Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1982 Jun;43(6):1473–1480. doi: 10.1128/aem.43.6.1473-1480.1982

Formation of Crystalline δ-Endotoxin or Poly-β-Hydroxybutyric Acid Granules by Asporogenous Mutants of Bacillus thuringiensis

Yoshiharu Wakisaka 1, Emiko Masaki 1, Yoji Nishimoto 1
PMCID: PMC244255  PMID: 16346040

Abstract

Parental strains and asporogenous mutants of Bacillus thuringiensis subspp. kurstaki and aizawai produced high yields of δ-endotoxin on M medium, which contained 330 μg of potassium per ml, but not on ST and ST-a media, each of which contained only 11 μg of potassium per ml. On ST and ST-a media, refractile granules were formed instead. These granules had no insecticidal activity against silkworms and were isolated and identified as poly-β-hydroxybutyric acid. Supplementation of the potassium-deficient ST-a medium with 0.1% KH2PO4 (3.7 mM) led to the formation of crystalline δ-endotoxin. The replacement of KH2PO4 with equimolar amounts of KCl, KNO3, and potassium acetate or an equivalent amount of K2SO4 had a similar effect, whereas the addition of an equimolar amount of NaH2PO4 or NH4H2PO4 did not cause the endotoxin to form. An asporogenous mutant, B. thuringiensis subsp. kurstaki strain 290-1, produced δ-endotoxin on ST-a medium supplemented with 3 mM or more potassium but formed only poly-β-hydroxybutyric acid granules on the media containing ≤1 mM potassium. These results clearly indicate that a certain concentration of potassium is essential for the fermentative production of δ-endotoxin by these isolates of B. thuringiensis. Manganese could not be substituted for potassium. Phosphate ions stimulated poly-β-hydroxybutyric acid formation by strain 290-1. The sporulation of B. thuringiensis and several other Bacillus strains was suppressed on the potassium-deficient ST medium. This suggests that potassium plays an essential role not only in Bacillus cell growth and δ-endotoxin formation but also in sporulation.

Full text

PDF
1473

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechtel D. B., Bulla L. A., Jr Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J Bacteriol. 1976 Sep;127(3):1472–1481. doi: 10.1128/jb.127.3.1472-1481.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DOUDOROFF M., STANIER R. Y. Role of poly-beta-hydroxybutyric acid in the assimilation of organic carbon by bacteria. Nature. 1959 May 23;183(4673):1440–1442. doi: 10.1038/1831440a0. [DOI] [PubMed] [Google Scholar]
  3. Dulmage H. T. Production of -endotoxin by eighteen isolates of Bacillus thuringiensis, serotype 3, in 3 fermentation media. J Invertebr Pathol. 1971 Nov;18(3):353–358. doi: 10.1016/0022-2011(71)90037-1. [DOI] [PubMed] [Google Scholar]
  4. Dulmage H. T. Production of the spore-delta-endotoxin complex by variants of bacillus thuringiensis in two fermentation media. J Invertebr Pathol. 1970 Nov;16(3):385–389. doi: 10.1016/0022-2011(70)90157-6. [DOI] [PubMed] [Google Scholar]
  5. FORSYTH W. G., HAYWARD A. C., ROBERTS J. B. Occurrence of poly-beta-hydroxybutyric acid in aerobic gram-negative bacteria. Nature. 1958 Sep 20;182(4638):800–801. doi: 10.1038/182800a0. [DOI] [PubMed] [Google Scholar]
  6. González J. M., Jr, Dulmage H. T., Carlton B. C. Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid. 1981 May;5(3):352–365. doi: 10.1016/0147-619x(81)90010-x. [DOI] [PubMed] [Google Scholar]
  7. KALLIO R. E., HARRINGTON A. A. Sudanophilic granules and lipid of Pseudomonas methanica. J Bacteriol. 1960 Sep;80:321–324. doi: 10.1128/jb.80.3.321-324.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LUNDGREN D. G., ALPER R., SCHNAITMAN C., MARCHESSAULT R. H. CHARACTERIZATION OF POLY-BETA-HYDROXYBUTYRATE EXTRACTED FROM DIFFERENT BACTERIA. J Bacteriol. 1965 Jan;89:245–251. doi: 10.1128/jb.89.1.245-251.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LUNDGREN D. G., PFISTER R. M., MERRICK J. M. STRUCTURE OF POLY-BETA-HYDROXYBUTYRIC ACID GRANULES. J Gen Microbiol. 1964 Mar;34:441–446. doi: 10.1099/00221287-34-3-441. [DOI] [PubMed] [Google Scholar]
  10. Lecadet M. M., Dedonder R. Biogenesis of the crystalline inclusion of Bacillus thuringiensis during sporulation. Eur J Biochem. 1971 Nov 11;23(2):282–294. doi: 10.1111/j.1432-1033.1971.tb01620.x. [DOI] [PubMed] [Google Scholar]
  11. MARINETTI G. V., ALBRECHT M., FORD T., STOTZ E. Analysis of human plasma phosphatides by paper chromatography. Biochim Biophys Acta. 1959 Nov;36:4–13. doi: 10.1016/0006-3002(59)90062-9. [DOI] [PubMed] [Google Scholar]
  12. MONRO R. E. Protein turnover and the formation of protein inclusions during sporulation of Bacillus thuringiensis. Biochem J. 1961 Nov;81:225–232. doi: 10.1042/bj0810225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nickerson K. W., Bulla L. A., Jr Physiology of sporeforming bacteria associated with insects: minimal nutritional requirements for growth, sporulation, and parasporal crystal formation of Bacillus thuringiensis. Appl Microbiol. 1974 Jul;28(1):124–128. doi: 10.1128/am.28.1.124-128.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nishimura M. S., Nishiitsutsuji-Uwo J. Sporeless mutants of Bacillus thuringiensis. III. The process of crystal formation. Tissue Cell. 1980;12(2):233–241. doi: 10.1016/0040-8166(80)90002-6. [DOI] [PubMed] [Google Scholar]
  15. Oh Y. K., Freese E. Manganese requirement of phosphoglycerate phosphomutase and its consequences for growth and sporulation of Bacillus subtilis. J Bacteriol. 1976 Aug;127(2):739–746. doi: 10.1128/jb.127.2.739-746.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. ROUF M. A., STOKES J. L. Isolation and identification of the sudanophilic granules of Sphaerotilus natans. J Bacteriol. 1962 Feb;83:343–347. doi: 10.1128/jb.83.2.343-347.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rogoff M. H., Ignoffo C. M., Singer S., Gard I., Prieto A. P. Insecticidal activity of thirty-one strains of Bacillus against five insect species. J Invertebr Pathol. 1969 Sep;14(2):122–129. doi: 10.1016/0022-2011(69)90096-2. [DOI] [PubMed] [Google Scholar]
  18. SCHLEGEL H. G., GOTTSCHALK G., VON BARTHA R. Formation and utilization of poly-beta-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature. 1961 Jul 29;191:463–465. doi: 10.1038/191463a0. [DOI] [PubMed] [Google Scholar]
  19. SIERRA G., GIBBONS N. E. Production of poly-beta-hydroxybutyric acid granules in Micrococcus halodenitrificans. Can J Microbiol. 1962 Apr;8:249–253. doi: 10.1139/m62-031. [DOI] [PubMed] [Google Scholar]
  20. Somerville H. J. Formation of the parasporal inclusion of Bacillus thuringiensis. Eur J Biochem. 1971 Jan;18(2):226–237. doi: 10.1111/j.1432-1033.1971.tb01235.x. [DOI] [PubMed] [Google Scholar]
  21. Somerville H. J., Pockett H. V. An insect toxin from spores of Bacillus thuringiensis and Bacillus cereus. J Gen Microbiol. 1975 Apr;87(2):359–369. doi: 10.1099/00221287-87-2-359. [DOI] [PubMed] [Google Scholar]
  22. WEIBULL C. Characterization of the protoplasmic constituents of bacillus megaterium. J Bacteriol. 1953 Dec;66(6):696–702. doi: 10.1128/jb.66.6.696-702.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. WILLIAMSON D. H., WILKINSON J. F. The isolation and estimation of the poly-beta-hydroxybutyrate inclusions of Bacillus species. J Gen Microbiol. 1958 Aug;19(1):198–209. doi: 10.1099/00221287-19-1-198. [DOI] [PubMed] [Google Scholar]
  24. Wakisaka Y., Masaki E., Koizumi K., Nishimoto Y., Endo Y., Nishimura M. S., Nishiitsutsuji-Uwo J. Asporogenous Bacillus thuringiensis Mutant Producing High Yields of delta-Endotoxin. Appl Environ Microbiol. 1982 Jun;43(6):1498–1500. doi: 10.1128/aem.43.6.1498-1500.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. YOUNG I. E., FITZ-JAMES P. C. Chemical and morphological studies of bacterial spore formation. II. Spore and parasporal protein formation in Bacillus cereus var. alesti. J Biophys Biochem Cytol. 1959 Dec;6:483–498. doi: 10.1083/jcb.6.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yousten A. A., Rogoff M. H. Metabolism of Bacillus thuringiensis in relation to spore and crystal formation. J Bacteriol. 1969 Dec;100(3):1229–1236. doi: 10.1128/jb.100.3.1229-1236.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES