and the system
itself unfolds the phenotype. One way is the use of a
growing cell membrane as an indicator for cell growth
and replication. This approach includes an explicitly
modelled membrane as described, for example, in the
chemoton systems (Gantı́ 1975). At a certain size and
concentration of the cell components, the individual is
ready for cell division, giving an additional input to the
fitness measure for selection.

Further extensions of the system are easily
implemented by the modular SBML format. Several
aspects are of special interest. The extension of the
system to a second class of biomolecules and, for this
goal, lattice proteins with monomer sequences encoded
in the transcribed structural molecules would be an
excellent candidate. The introduction of membrane-
bound transporter molecules that are responsible for the
exchange of high- and low-energy compounds fuelling
the minimal cell would allow a direct interaction with the
environment. A further evolutionary step, the adap-
tation of the transporter to operate on a larger variety of
molecules, is likely to enable cell–cell communication.
SBML, on the other hand, also supports the idea of a
compartmentalization of this model. This would enable
a spatial separation of different metabolic processes in a
manner that is closer to physiology.

This work was supported in part by the Wiener Wissen-
schafts-, Forschungs- und Technologiefonds (WWTF) pro-
ject number MA05.
ENDNOTES
1Since gene regulation and metabolic control is intimately coupled in

cellular dynamics, we suggest to use the term genabolic network for

the functional combination of genetics and metabolism.
2Depending on the question to be addressed by the simulation, the

genotype space can be restricted to all (4n) polynucleotide sequences
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of constant chain lengths n or the length may vary with insertion and

deletion operators acting on genotypes.
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