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To satisfy the minimal requirements for life, an information carrying molecular structure must be
able to convert resources into building blocks and also be able to adapt to or modify its environment
to enhance its own proliferation. Furthermore, new copies of itself must have variable fitness such
that evolution is possible. In practical terms, a minimal protocell should be characterized by a strong
coupling between its metabolism and genetic subsystem, which is made possible by the container.
There is still no general agreement on how such a complex system might have been naturally selected
for in a prebiotic environment. However, the historical details are not important for our investigations
as they are related to assembling and evolution of protocells in the laboratory. Here, we study three
different minimal protocell models of increasing complexity, all of them incorporating the coupling
between a ‘genetic template’, a container and, eventually, a toy metabolism. We show that for any
local growth law associated with template self-replication, the overall temporal evolution of all
protocell’s components follows an exponential growth (efficient or uninhibited autocatalysis). Thus,
such a system attains exponential growth through coordinated catalytic growth of its component
subsystems, independent of the replication efficiency of the involved subsystems. As exponential
growth implies the survival of the fittest in a competitive environment, these results suggest that
protocell assemblies could be efficient vehicles in terms of evolving through Darwinian selection.
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1. INTRODUCTION
Cells are the basic structural and functional units of all

known life, performing the vital functions of an

organism and containing the hereditary information

necessary for self-regulation and self-replication. The

complexity of modern cells and life itself is a

consequence of open-ended evolution whose begin-

nings are associated with the origin of life on earth.

Even though many of the main issues associated with

the emergence of life remain to be established,

significant progress has been made since Oparin’s

original vision of the origin of life (Oparin 1957) and

Gánti’s model of a minimal cell (Gánti 1975).

These advances have steadily pushed the experi-

mental implementation as well as the understanding of

protocells ever closer to reality (Kaneko & Yomo 2000;

Segré et al. 2001; Szostak et al. 2001; Monnard et al.
2002; Stadler & Stadler 2003; Takakura et al. 2003;

Paul & Joyce 2004; Rasmussen et al. 2004; Luisi et al.
2006). For a protocell to function properly, it must

contain both genes and a metabolism, which are

integrated by a container. The interdependence
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and cross-regulation of these subsystems are major

issues. Regardless of which of the protocellular
subsystems a work centres on—templates, energetics

or container—the concept of self-replication is central,

be it an experimental scenario or a theoretical model.
One important problem is the overall kinetic

behaviour of template replication. Information in
biological systems is stored in, and is propagated by,

template molecules capable of making copies of
themselves. Owing to the product inhibition by the

new complementary templates in a naked gene
replication process, the kinetics have been shown to

be parabolic (Bag & von Kiedrowski 1996), i.e.

subexponential, and prevent Darwinian selection.
Since exponential growth is known to be a key feature

of Darwinian selection, where the fittest variants win
over the less-fit ones, the lack of exponential growth for

reproducers would be an obstacle to their success. In
spite of our intuition, which might suggest that

selection at the cellular level should become slower

than parabolic when based on parabolic template
dynamics, here we show quite the opposite: the

selection process in catalytically coupled assemblies of
protocells is Darwinian, with coordinated exponential

growth of all involved components and thus survival of
the fittest, independent of the template growth law. The

present work investigates a class of minimal catalyti-
cally coupled protocell models and is centred on the
This journal is q 2007 The Royal Society
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Table 1. Growth laws.
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relation between the internal dynamics and the global
population-level dynamics of protocells.
growth law _xZkxp; pO0
general

solution xðtÞZ
x

1Kp
0 C ð1KpÞkt

� �1=1Kp
for ps1

xðtÞZx0ekt for pZ1

(

particular
cases

pZ0: constant
pZ1/2: pure parabolic
pZ1: exponential
pZ2: pure hyperbolic
2. BASIC GROWTH DYNAMICS
From simple models of prebiotic evolution, a few basic
growth laws resulted as being fundamental for replica-
tor’s dynamics. These, in turn, have remarkable
implications for the selection among competing
processes (Eigen & Schuster 1979; Szathmáry 1991).
The primary replication process, the fission of the
progenitor, gives rise to exponential growth in the
absence of ecological constraints (Malthusian growth).
Here, the growth rate of the population is proportional
to the population itself, i.e. _xZkx, where ‘$’ implies a
time derivative. When two exponentially growing
populations compete, the one with the greater growth
rate completely excludes its competitor, a case referred
to as ‘the survival of the fittest’. Additionally, two other
simple non-Malthusian processes are often considered
in the literature: a faster and a slower growth than the
exponential one (table 1). While the former, generally
referred to as hyperbolic growth ( _xZkxp, pO1), is
associated with models of mutualistic replicators
(hypercycles; Eigen 1971), the latter (parabolic
growth: _xZkxp, p!1) is typical for experimental
template-directed replication ( pZ0.5; von Kiedrowski
1986). Note that constant growth is also possible in this
framework ( pZ0).

One can note that for two coexistent parabolically
growing populations1, ‘the survival of everybody’ is
guaranteed, while for two hyperbolically2 growing
populations, the one with the highest initial concen-
tration times the growth rate (i.e. x0k) will outgrow
the other (Eigen & Schuster 1979; Szathmáry &
Maynard-Smith 1997). While referred to as ‘the
survival of the common’ case, it is not guaranteed that
the most common hyperbolically growing population
will always invade when rare. Which one wins is
determined by the ratio between initial populations
(initial conditions), on one hand, and the fitness
constants (reaction constants), on the other hand
(consider the case pZ2 in table 1). Although Darwinian
evolution, i.e. survival of the fittest, is possible for the
hyperbolic case, the clearest example of Darwinian
evolution is provided by exponential growth.
3. TEMPLATE-DIRECTED REPLICATION
Among all systems with auto-catalytic synthesis of their
constituent molecules, the most relevant to the origin of
life is the one based on non-enzymatic template-
directed replication (Orgel 1992). In the last two
decades, various experimental works have been dedi-
cated to the in-depth study of such simple systems with
emphasis on artificial ‘self-replication’ (Robertson et al.
2000). Several research groups were able to experimen-
tally demonstrate a sigmoidal time evolution of template
concentration (von Kiedrowski et al. 1991; Lee et al.
1996). Such behaviour is a consequence of the
exponential growth of the product (i.e. template) in
the presence of a limited number of available building
blocks (limited resources). Von Kiedrowski and co-
workers were the first to obtain self-complementary
artificial replication (von Kiedrowski 1986) and showed
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a growth order pZ1/2 (parabolic growth) instead of
pZ1 (exponential growth) as expected from a true auto-
catalytic replication. Parabolic growth has been proved
to be the result of product inhibition that decreases the
efficiency of the auto-catalytic cycle (Bag & von
Kiedrowski 1996).

As described in §2, the auto-catalytic growth order is
of great importance in establishing the long-term
evolution of the system through selection processes.
Interestingly enough, Rocheleau et al. (2007) proved
that in spite of an internal parabolic growth of template
concentration in a simple model of template–container
coupling, the total template concentration considered
over the entire population of protocells turns out to be
exponential. More surprisingly, the catalytically
coupled protocell containers follow an exponential
growth with the same exponent as the templates’
growth. This result is significant as a proof of regulated
template–container interdependence, ensuring a cor-
related growth of the system’s parts. This work thus
demonstrates that a stoichiometric coupling between
the protocell’s subsystems is not compulsory, as
suggested by others (Gánti 2003) and that cross-
regulation of the subsystems occurs naturally as a
consequence of catalysis. In the present work, we
shall demonstrate that this result holds for any type of
local growth dynamics of templates in the model of
Rocheleau et al. (2007), as well as in extended
and more realistic versions that include metabolic
reaction steps.
4. TEMPLATE–CONTAINER COUPLING
In the work by Rocheleau et al. (2007), the template–
container system was effectively defined by the
chemical reactions

aOCTs $$%
kT

Td; ð4:1aÞ

Td4
Kt

2Ts; ð4:1bÞ

pLCTd $$%
kL

Td CL; ð4:1cÞ

where Ts, Td and L represent the single-strand
template, the double-strand template and the lipid
molecules, respectively, while O and pL are, respect-
ively, the single-stranded template and lipid precursors
whose concentrations are kept constant, with a

denoting the necessary stoichiometry for the tem-
plate-directed replication. The graphical represen-
tation of the chemical reactions appears in figure 1.
The hybridization and the dehybridization are
considered in equilibrium (reaction (4.1b)) as long as
the template replication (reaction (4.1a)) is a
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Figure 1. A simple model of protocell replication involving template-catalysed formation of lipid molecules. This is the simplest
scenario of coupled template–container organization. The circular features representing the individual protocells consist of a
micellar container built of lipid molecules (L) among which are embedded the templates (T: sZsingle stranded, dZdouble
stranded), the lipid precursors ( pL) and the resource template oligomers (O). The ‘k’s are the rate constants.
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significantly slower process in comparison. The former
condition leads to the equilibrium constant KtZ[Ts]

2/
[Td], where the brackets denote concentration
(molarity). As expected from experimental work,
when dehybridization is much slower than hybrid-
ization (i.e. product inhibition), one has Kt/1 since
[Td][[Ts].

Rocheleau et al. (2007) define the total single-strand
concentration as [Tl]h2[Td]C[Ts] and consider that
the protocells grow by the intake of nutrients (i.e.
precursors) and divide when a predefined critical size is
reached. The existence of a critical size for micellar
structures is supported by both experiments and theory
(Bachman et al. 1992; Mavelli 2004), even if the
growth–division process still lacks a complete experi-
mental and theoretical proof. Additionally, the aggre-
gates are envisioned as composed mainly of lipids, with
the other molecules existing at very low concentrations
diluted in the local lipid solution.
(a) Constant volume

By applying the standard chemical kinetics to the
reactions (4.1a)–(4.1c), one finds that the local total
template and lipid concentrations evolve according to

½ _T l�ZCT½Tl�
p with pZ 1=2; ð4:2aÞ

½ _L�ZCL½Tl�; ð4:2bÞ

where CT hkTf ð½O�Þ
ffiffiffiffiffiffiffiffiffiffi
Kt=2

p
for pZ1/2, and CLh

kL[pL]/2 are constants3 and ‘$’ implies a time
derivative (see electronic supplementary material A).
The term f([O]) is a function depending on oligomer
stoichiometry (the number of oligomers) needed for
each template replication. As we consider that the
oligomers are present in abundance and thus the
Phil. Trans. R. Soc. B (2007)
oligomer concentration can be approximated to
constant, this function term is also a constant. Local
refers to the concentration within the container itself.
Considering a general case of equation (4.2a), the local
dynamics of the templates is parabolic if p!1,
exponential if pZ1 and hyperbolic if pO1; while, by
equation (4.2b), the lipid local concentration rate
remains proportional to the template concentration.
We shall demonstrate in this section that independent
of the value of p, the global dynamics will be
exponential in form although the doubling time or
the cycle period will depend on the value of p.

Equations (4.2a) and (4.2b) implicitly assume that
the concentration dilution due to the increase of an
individual protocell’s volume in the growth–division
process is negligible. In other words, the protocell’s
volume (Vl) can be approximated as a constant and
equal to a time-averaged protocell’s volume (VA, a true
constant). In the first approximation, the concen-
trations are calculated with respect to the latter volume
(i.e. [X ]ZNX /VA , where NX is the number of
molecules of type X ).

(b) Growing–dividing protocells

In a second approximation, Rocheleau et al. (2007)
consider that the local lipid aggregate volume Vl grows
only from the addition of lipid molecules to the
aggregate, i.e. the contribution of templates, precursors
and fluid to the aggregate volume was neglected. Note
that in the case of a micelle, as considered here, both
the volume and the surface area (S ) of the protocell are
proportional to the number of lipids (VlfSfNL).
That is, as the micelles have no hollow interior, the
protocell’s volume equals the number of lipids
multiplying the volume of a lipid. In this case, the
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surface equals the number of lipids multiplying pR2,
with R being the radius of a lipid, and thus the surface
too is proportional with the number of lipids. In the
case of a vesicle, the hollow spherical form introduces a
nonlinear dependence between volume and surface
(VlfS 3/2; SfNL)4.

In the Rocheleau approach, once the dilution effect
is taken into account, the concentration of the
metabolites must be referred to the time-dependent
volume Vl instead of VA and thus equation (4.2a) must
be replaced by

d½Tl�

dt
Z

d½Tl�

dt Vl

K
½Tl�

Vl

dVl

dt NT

ZCT½Tl�
pK

½Tl�

Vl

dVl

dt
;

����
����

ð4:3Þ

where the first term on the r.h.s. is calculated at
constant volume (VlZVA), while the second at a
constant number of template molecules (see electronic
supplementary material B). As the lipid aggregates
have a characteristic scale, there exists an average
number m0 of lipids per aggregate volume VA.
Theoretically and experimentally, the protocells are
expected to grow and become unstable when reaching a
critical size, with the instability being resolved by the
subsequent division into two daughters.
(c) Global concentrations

In the context of growing–dividing protocells in a tank
reactor, the global concentration of metabolites denotes
their concentration calculated using the volume of the
tank containing the aggregates (figure 1). The global
concentration of templates, [Tg], is thus obtained in
Rocheleau et al. (2007) as being

½Tg�Z ½Tl�½A�Vlz½Tl�½A�VA; ð4:4Þ

where [A] is the concentration of aggregates or
protocells (number of aggregates per total tank volume),
with the local concentration still referring to the intra-
aggregate metabolite concentration.

The growth rate of the aggregate concentration,
d[A]/dt, depends on both the aggregate concentration,
[A], and the growth of the local volume of the aggregates,
dVl/dt. The former is a consequence of the division
process, since the greater the number of aggregates that
exist, the more will be produced in a finite time-interval,
while the latter term is an indicator of the doubling time
as it illustrates how fast a single aggregate (and implicitly
the number of aggregates) grows through the addition of
lipids (see also electronic supplementary material B)

d½A�

dt
Z ½A�

dðNL=m0Þ

dt
Z ½A�

1

VA

dVl

dt
: ð4:5Þ

Taking the derivative of equation (4.4) and using
equations (4.4) and (4.5) (see the electronic supple-
mentary material) and VlzVA, the global dynamics are
given by

d½Tg�

dt
ZgT½Tg�

½Tg�

½A�

� �pK1

; ð4:6Þ

d½A�

dt
ZgA½Tg�; ð4:7Þ

where gT hCT=V
pK1

A and gAhCL/m0. See electronic
supplementary material B for the detailed derivation of
these equations.
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Dividing equation (4.6) by equation (4.7), one
finds that

d½Tg�

d½A�
Z

gT

gA

½Tg�

½A�

� �pK1

; ð4:8Þ

which when solved leads to

½A�Z
gA

gT

½Tg�
2Kp CC0

� �1=ð2KpÞ

; ps2; ð4:9aÞ

½A�ZC1½Tg�
gA=gT ; pZ 2: ð4:9bÞ

The constants C0 and C1 are defined as C0 h ½A�2Kp
0

KðgA=gTÞ½Tg�
2Kp
0 and C1 h ½A�0=½Tg�

ðgA=gTÞ
0 , where [A]0

and [Tg]0 denote the aggregate and the template
concentrations at tZ0, respectively. From its
definition, gAO0 and, as [Tg ] must be positive, thus
d[A]/dt is always positive (see equation (4.7)). There-
fore, the concentration [A] increases in time, indepen-
dent of the sign of constant C0. However, the general
condition for C0O0 is

ð2KpÞln VA

½Tg�0

½A�0

� �
! ln a with ah

CTm0

CLVA

: ð4:10Þ

Equation (4.3) can now be rewritten as

d½Tg�

dt
ZgT

gA

gT

� �ð1KpÞ=ð2KpÞ

½Tg� 1C
gT

gA

C0

½Tg�
2Kp

� �ð1KpÞ=ð2KpÞ

;

p!2;

ð4:11aÞ
d½Tg�

dt
Z c½Tg�

2KðgA=gTÞ; pZ 2; ð4:11bÞ

d½Tg�

dt
ZgTC

ð1KpÞ=ð2KpÞ
0 ½Tg�

p 1C
gA

gT

1

C0½Tg�
pK2

� �ð1KpÞ=ð2KpÞ

;

pO2;

ð4:11cÞ

where chgT/C1. The complex form of these equations
does not allow a direct integration and thus requires the
consideration of an approximated solution.

Let us remember that for any exponent b and any real
numberx satisfying jxj!1, one can use the approximation

ð1CxÞb Z 1CbxC
bðbK1Þ

2!
x2 C/ z1Cbx;

ð4:12Þ

with the last approximation being valid for jxj/1.
As [Tg] increases with time, one can consider that

after a sufficiently long time, the second term in the
brackets of equations (4.11a) and (4.11c) reaches
values much smaller than unity and thus the expansion
(4.12) can be applied, leading to

d½Tg�

dt
za½Tg�Cb½Tg�

pK1; p!2; ð4:13aÞ

d½Tg�

dt
zg½Tg�

2 Ch½Tg�
p; pO2; ð4:13bÞ

whereahgT(gA/gT)(1Kp)/(2Kp), bhgTC0((1Kp)/(2Kp))
(gA/gT)(K1/(2Kp)), ghgAC

ðK1=ð2KpÞÞ
0 ð1KpÞ=ð2KpÞ and

hhgTC
ðð1KpÞ=ð2KpÞÞ
0 . We note that if C0O0 for any p,

then the constants a, g and h are always positive, with the
exception of b, which is negative for p2(1, 2).
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Before proceeding, we remark that there is no known
real replication process that achieves a growth order
pO2. The most efficient replication process known so
far involves the hypercycle’s dynamics and thus pZ2.
For this reason, we shall concentrate in the following on
the cases p!2.

One can recognize equation (4.13a) as being a
Bernoulli equation, whose general solution is known
and thus the global concentration of templates for p%2
is found to be

½Tg�t Z
fexp½ð2KpÞatCD0�Kbg1=ð2KpÞ

a1=ð2KpÞ
; p!2;

ð4:14aÞ

½Tg�t Z ðD1tCD2Þ
1=ððgA=gTÞK1Þ; gAsgT; pZ 2;

ð4:14bÞ

½Tg�t Z ½Tg�ð0Þe
ct; gA ZgT; pZ 2; ð4:14cÞ

where D0Z ln½bCa½Tg�
2Kp
0 �, D1hc((gA/gT)K1) and

D2 h ½Tg�
ðgA=gTÞK1
0 . It can be seen that the case pZ1/2

coincides with eqn (30) from Rocheleau et al. (2007).
Also, similar to the reasoning from Rocheleau et al.
(2007), for the case p!2, the global template concen-
tration evolves at large times as [Tg]tzexp(at) (see also
their eqn (21)), with the subscript t denoting the time
dependence of the global concentrations. Thus, for p!2
and for pZ2, gTZgA, the functional forms of [A]t and
[Tg]t after sufficiently long time differ by a constant
(equations (4.9a) and (4.9b)), implying that, to a leading
order, the coupled template and aggregate growths are
both exponential with the same exponent.

More exactly, considering that the constant C0

becomes negligible when time and concentration get
to be large, the ratio of the templates and aggregates
concentration (from equations (4.9a) and (4.9b))
behaves as

½Tg�t

½A�t
$$%
t/N gT

gA

� �1=ð2KpÞ

; ð4:15Þ

namely the template to aggregate ratio becomes a
constant. Next, we remark that as [Tl]h2[Td]C[Ts]
with [Td][[Ts], a viable aggregate must have at least
one single template or, in a looser version, one double
template, otherwise its replication is impossible.
Hence, an implicit requirement for a viable system is
[Tg]/[A]R1 or

gA%gT; ð4:16Þ

for any system characterized by p!2. An example of a
simulation that follows equations (4.6) and (4.7) is given
infigure 2. We have considered the followingvalues:m0Z
1000, kLZ25 MsK1, kTZ10 MsK1, [pL]Z10K3 M,
VAZ5!10K19 l, KtVAZ1!10K3 mol, f(O)Za[O]Z
2!10K4 M, with aZ2 being the number of oligomers
necessary in the replication of Ts. The initial conditions
are [Tg]0Z10K6 M and [A]0Z10K8 M.

However, the case pZ2, gTsgA does not present
coordinated growth, but instead the aggregate concen-
tration grows faster than the template concentration.
For this case, using equations (4.9a) and (4.14b), one
Phil. Trans. R. Soc. B (2007)
obtains

½Tg�t

½A�t
Z

1

C1

ðD1tCD2Þ
1=ðgA=gTK1Þ

� �1KgA=gT ; ð4:17Þ

½Tg�t

½A�t
Z

1

C1ðD1tCD2Þ
$$%
t/N

0; ð4:18Þ

confirming a faster growth of the aggregate concen-
tration with respect to the template concentration. The
physical interpretation of this result is that, eventually,
there would exist many aggregates that contain no
templates at all.

Finally, for the case pO2, one can note that at large
global template concentrations, equation (4.13b) can
be approximated further as

d½Tg�

dt
zh½Tg�

p; ð4:19Þ

and thus the global template concentration follows the
local intra-aggregate growth law, with order p. As such,
the global growth law is no longer exponential.
Nonetheless, as previously discussed, after a sufficiently
long time, equation (4.9a) reveals that [A]t and [Tg]t
differ by a constant. Thus, for the cases pO2, the
resultant coordinated growth of the population of
protocells is characterized by the same exponent as
the local intra-aggregate template growth.

Once again, we stress the fact that no known real
growth process has an order pO2 and, in fact, all
theoretical and experimental replication processes
present growth orders inferior to the pure hyperbolic
case ( pZ2). We consider as our most important result
the derivation that for the real world ( p!2), the
coupling of the template with the container in a
protocellular ensemble results in a coordinated global
exponential growth at large times.
5. THREE-ELEMENT DYNAMICS
A higher level of chemical complexity can be introduced
by considering additional reactions for the template
replication. This seems a reasonable assumption since
experimental template replication requires the acti-
vation of the precursors subsequently employed in the
replication process. In this sense, we shall consider
the introduction of oligomer precursors, pO into the
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kOZ5 MsK1, kTZ15 MsK1 and the rest of parameters
having the values employed in figure 2. The values of the
final constants are g0Z2.5!10K4, gTZ2.2!10K6 and gAZ
1.25!10K5. (a) [A], solid line; [Tg], dashed line and [Og],
dotted line. (b) The ratio [Tg]/[A], dashed line; and [Og]/[A],
dotted line.
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dynamics of the two-element system presented above.
The chemical reactions considered are

pOCTd $$%
kO

OCTd; ð5:1aÞ

aOCTs $$%
kT

Td; ð5:1bÞ

Td4
Kt

2Ts; ð5:1cÞ

pLCTd $$%
kL

LCTd; ð5:1dÞ

where the notations from Rocheleau et al. (2007) have
been used: Ts, single-stranded template; Td, double-
stranded template; pO and pL, the oligomer and lipid
precursors, respectively. A graphical representation of
this protocell’s chemistry is shown in figure 3. The
steady state is considered, that is the precursors’
concentration is taken as constant. In this case, one
can note that the double-stranded template catalyses
both lipid and oligomer formation. As in the previous
section, we use the total local template concentration
[Tl]h2[Td]C[Ts]z2[Td] as the template variable and
take into account the effect of volume change with time.
Considering the kinetics of this system, the concen-
tration of templates and oligomers can be respectively
written as

½ _T l�ZakT½Ol�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kt½Tl�

2

r
K

d½A�

dt

½Tl�

½A�
; ð5:2aÞ

½ _Ol�Z kO½pO�
½Tl�

2
K kT½Ol�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kt½Tl�

2

r
K

d½A�

dt

½Ol�

½A�
:

ð5:2bÞ

As in §4, the transition from local to global is based on
the expressions [Tg]Z[Tl][A]VA and [Og]Z[Ol][A]VA.
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Thus, the final system of coupled equations is

½ _T g�ZgT½Og�

ffiffiffiffiffiffiffiffiffi
½Tg�

½A�

s
; ð5:3aÞ

½ _Og�ZgO½Tg�KgT½Og�

ffiffiffiffiffiffiffiffiffi
½Tg�

½A�

s
; ð5:3bÞ

½ _A�ZgA½Tg�; ð5:3cÞ

with

gO h
kO½pO�

2
; gT hakT

ffiffiffiffiffiffiffiffiffiffi
Kt

2VA

s
;

gA h
kL½pL�

2m0

;

ð5:4Þ

where m0 is again the average number of lipid molecules
per aggregate and KtZ[Ts]

2/[Td] resulting from the
equilibrium condition of reaction (5.1c). Figure 4
illustrates an example of a solution of equations
(5.3a)–(5.3c). The behaviour appears to be representa-
tive of the generic dynamics of the entire range of
parameters investigated. Below, we shall demonstrate
that this case is also characterized by coordinated
exponential growth after a sufficiently long time, with
the same exponent for the oligomer, template and
aggregate concentration.
(a) Linear stability analysis

The nonlinear system from equations (5.3a)–(5.3c) has
([Og], [Tg], [A])Z([Og]0, 0, [A]0) as a unique fixed
point that results to be unstable under perturbation,
implying that these variables tend to infinity when time
tends to infinity. In other words, a protocell whose
chemistry is given by equations (5.1a)–(5.1d ), but
containing no template molecules, will not grow. On
the contrary, a protocell containing template molecules
will grow and replicate, producing the increase in the
global metabolites’ concentrations. Employing a
change of variables, we shall prove below that the
global variables follow an exponential growth.
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As we start with at least one aggregate and the
protocells’ death is not contemplated, we conclude that
the following variables can be well defined: xh[Tg]/[A]
and yh[Og]/[A]. Using these variables, equations
(5.3a)–(5.3c) reduce to

dx

dt
Z

½ _T g�½A�K½Tg�½ _A�

½A�2
ZgTyx

1=2KgAx
2; ð5:5aÞ

dy

dt
Z

½ _Og�½A�K½Og�½ _A�

½A�2
ZgOxKgTyx

1=2KgAxy:

ð5:5bÞ

We are interested in studying the dynamics of
equations (5.5a) and (5.5b) in order to infer the long-
term behaviour of equations (5.3a)–(5.3c ). In particu-
lar, we are interested in whether the ratios x and y
stabilize. For this purpose, we note that the former
system has two fixed points resulting from the
conditions _xZ0 and _yZ0: the trivial one, (x1, y1)Z
(0, y0), and a second one, (x2, y2), which is the solution
of the equations

gTyKgAx
3=2 Z 0; gOKgAxK

g2
Ax

3=2

gT

Z 0: ð5:6Þ

The trivial fixed point illustrates the fact that no
evolution is possible in the absence of templates. Thus, we
are only interested in the non-trivial case when the initial
template concentration is non-zero, i.e. we shall con-
centrate on the characteristics of the fixed point (x2, y2).
In order to determine its stability, the Jacobi matrix has to
be calculated and evaluated at the fixed point

J2 h

v _x

vx

v _x

vy

v _y

vx

v _y

vy

0
BBBB@

1
CCCCA

ðx2 ; y2Þ

Z

K
3

2
gAx2 gTx

1=2
2

1

2
gAx2 KgTx

1=2
2 KgAx2

0
BBBB@

1
CCCCA;

where equation (5.6) has been employed to simplify the
Jacobi matrix, that is we used y2Zx3=2

2 gA=gT. The
eigenvalues l, which provide the stability information
of (x2, y2), result from the characteristic equation
det( J2KlI )Z0, where I is the identity matrix

l2 CalCbZ 0; ð5:7Þ

ahgTx
1=2
2 C

5

2
gAx2; bhgTgAx

3=2
2 C

3

2
g2

Ax
2
2; ð5:8Þ

Dha2K4bZg2
Tx2 C

g2
Ax

2
2

4
CgTgAx

3=2
2 O0: ð5:9Þ

It can be seen that since a, bO0 andDO0, the eigenvalues
are real and negative (Routh–Hurwitz criterion), leading
to the conclusion that the fixed point (x2, y2) is stable and
implicitly that (x1, y1) is unstable.
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Returning to equations (5.3a)–(5.3c) and to the
definition of x and y, one can now see that after a
sufficiently long time, the following approximations
hold

½Tg�

½A�
$$%
t/N

x2; ð5:10aÞ

½Og�

½A�
$$%
t/N

y2; ð5:10bÞ

which translate into ½ _A�zgAx2½A� with the use of
equation (5.3c) and thus into an exponential increase of
the aggregate concentration. Since [A] grows expo-
nentially, and after a sufficiently long time, [Tg], [Og]
and [A] differ by a constant, all the variables grow
exponentially with the same exponent. We emphasize
once more that this behaviour is satisfied only after a
sufficiently long time.

Additionally, one can employ equations (5.6) to
show that the second fixed point satisfies the relation:
x2Cy2Zg0/gA (figure 4).
6. FOUR-ELEMENT DYNAMICS
Here, we consider a more complete and realistic
protocellular system incorporating an explicit metab-
olism driven by a light-activated sensitizer molecule
(Rasmussen et al. 2003). The set of reactions is

ZCpOCTd $$%
kO

OCTd CZ; ð6:1aÞ

aOCTs $$%
kT

Td; ð6:1bÞ

Td4
Kt

2Ts; ð6:1cÞ

ZCpLCTd $$%
kL

Td CLCZ; ð6:1dÞ

ZCpZCTd $$%
kZ

2ZCTd; ð6:1eÞ

where the added components are the sensitizer and its
precursor, Z and pZ, respectively. The sensitizer
absorbs light energy to drive the conversion of the
precursor molecules to their products (figure 5).

Again, the standard kinetic differential equations
associated with the global variables of this chemical
network are easily recovered:

d½Tg�

dt
ZgT½Og�

ffiffiffiffiffiffiffiffiffi
½Tg�

½A�

s
; ð6:2aÞ

d½Og�

dt
ZgO½Zg�

½Tg�

½A�
KgT½Og�

ffiffiffiffiffiffiffiffiffi
½Tg�

½A�

s
; ð6:2bÞ

d½Zg�

dt
ZgZ½Zg�

½Tg�

½A�
; ð6:2cÞ

d½A�

dt
ZgA½Zg�

½Tg�

½A�
; ð6:2dÞ

where the constants are defined as

gO h
kO½pO�

2VA

; gT hakT

ffiffiffiffiffiffiffiffiffiffi
Kt

2VA

s
;

gZ h
kZ½pZ�

2VA

; gA h
kL½pL�

2m0VA

:
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Figure 5. A full protocell model with an explicit metabolism,
container and informational molecules. All transformations
are coupled through template replication. The molecule Z
indicates a sensitizer which is able to take energy from an
external (not indicated) source of energy (e.g. light). For key
see figure 1.
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The system from equations (6.2a)–(6.2d ) can be
simplified through the change of variable: xh[Tg]/[A],
yh[Og]/[A], zh[Zg]/[A], variables that are well defined
as [A]s0 following the reasoning employed in §5. With
this change of variables, the system becomes

dx

dt
ZgTy

ffiffiffi
x

p
KgAx

2z; ð6:3aÞ

dy

dt
Zg0xzKgTy

ffiffiffi
x

p
KgAxyz; ð6:3bÞ

dz

dt
ZgZxzKgAxz

2: ð6:3cÞ

Similar to the study of the three-element system, we
are interested again in the non-trivial fixed point of
equations (6.3a)–(6.3c), considering that the variables x,
y and z can take only positive values. The trivial dynamics
(no growth) is characterized by x0Z0 and/or z0Z0. The
non-trivial fixed point of equations (6.3a)–(6.3c) results
from _xZ _yZ _zZ0 with xs0 and zs0 and it is

ðx2; y2; z2ÞZ ~x;
gZ

gT

~x
ffiffiffi
~x

p
;
gZ

gA

� �
; ð6:4Þ

with ~x
ffiffiffi
~x

p
C

gT

gZ

~xK
gOgT

gAgZ

Z 0; ð6:5Þ

with the subscript O denoting again the initial conditions,
while ~x is the only positive root of equation (6.5), a
conclusion drawn from applying the Routh–Hurwitz
criterion to this third-order equation in

ffiffiffi
x

p
. We are not

interested in the exact form of ~x, but rather in pointing
out its existence and uniqueness in the positive values
domain, both features resulting from the Routh–Hurwitz
criterion. Through equation (6.2c), this existence leads to
½ _Zg� $$%

t/N
gZ ~x½Zg�, implying an exponential growth of the

sensitizer concentration after a sufficiently long time.
This result allows us to conclude, with the use of equation
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(6.4), that the temporal evolution of all metabolites’
concentration is exponential, of the type f exp(at), with
aZgZ ~x.
7. DISCUSSION
There is ongoing debate in the scientific community on
the issue of stoichiometric versus catalytic coupling as a
necessary dynamics to ensure balanced parallel growth
and correct replication of the constituent systems of
such a protocell: metabolism, genome and membrane.
In the past 20 years, significant experimental efforts
have been dedicated to the optimization of self-
replicating molecules in order to achieve efficient
copying (Paul & Joyce 2004). More precisely, several
chemical subsystems must be optimized in order to
provide an overall self-replicating system that exhibits
efficient auto-catalytic behaviour. The efficiency is
directly reflected in the degree of catalysis or the
order of reaction, where a value of 1 (exponential
growth, recall table 1) is believed to provide the
appropriate basis of Darwinian selection: survival of
the fittest (Szathmáry & Maynard-Smith 1997).

From the modelling point of view, Gánti’s chemoton
model (Gánti 1975) is a protocell model incorporating
all three necessary subsystems in a very tightly coupled
and synchronized interdependence (Mavelli & Ruiz--
Mirazo 2007). This model is the basic example of cyclic
stoichimetric coupling as the main coordinating factor.
In the present work, we extend a catalytically coupled
protocell model (Rocheleau et al. 2007) and demon-
strate that the catalytic coupling of the subsystems is
sufficient to lead the whole system into balanced
exponential growth. In other words, the metabolism–
template–container feedback by itself ensures an over-
all exponential growth of the system in spite of
subexponential or supraexponential local growth of its
component subsystems. We believe that this result may
have implications for prebiotic and origin of life
scenarios, as it is a robust means of providing
exponential growth of protocells and thus early
Darwinian selection.

In tight connection with the present work, we
mention the work of Serra et al. (2007). It is also
inspired by the Los Alamos Bug and the results of the
detailed analytic study therein totally support the
coordinated growth of a general class of catalytically
coupled protocellular systems.

This work is supported in part by the Los Alamos National
Laboratory LDRD-DR grant on ‘Protocell Assembly’ (PAs),
by the European Commission’s 6th Framework project on
‘Programmable Artificial Cell Evolution’ (PACE) and by
FIS2004-05422. We thank Gil Benko, Jerzy Maselko and
CSL, PACE and PAs colleagues for useful discussions.
ENDNOTES
1Populations characterized by the same growing exponent.
2For the cases (1Kp)!0, there exists a time value tN at which the

bracket term in the general solution from table 1 becomes zero and

due to the negative (1Kp) exponent, x(tN) is infinite. Thus, the range

of applicability is 0%t%tN.
3The value of CT clearly depends on the value of p. As concentrations

have a dimension of 1/V, VZvolume, from equation (4.2a), CT must

have dimensions of 1/(V pK1t). As Kt has dimensions of 1/V and kT

has dimensions of (1/Vt), we note that the definition of CT following
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equation (4.2a) is correct only for pZ1/2 case, but needs to be

modified for ps12.
4If all the vesicular protocell’s chemistry takes place within the

container bilayer itself, then one would still have VlfSfNL.
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