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BRIEF DEFINITIVE REPORT

    Platelet activation and aggregation at sites of ves-
sel wall injury is crucial to prevent posttraumatic 
blood loss, but it also causes precipitate diseases 
such as myocardial infarction and stroke, which 
are still leading causes of death and disability in 
industrialized countries ( 1 ). Inhibition of platelet 
function is an important strategy for the preven-
tion and treatment of myocardial infarction ( 2 ) 
and, possibly, stroke ( 2, 3 ). Platelet activation is 
triggered by subendothelial collagens, throm-
boxane A 2  (TxA 2 ) and ADP released from acti-
vated platelets, and thrombin generated by the 
coagulation cascade ( 4 ). Although these agonists 
trigger diff erent signaling pathways, all activate 
phospholipase Cs (PLCs), leading to the produc-
tion of diacylglycerol (DAG) and inositol 1,4,5-

triphosphate (IP 3 ). IP 3  induces the release of Ca 2+  
from the sarcoplasmatic reticulum (SR), which is 
thought to trigger the infl ux of extracellular Ca 2+  
by a mechanism known as store-operated Ca 2+  
entry (SOCE) ( 5, 6 ). In addition, DAG and some 
of its metabolites have been shown to induce 
non-SOCE ( 7 ). Stromal interaction molecule 1 
(STIM1) is an SR/endoplasmic reticulum (ER) –
 resident protein necessary for the detection of 
ER Ca 2+  depletion and the activation of SOC 
channels in T cells ( 8 – 10 ) and mast cells ( 11 ). In 
human T cells, the four transmembrane – domain 
protein Orai1 (Ca 2+  release – activated channel 
modulator) appears to be the predominant SOC 
channel ( 12 ), but the C-terminal region of 
STIM1 also interacts with other SOC channel 
candidates, such as transient receptor potential 
channels (TRPCs) 1, 2, and 4 ( 13 ). In platelets, 
STIM1 is expressed at high levels ( 14 ) and may 
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 Platelet activation and aggregation are essential to limit posttraumatic blood loss at sites 

of vascular injury but also contributes to arterial thrombosis, leading to myocardial infarc-

tion and stroke. Agonist-induced elevation of [Ca 2+ ] i  is a central step in platelet activation, 

but the underlying mechanisms are not fully understood. A major pathway for Ca 2+  entry in 

nonexcitable cells involves receptor-mediated release of intracellular Ca 2+  stores, followed 

by activation of store-operated calcium (SOC) channels in the plasma membrane. Stromal 

interaction molecule 1 (STIM1) has been identifi ed as the Ca 2+  sensor in the endoplasmic 

reticulum (ER) that activates Ca 2+  release – activated channels in T cells, but its role in 

mammalian physiology is unknown. Platelets express high levels of STIM1, but its exact 

function has been elusive, because these cells lack a normal ER and Ca 2+  is stored in a 

tubular system referred to as the sarcoplasmatic reticulum. We report that mice lacking 

STIM1 display early postnatal lethality and growth retardation. STIM1-defi cient platelets 

have a marked defect in agonist-induced Ca 2+  responses, and impaired activation and 

thrombus formation under fl ow in vitro. Importantly, mice with STIM1-defi cient platelets 

are signifi cantly protected from arterial thrombosis and ischemic brain infarction but have 

only a mild bleeding time prolongation. These results establish STIM1 as an important 

mediator in the pathogenesis of ischemic cardio- and cerebrovascular events. 
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Mice heterozygous for the STIM1-null mutation developed 
normally, whereas a majority ( � 70%) of mice lacking STIM1 
( Stim1  � / �   ) died within a few hours after birth. Marked cyano-
sis was noted before death, suggesting a cardiopulmonary 
defect. Surviving  Stim1  � / �    mice exhibited marked growth re-
tardation, achieving  � 50% of the weight of wild-type litter-
mates at 3 and 7 wk of age ( Fig. 1, A and B ).  Western blot 
analyses confi rmed the absence of STIM1 in platelets ( Fig. 1 C , 
top) and other tissues (not depicted). Blood platelet counts 
( Fig. 1 D ), mean platelet volume, and expression levels of ma-
jor platelet surface receptors, including glycoprotein (GP) Ib-
V-IX, GPVI, CD9, and  � 1 and  � 3 integrins (not depicted) 

contribute to SOCE by interacting with TRPC1 ( 15 ). We re-
cently reported that mice expressing an activating EF-hand 
mutant of STIM1 have elevated [Ca 2+ ] i  levels in platelets, mac-
rothrombocytopenia, and a bleeding disorder, indicating a role 
for STIM1-dependent SOCE in platelet function ( 14 ). The 
importance of SOCE for platelet activation, hemostasis, and 
thrombosis, however, remains unknown, and the mechanisms 
underlying the process are not defi ned. 

  RESULTS AND DISCUSSION  

 To address the function of STIM1 in vivo, the  Stim1  gene was 
disrupted in mice by insertion of an intronic gene trap cassette. 

  Figure 1.     Defective SOCE in Stim1-defi cient platelets.  (A) 5-wk-old wild-type and  Stim1  � / �    littermates. (B) Body weights of wild-type (+/+) and 

 Stim1  � / �    ( � / � ) mice. Values are mean  ±  SD. ***, P  <  0.001. (C) Western blot analyses of platelet lysates from mice with the indicated genotypes (top) or 

of mice transplanted with the indicated bone marrow (bottom). Stim1 was assessed using an antibody that can recognize the N-terminal region of the 

protein (GOK/Stim1; reference  11 ). An antibody to  � 3 integrin served as control. Results from two individuals per group are shown. (D) Peripheral platelet 

counts in wild-type and  Stim1  � / �    mice. Values are mean  ±  SD. (E) Fura-2 – loaded platelets were stimulated with 5  μ M TG for 10 min, followed by the 

addition of extracellular Ca 2+  and monitoring of [Ca 2+ ] i . Representative measurements (left) and maximal increase in intracellular Ca 2+  concentrations 

compared with baseline levels ( � [Ca 2+ ] i )  ±  SD ( n  = 4 mice per group) before and after addition of 1 mM Ca 2+  (right) are shown. **, P  <  0.01; ***, P  <  0.001.   
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low concentrations of these agonists (not depicted). In con-
trast, responses to collagen and CRP ( Fig. 2 C ) and the strong 
GPVI agonist convulxin (not depicted) were signifi cantly di-
minished. The activation defect was confi rmed by fl ow cyto-
metric analysis of integrin  � IIb � 3 activation using the JON/A-PE 
antibody, and of degranulation-dependent P-selectin surface 
exposure ( Fig. 2 D ). Therefore, loss of STIM1-dependent 
SOCE impairs GPVI-induced integrin activation and degran-
ulation, whereas G protein – coupled agonists are still able to 
induce normal activation in  Stim1  � / �    platelets in these assays, 
despite the defect in [Ca 2+ ] i  signaling. 

 In vivo, platelet activation on the extracellular matrix or a 
growing thrombus occurs in fl owing blood, where locally pro-
duced soluble mediators are rapidly cleared. Under these con-
ditions, reduced potency of platelet activators may become 
limiting, particularly at the high fl ow rates found in arteries and 
arterioles. Therefore, we analyzed the ability of  Stim1  � / �    plate-
lets to form thrombi on collagen-coated surfaces in a whole-
blood perfusion system ( 16 ). Under high shear conditions 
(1,700 s  � 1 ), wild-type platelets adhered to collagen fi bers and 
formed aggregates within 2 min that consistently grew into 
large thrombi by the end of the perfusion period ( Fig. 2 E ). In 
sharp contrast,  Stim1  � / �    platelets exhibited reduced adhesion, 
and three-dimensional growth of thrombi was markedly im-
paired. As a consequence, the surface area covered by platelets 
and the total thrombus volume were reduced  � 42 and  � 81%, 
respectively. Similar results were obtained at intermediate shear 
rates (1,000 s  � 1 ; not depicted). These fi ndings indicate that 
STIM1-mediated SOCE is required for effi  cient platelet acti-
vation on collagen and on the surface of growing thrombi un-
der conditions of high shear. 

 Unstable arterial thrombi in  Stim1  � / �    mice 

 Because platelet aggregation may contribute to pathologi-
cal occlusive thrombus formation, we studied the eff ects of 
STIM1 defi ciency on ischemia and infarction by in vivo 
fl uorescence microscopy after ferric chloride – induced mes-
enteric arteriole injury. In all wild-type chimeras, the forma-
tion of small aggregates was observed  � 5 min after injury, 
with progression to complete vessel occlusion in 8 out of 
10 mice within 30 min (mean occlusion time = 16.5  ±  2.8 
min;  Fig. 3, A – C ).  In contrast, aggregate formation was sig-
nifi cantly delayed in  � 50% of the  Stim1  � / �    chimeras (10.6  ±  
5.8 min in wild-type and 17.1  ±  7.3 min in  Stim1  � / �    chi-
meras until the fi rst thrombus  > 20  μ m in diameter appeared; 
P  <  0.05), and formation of stable thrombi was almost com-
pletely abrogated. This defect was caused by the release of 
individual platelets from the surface of the thrombi (Videos 
1 and 2, available at http://www.jem.org/cgi/content/
full/jem.20080302/DC1) and not by embolization of large 
thrombus fragments. Blood fl ow was maintained throughout 
the observation period in 9 out of 10 vessels, demonstrating a 
crucial role for STIM1 during occlusive thrombus formation. 
This was confi rmed in a second arterial thrombosis model 
in which the abdominal aorta was mechanically injured and 
blood fl ow was monitored with an ultrasonic fl ow probe. 

were normal, indicating that STIM1 is not essential for mega-
karyopoiesis or platelet production. Similarly, no diff erences 
were found in red blood cell counts, hematocrit, or the acti-
vated partial thromboplastin time, a method for the assessment 
of plasma coagulation ( Table I ).  To determine if STIM1 has a 
role in platelet SOCE, we induced SOC infl ux in wild-type 
and  Stim1  � / �    platelets with the SR/ER Ca 2+  ATPase (SERCA) 
pump inhibitor thapsigargin (TG). Interestingly, TG-induced 
Ca 2+  store release was reduced  � 60% in  Stim1  � / �    platelets 
compared with wild-type controls ( Fig. 1 E ). Furthermore, 
subsequent TG-dependent SOC infl ux was almost completely 
absent in  Stim1  � / �    cells ( Fig. 1 E ). This demonstrates for the 
fi rst time that STIM1 is essential for SOCE in platelets and 
suggests that STIM1-dependent processes contribute to the 
regulation of Ca 2+  store content in these cells. 

 Defective SOC infl ux in  Stim1  � / �    platelets 

 Because of the early mortality and pronounced growth retar-
dation in  Stim1  � / �    mice, all subsequent studies were per-
formed with lethally irradiated wild-type mice transplanted 
with  Stim1  � / �    or wild-type bone marrow. 4 wk after trans-
plantation, platelet counts were normal and STIM1 defi ciency 
in platelets was confi rmed by Western blotting ( Fig. 1 C , bot-
tom). To determine the signifi cance of defective SOCE for 
agonist-induced platelet activation, we assessed changes in 
[Ca 2+ ] i  in response to ADP, thrombin, a collagen-related pep-
tide (CRP) that stimulates the collagen receptor GPVI ( Fig. 2, 
A and B ), and the TxA 2  analogue U46619 (not depicted).  Ca 2+  
release from intracellular stores was reduced in  Stim1  � / �    plate-
lets compared with control for all agonists, indicating reduced 
Ca 2+  levels in stores in  Stim1  � / �    cells. In the presence of extra-
cellular calcium, Ca 2+  infl ux was dramatically reduced in 
 Stim1  � / �    platelets. Thus, STIM1-dependent SOCE is a crucial 
component of the Ca 2+  signaling mechanism in platelets for all 
major agonists, and non-SOCE makes only a minor contribu-
tion, at least under the conditions tested. 

 STIM1 in platelet activation and thrombus formation 

 To test the functional consequences of this defect, we per-
formed ex vivo aggregation studies.  Stim1  � / �    platelets aggre-
gated normally to the G protein – coupled agonists ADP, 
thrombin ( Fig. 2 C ), and U46619 (not depicted), even at very 

  Table I.    Hematology and hemostasis in  Stim1  � / �    chimeras 

 Stim1 +/+   Stim1  � / �   

Erythrocytes 8,450  ±  139 8,250  ±  264

HCT (%) 40.8  ±  0.4 41.7  ±  1.9

aPTT (sec) 37.7  ±  5.1 38.7  ±  3.1

PT (sec) 9.4  ±  0.5 9.8  ±  0.7

TCT (sec) 19.2  ±  2.6 21.8  ±  1

Fibrinogen 2.2  ±  0.1 2.8  ±  0.6

Erythrocyte counts per nanoliter and coagulation parameters for control and 

 Stim1  � / �    chimeras are shown. Values are mean  ±  SD of fi ve mice for each genotype. 

aPTT, activated partial thromboplastin time; HCT, hematocrit; PT, prothrombin time; 

TCT, thrombin clotting time.
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Although 10 out of 11 control chimeras formed irreversible 
occlusions within 16 min (mean occlusion time = 4.4  ±  4.1 
min), occlusive thrombus formation did not occur in 6 out of 
8  Stim1  � / �    chimeras during the 30-min observation period 
(P  <  0.005;  Fig. 3, D and E ). These results demonstrate that 
STIM1 is required for the propagation and stabilization of 
platelet-rich thrombi in small and large arteries, irrespective 
of the type of injury. 

 To test whether the defect in  Stim1  � / �    platelets impaired 
hemostasis, we measured tail bleeding times. Although bleed-
ing stopped in 28 out of 30 (93.3%) control mice within 
10 min, bleeding was highly variable in  Stim1  � / �    chimeras, 
with 11 out of 31 (35.5%) mice bleeding for  > 10 min (P  <  
0.02;  Fig. 3 F ). These results show that STIM1 is required 
for normal hemostasis. 

 STIM1 is an essential mediator of ischemic brain infarction 

 Ischemic stroke is the third leading cause of death and disability 
in industrialized countries ( 17 ). Although it is well established 
that microvascular integrity is disturbed during cerebral ische-
mia ( 18 ), the signaling cascades involved in intravascular throm-
bus formation in the brain are poorly understood. To determine 
the importance of STIM1-dependent SOCE in this process, 
we studied the development of neuronal damage in  Stim1  � / �    
chimeras after transient cerebral ischemia in a model that de-
pends on thrombus formation in microvessels downstream 
from a middle cerebral artery (MCA) occlusion ( 19 ). To initi-
ate transient cerebral ischemia, a thread was advanced through 
the carotid artery into the MCA and allowed to remain for 1 h 
(transient MCA occlusion [tMCAO]), reducing regional cere-
bral fl ow by  > 90% ( 3 ). In  Stim1  � / �    chimeras, infarct volumes 
24 h after reperfusion, as assessed by 2,3,5-triphenyltetrazolium 
chloride (TTC) staining, were reduced to  < 30% of the infarct 
volumes in control chimeras (17  ±  4.4 vs. 62.9  ±  19.3 mm 3 ; 
P  <  0.0001;  Fig. 4 A ).  Reductions in infarct size were function-
ally relevant, as the Bederson score assessing global neurological 
function (1.86  ±  0.48 vs. 3.07  ±  0.35, respectively; P  <  0.0001) 
and the grip test, which specifi cally measures motor function 
and coordination (3.71  ±  0.39 vs. 2  ±  0.65, respectively; P  <  
0.0001), were signifi cantly better in  Stim1  � / �    chimeras com-
pared with controls ( Fig. 4, B and C ). Serial magnetic reso-
nance imaging (MRI) on living mice was used to confi rm the 
protective eff ect of STIM1 defi ciency on infarct development. 
Hyperintense ischemic infarcts on T2-weighted (T2-w) MRI 

  Figure 2.     Defective agonist-induced Ca 2+  signaling and aggregate 

formation under fl ow in  Stim1  � / �    platelets.  Fura-2 – loaded wild-type 

(black line) or  Stim1  � / �    (gray line) platelets were stimulated with 0.1 U/ml 

thrombin, 10  μ M ADP, or 10  μ g/ml CRP in the presence of extracellular 

1 mM EGTA or 0.5 mM Ca 2+ , and [Ca 2+ ] i  was monitored. Representative 

measurements (A) and maximal increase in intracellular Ca 2+  concentra-

tions compared with baseline levels before stimulus ( � [Ca  2+ ] i )  ±  SD ( n  = 

4 mice per group; B) are shown. (C) Impaired aggregation of  Stim1  � / �    

platelets (gray lines) in response to CRP and collagen but not ADP and 

thrombin (recording time = 10 min). (D) Flow cytometric analysis of inte-

grin  � IIb � 3 activation (binding of JON/A-PE; left) and degranulation-

dependent P-selectin exposure (right) in response to 0.1 U/ml thrombin, 

10  μ M ADP, 10  μ g/ml CRP, and 1  μ g/ml convulxin. Results are means  ±  SD 

( n  = 6 mice per group). (E)  Stim1  � / �    platelets in whole blood fail to form 

stable thrombi when perfused over a collagen-coated (0.2 mg/ml) surface 

at a shear rate of 1,700 s  � 1 . (top) Representative phase-contrast images. 

(bottom) Mean surface coverage (left) and relative platelet deposition as 

measured by the integrated fl uorescent intensity per square millimeter 

(right)  ±  SD ( n  = 4 mice). ***, P  <  0.001. Bar, 100  μ m.   
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Moreover, no intracranial hemorrhage was detected on T2-w 
gradient echo images, a highly sensitive MRI sequence for the 
detection of blood ( Fig. 4 D ), indicating that STIM1 defi ciency 
in hematopoietic cells is not associated with an increase in 

in  Stim1  � / �    chimeras were  < 10% of the size of infarcts in 
control chimeras 24 h after tMCAO (P  <  0.0001;  Fig. 4 D ). 
Importantly, infarct volume did not increase between days 1 and 
7, indicating a sustained protective eff ect for STIM1 defi ciency. 

  Figure 3.     In vivo analysis of thrombosis and hemostasis.  (A – C) Mesenteric arterioles were treated with FeCl 3 , and adhesion and thrombus formation 

of fl uorescently labeled platelets were monitored by in vivo video microscopy. Representative images (A), the time to appearance of the fi rst thrombus 

 > 20  μ m (B), and the time to vessel occlusion (C) are shown. Each symbol represents one individual. The asterisk in A indicates occlusion of the vessel. 

Horizontal bars in B represent means. Bar, 50  μ m. (D and E) The abdominal aorta was mechanically injured, and blood fl ow was monitored for 30 min or 

until complete occlusion occurred (blood fl ow stopped  > 5 min). (D) Representative cross sections of the abdominal aorta of mice with wild-type or 

 Stim1  � / �    platelets 30 min after injury. Bar, 250  μ m. (E) Time to vessel occlusion. Each symbol represents one individual. (F) Tail bleeding times in wild-type 

and  Stim1  � / �    chimeras. Each symbol represents one individual. Videos 1 and 2 are available at http://www.jem.org/cgi/content/full/jem.20080302/DC1.   
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bleeding complications in the brain. Consistent with the TTC 
stains and MRI images, histological analysis revealed massive 
ischemic infarction of the basal ganglia and neocortex in con-
trol chimeras but only limited infarction of the basal ganglia in 
 Stim1  � / �    chimeras ( Fig. 4 E ). The density of CD3 +  T cell and 
monocyte/macrophage infi ltrates in brain infarcts was low, and 
did not diff er between  Stim1  � / �    and control chimeras at 24 h 
(not depicted). 

 STIM1 has been identifi ed as the long-sought calcium sen-
sor that connects intracellular Ca 2+  store depletion to the acti-
vation of plasma membrane SOC channels in immune cells. 
Although SOCE is thought to be a major pathway of Ca 2+  en-
try in virtually all nonexcitable cells, this has only been directly 
shown for T cells ( 8 – 10 ) and IgE-dependent mast cell activa-
tion ( 11 ). Although STIM1 is highly expressed in platelets ( 14 ), 
the signifi cance of SOCE for platelet function has been un-
known because non-SOCE pathways have been described to 
exist in these cells ( 20 ). We found severely defective Ca 2+  re-
sponses to all major agonists in  Stim1  � / �    platelets, clearly estab-
lishing SOCE as the major route of Ca 2+  entry in those cells 
and STIM1 as an essential mediator of this process. The residual 
Ca 2+  infl ux detected in the mutant cells suggests that other 
molecules may regulate SOC infl ux, but only to a minor ex-
tent. One candidate molecule is STIM2, which has been shown 
to activate Ca 2+  release – activated channels ( 21 ). Alternatively, 
the residual Ca 2+  entry could be mediated by store-indepen-
dent mechanisms as DAG, and some of its metabolites have 
been shown to induce non-SOCE ( 7 ). In line with this, mem-
bers of the TRPC family have been suggested as candidates 
mediating both SOCE and non-SOCE in platelets ( 15, 20 ). 

 Besides the severely impaired SOCE, we also observed 
reduced Ca 2+  release from intracellular stores upon agonist-
induced platelet activation, which likely refl ects a lower fi lling 
state of the SR, as shown by passively emptying the stores 
with the SERCA inhibitor TG ( Fig. 1 E ). Similar observa-
tions have very recently been reported in mast cells ( 11 ), indi-
cating that STIM1 may be involved in the fi lling of intracellular 
Ca 2+  stores. However, mast cells lacking the major SOC chan-
nel Orai1 ( 22 ) show normal store content, suggesting a SOC 
channel – independent role of STIM1 in store refi ll, possibly 
through interaction with the IP 3  receptors or SERCA pumps 
in the SR/ER. Because platelets do not have a normal ER, an 
interesting question is where STIM1 is located in these cells. 
The major intracellular Ca 2+  store seems to be in the so-called 
dense tubular system, an equivalent of the ER in megakaryo-
cytes. However, lysosome-related (acidic) organelles have 
been proposed as a second source of intracellularly stored Ca 2+  
in platelets. Further studies are required to clarify the exact 
location of STIM1 in platelets. 

  Figure 4.      Stim1  � / �    chimeras are protected from cerebral ischemia.  

(A, left) Representative images of three corresponding coronal sections 

from control mice and  Stim1  � / �    chimeras stained with TTC 24 h after 

tMCAO. Infarcts in  Stim1  � / �    chimeras are restricted to the basal ganglia 

(white arrow), in contrast to controls (black arrows). (right) Brain infarct 

volumes in controls ( n  = 7) and  Stim1  � / �    chimeras ( n  = 7). Values are 

mean  ±  SD. ***, P  <  0.0001. Bar, 5 mm. (B and C) Neurological Bederson 

score and grip test assessed at day 1 after tMACO of controls ( n  = 7) and 

 Stim1  � / �    chimeras ( n  = 7). Values are mean  ±  SD. ***, P  <  0.0001. (D) The 

coronal T2-w MR brain image shows a large hyperintense ischemic lesion 

at day 1 after tMCAO in controls (white arrows; top left). Infarcts are 

smaller in  Stim1  � / �    chimeras (white arrow; bottom left), and T2 hyperin-

tensity decreases by day 7 during infarct maturation (white arrow; bot-

tom right). Importantly, hypointense areas indicating intracerebral 

hemorrhage were not seen in  Stim1  � / �    chimeras, demonstrating that 

Stim1 defi ciency does not increase the risk of hemorrhagic transforma-

tion, even at advanced stages of infarct development. Bar, 5 mm. (E) He-

matoxylin and eosin – stained sections of corresponding territories in the 

ischemic hemispheres of control and  Stim1  � / �    chimeras. Infarcts are 

restricted to the basal ganglia in  Stim1  � / �    chimeras but consistently in-

clude the cortex in controls. Bars: (left) 200  μ m; (right) 50  μ m.   
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under fl ow but is not required for the activation and aggrega-
tion of platelets in the absence of shear forces ( 1, 25 ). 

 Our data indicate that STIM1-dependent SOCE may be 
of greater relevance for arterial occlusive thrombus formation 
than for primary hemostasis, though prolonged tail bleeding 
was observed in a subgroup of  Stim1  � / �    chimeras ( Fig. 3 ). 
This raises the interesting possibility that hemostasis and throm-
bosis are mechanistically distinct processes. Therefore, the 
identifi cation of the mechanisms that trigger pathological 
thrombus formation but are less essential to arrest bleeding 
may be the key to the development of safe antithrombotics. 
This will be of particular importance for the treatment of acute 
stroke, which is still the third leading cause of death and dis-
ability in industrialized countries, with very limited treatment 
options ( 17 ). Numerous attempts to attenuate infarct pro-
gression in acute stroke patients by conventional platelet 
aggregation inhibitors or anticoagulation failed because of 
an excess of intracerebral hemorrhages ( 26 ). We found that 
 Stim1  � / �    chimeras are protected from neuronal damage after 
transient cerebral ischemia without displaying an increased 
risk of intracranial hemorrhage ( Fig. 4 ) despite prolonged tail 
bleeding times observed in a subgroup of the animals, which 
confi rms that there is no clear correlation between bleeding 
time and risk ( 27 ). These fi ndings are in line with our recent 
observation that inhibition of the GPIb – GPVI axis is protec-
tive in this model, whereas integrin  � IIb � 3 (GPIIb/IIIa) 
inhibition is not but is associated with excess intracranial 
bleeding ( 3 ), which corresponds well with data from clinical 
studies in stroke patients ( 26 ). It is important to note, how-
ever, that data obtained in the mouse tMCAO model cannot 
be directly extrapolated to the human situation, as diff erences 
in the pathomechanisms may exist. 

 Overall, the phenotype of mice with  Stim1  � / �    platelets 
is similar to that of mice lacking functional GPVI or mice 
treated with antibodies that block the von Willebrand factor 
binding site on GPIb � , which show severe defects in throm-
bus formation under fl ow, protection from arterial thrombus 
formation, and ischemic brain damage, but which only ex-
hibit a limited risk for bleeding complications ( 3, 28 ). This 
supports the notion that SOCE is particularly important for 
GPIb – GPVI – ITAM signaling pathways in platelets, which is 
in line with the well-documented function of STIM1 in 
ITAM signaling in T cells and mast cells ( 10, 22 ). 

 Collectively, the results presented in this paper establish 
STIM1 as an essential mediator of platelet activation that is of 
critical importance during arterial thrombosis and ischemic 
brain infarction but not normal hemostasis. These fi ndings 
may open the way for the development of novel highly eff ec-
tive and safe antithrombotics. 

 MATERIALS AND METHODS 
 Mice.   Animal studies were approved by the district government of Lower 

Franconia (Bezirksregierung Unterfranken). The generation of  Stim1  � / �    

mice was as follows. A gene trap embryonic stem (ES) cell line containing an 

insertional disruption in the  Stim1  gene (RRS558; clone no. IRAK-

p961K1818Q; imaGenes) was purchased from BayGenomics. Male chimeras 

from this ES cell line were bred to C57BL/6 females to generate  Stim1 +/ �    mice, 

 Although STIM1 defi ciency severely reduced Ca 2+  entry 
in platelets in response to all agonists tested, it did not impair 
G protein – coupled receptor (GPCR)/PLC �  � triggered inte-
grin  � IIb � 3 activation or release of granule content in the ab-
sence of fl ow ( Fig. 2 ), even at very low agonist concentrations 
(not depicted). This shows that SOCE is not essential for these 
processes when the agonist can act on the cells at constant 
concentrations for a prolonged period of time. In contrast, 
GPVI/PLC � 2-induced cellular activation was impaired un-
der these experimental conditions, even at very high agonist 
concentrations ( Fig. 2 C ). The reason for this is not clear at 
present, but it could be related to the fact that GPVI and 
GPCRs activate diff erent PLC isoforms in platelets. GPVI li-
gation triggers tyrosine phosphorylation cascades downstream 
of the receptor-associated immunoreceptor tyrosine-based acti-
vation motif (ITAM), culminating in the activation of PLC � 2 
( 23 ), whereas soluble agonists such as thrombin, ADP, and 
TxA 2  stimulate receptors that couple to heterotrimeric G pro-
teins (Gq) and lead to activation of PLC �  ( 24 ). Our Ca 2+  
measurements show that store release and subsequent SOC 
infl ux occur signifi cantly faster upon Gq/PLC �  stimulation 
compared with GPVI/PLC � 2 stimulation ( Fig. 2 A ), suggest-
ing diff erent kinetics of IP 3  production between these two 
pathways that could infl uence subsequent events. Clearly, the 
low [Ca 2+ ] i  levels alone cannot explain the defective activa-
tion downstream of GPVI/PLC � 2, as similar or lower levels 
are seen in response to thrombin and ADP, respectively, with-
out causing this defect. Possibly, elevated [Ca 2+ ] i  levels have 
to act in concert with other transient signals, which may not 
or no longer be fully present in GPVI/PLC � 2-stimulated 
 Stim1  � / �    platelets. This could also explain why platelets ex-
pressing an activating EF-hand mutant of STIM1 that leads to 
elevated basal [Ca 2+ ] i  levels display a selective GPVI/PLC � 2 
signaling defect, whereas Gq/PLC � -induced store release and 
Ca 2+  entry are largely preserved ( 14 ). 

 The rather moderate activation defi cits seen in  Stim1  � / �    
platelets in the absence of fl ow translated into severely defec-
tive formation of stable three-dimensional thrombi under 
conditions of medium and high shear ( Fig. 3 ). Such a pheno-
type has previously been reported in several mice with defi -
ciencies in platelet proteins, including those lacking the 
heterotrimeric G protein subunit G 13  or CD40 ligand, which 
display marked defects in thrombus stability under fl ow in vi-
tro and in vivo despite only mild defects in activation/aggre-
gation in the absence of fl ow (for review see reference  4 ). 
This suggests that STIM1-dependent SOCE is particularly 
important under conditions where agonist potency becomes 
limiting because of rapid dilution and various stimuli have to 
be integrated to produce an appropriate cellular response ( 24 ). 
Reduced exposure times rather than low concentrations of 
these soluble agonists appear to cause the defect under fl ow, 
as we observed no reduction in the aggregation response to 
GPCR activation in  Stim1  � / �    platelets, even at very low ago-
nist concentrations (not depicted). In addition, STIM1 may 
be involved in the generation of Ca 2+  signals downstream of 
GPIb, which is essential for adhesion and thrombus formation 
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wound site. When no blood was observed on the paper, bleeding was deter-

mined to have ceased. Experiments were stopped after 20 min. 

 Intravital microscopy of thrombus formation in FeCl 3 -injured mesen-

teric arterioles.   4 wk after bone marrow transplantations, chimeras were anes-

thetized and the mesentery was exteriorized through a midline abdominal 

incision. 35 – 60- μ m-diameter arterioles were visualized at 10 ×  with an inverted 

microscope (Axiovert 200; Carl Zeiss, Inc.) equipped with a 100-W HBO 

fl uorescent lamp source and a camera (CoolSNAP-EZ; Visitron). Digital im-

ages were recorded and analyzed off -line using Metavue software. Injury was 

induced by topical application of a 3-mm 2  fi lter paper saturated with 20% FeCl 3  

for 10 s. Adhesion and aggregation of fl uorescently labeled platelets (DyLight 

488 – conjugated anti-GPIX Ig derivative) in arterioles was monitored for 30 

min or until complete occlusion occurred (blood fl ow stopped for  > 1 min). 

 Aorta occlusion model.   A longitudinal incision was performed to open 

the abdominal cavity of anesthetized mice and expose the abdominal aorta. 

An ultrasonic fl ow probe was placed around the vessel, and thrombosis was 

induced by a single fi rm compression with a forceps. Blood fl ow was moni-

tored until complete occlusion occurred or 30 min had elapsed. 

 MCA occlusion model.   Experiments were conducted on 10 – 12-wk-old 

 Stim1  � / �    or control chimeras according to previously published recommen-

dations for research in mechanism-driven basic stroke studies ( 30 ). tMCAO 

was induced under inhalation anesthesia using the intraluminal fi lament 

(Doccol Company) technique ( 3 ). After 60 min, the fi lament was withdrawn 

to allow reperfusion. For measurements of ischemic brain volume, animals 

were killed 24 h after induction of tMCAO, and brain sections were stained 

with 2% TTC (Sigma-Aldrich). Brain infarct volumes were calculated and 

corrected for edema, as previously described ( 3 ). Neurological function and 

motor function were assessed by two independent and blinded investigators 

24 h after tMACO, as previously described ( 3 ). 

 Assessment of infarction and hemorrhage by MRI.   MRI was per-

formed 24 h and 7 d after transient ischemia on a 1.5 T unit (Vision; Sie-

mens) under inhalation anesthesia. A custom-made dual-channel surface coil 

was used for all measurements (A063HACG; Rapid Biomedical). The MR 

protocol included a coronal T2-w sequence (slice thickness = 2 mm) and a 

coronal T2-w gradient echo constructed interference in steady state (CISS) 

sequence (slice thickness = 1 mm). MR images were transferred to an exter-

nal workstation (Leonardo; Siemens) for data processing. The visual analysis 

of infarct morphology and the search for eventual intracerebral hemorrhage 

were performed in a blinded manner. Infarct volumes were calculated by 

planimetry of hyperintense areas on high resolution CISS images. 

 Histology.   Formalin-fi xed brains embedded in paraffi  n (HistoLab) were cut 

into 4- μ m-thick sections and mounted. After removal of paraffi  n, tissues were 

stained with hematoxylin and eosin (Sigma-Aldrich). 

 Statistics.   Results from at least three experiments per group are presented 

as means  ±  SD. Diff erences between wild-type and  Stim1  � / �    groups were 

assessed by the two-tailed Student ’ s  t  test. For the stroke model, results are 

presented as means  ±  SD. Infarct volumes and functional data were tested for 

Gaussian distribution with the D ’ Agostino and Pearson omnibus normality 

test and then analyzed using the two-tailed Student ’ s  t  test. For statistical 

analysis, PrismGraph 4.0 software (GraphPad Software, Inc.) was used. P  <  

0.05 was considered statistically signifi cant. 

 Online supplemental material.   Videos 1 and 2 show representative 

time-lapse videos of in vivo thrombus formation in control and  Stim1  � / �    

chimeras. Online supplemental material is available at http://www.jem.org/

cgi/content/full/jem.20080302/DC1. 

 We thank Michael B ö sl for help with the generation of the mice, Ronmy Rivera 

Galdos and Madeleine Austinat for histology, and David Gailani for critically reading 

the manuscript. 

which were intercrossed to produce  Stim1  � / �    mice. In the ES cells, the 

gene trap vector pCMV-SPORT6, which is composed of a splice-acceptor 

site followed by a  “  � Geo ”  cassette encoding a fusion of  � -galactosidase 

and neomycin phosphotransferase II, was inserted 600 bp downstream of 

exon 7, into intron 7 of the  Stim1  gene. The integration site was con-

fi rmed by PCR and sequencing of the amplifi ed genomic DNA fragment 

using exon 7 forward (5 � -gctgcacaaggcccaggagg-3 � ) and geo1 reverse (5 � -

atcggcctcaggaagatcgc-3 � ) primers. The transcript would result in the genera-

tion of a fusion protein between truncated Stim1 (extracellular region plus 

transmembrane domain) and  � -galactosidase. This fusion protein was, how-

ever, not detectable in platelets by Western blotting using anti –  � -galactosi-

dase antibodies or anti-STIM1 antibodies that recognize the N terminus of 

the protein (GOK/Stim1, clone 44; BD Bioscience) ( 11 ), suggesting that it 

is rapidly degraded. For the generation of bone marrow chimeras, 5 – 6-wk-

old C57BL/6 female mice were lethally irradiated with a single dose of 10 

Gy, and bone marrow cells from 6-wk-old wild-type or  Stim1  � / �    mice were 

injected intravenously into the irradiated mice (4  ×  10 6  cells per mouse). 

4 wk after transplant, platelet counts were determined and STIM1 defi ciency 

was confi rmed by Western blotting. All recipient animals received acidifi ed 

water containing 2 g/liter neomycin sulfate for 6 wk after transplantation. 

 Chemicals and antibodies.   Anesthetic drugs used included medetomidine 

(Pfi zer), midazolam (Roche), and fentanyl (Janssen-Cilag GmbH). For antag-

onists, atipamezol (Pfi zer) and fl umazenil and naloxon (both purchased from 

Delta Select GmbH) were used according to local authority regulations. ADP 

(Sigma-Aldrich), U46619 (Qbiogene), thrombin (Roche), collagen (Kolla-

genreagent Horm; Nycomed), and TG (Invitrogen) were purchased as indi-

cated. Monoclonal antibodies conjugated to FITC or PE, or DyLight 488 

were obtained from Emfret Analytics. The JON/A-PE antibody preferentially 

binds to the high affi  nity conformation of mouse integrin  � IIb � 3 (Emfret An-

alytics). Anti-STIM1 monoclonal antibodies were purchased from BD Biosci-

ences (GOK/Stim1, clone 44) and Abnova (clone 5A2). 

 Intracellular calcium measurements.   Platelet intracellular calcium mea-

surements were performed as previously described ( 29 ). In brief, platelets iso-

lated from blood were washed, suspended in Tyrode ’ s buff er without calcium, 

and loaded with 5  μ M Fura-2/AM in the presence of 0.2  μ g/ml Pluronic F-

127 (Invitrogen) for 30 min at 37 ° C. After labeling, platelets were washed 

once and resuspended in Tyrode ’ s buff er containing 0.5 mM Ca 2+  or 1 mM 

EGTA. Stirred platelets were activated with agonists, and fl uorescence was 

measured with a fl uorimeter (LS 55; PerkinElmer). Excitation was alternated 

between 340 and 380 nm, and emission was measured at 509 nm. Each mea-

surement was calibrated using Triton X-100 and EGTA. 

 Platelet aggregation and fl ow cytometry.   Washed platelets (200  μ l with 

0.5  ×  10 6  platelets/ μ l) were analyzed in the presence of 70  μ g/ml human fi -

brinogen. Transmission was recorded on a four-channel aggregometer (Fi-

brintimer; APACT) for 10 minutes and was expressed in arbitrary units, with 

buff er representing 100% transmission. For fl ow cytometry, heparinized 

whole blood was diluted 1:20 and incubated with the appropriate fl uoro-

phore-conjugated monoclonal antibodies for 15 min at room temperature 

and analyzed on a FACSCalibur (Becton Dickinson). 

 Adhesion under fl ow conditions.   Rectangular coverslips (24  ×  60 mm) 

were coated with 0.2 mg/ml fi brillar type I collagen (Nycomed) for 1 h at 

37 ° C and blocked with 1% BSA. Heparinized whole blood was labeled with 

a DyLight 488 – conjugated anti-GPIX Ig derivative at 0.2  μ g/ml, and perfu-

sion was performed as previously described ( 16 ). Image analysis was per-

formed off -line using Metavue software (Visitron). Thrombus formation was 

expressed as the mean percentage of total area covered by thrombi, and as 

the mean integrated fl uorescence intensity per square millimeter. 

 Bleeding time.   Mice were anesthetized and a 3-mm segment of the tail tip 

was removed with a scalpel. Tail bleeding was monitored by gently absorb-

ing blood with fi lter paper at 20-s intervals without making contact with the 
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