
Rheological Characterization of the Bundling Transition
in F-Actin Solutions Induced by Methylcellulose
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Abstract

In many in vitro experiments Brownian motion hampers quantitative data analysis. Therefore, additives are widely used to
increase the solvent viscosity. For this purpose, methylcellulose (MC) has been proven highly effective as already small
concentrations can significantly slow down diffusive processes. Beside this advantage, it has already been reported that
high MC concentrations can alter the microstructure of polymer solutions such as filamentous actin. However, it remains to
be shown to what extent the mechanical properties of a composite actin/MC gel depend on the MC concentration. In
particular, significant alterations might occur even if the microstructure seems unaffected. Indeed, we find that the
viscoelastic response of entangled F-actin solutions depends sensitively on the amount of MC added. At concentrations
higher than 0.2% (w/v) MC, actin filaments are reorganized into bundles which drastically changes the viscoelastic response.
At small MC concentrations the impact of MC is more subtle: the two constituents, actin and MC, contribute in an additive
way to the mechanical response of the composite material. As a consequence, the effect of methylcellulose on actin
solutions has to be considered very carefully when MC is used in biochemical experiments.
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Introduction

The structural organization of the cytoskeleton determines the

morphology and the mechanical response of eukaryotic cells. The

cytoskeleton consists of semiflexible polymers such as actin

filaments which are organized into complex scaffolds by various

associated actin binding proteins. Cross-linking and bundling of

actin filaments are major strategies used for structural fortification

of the cytoskeleton; however, filament bundling is also a governing

strategy in cell motility as bundled filopodia are built up at the

edge of a crawling cell [1] or actin comet tails consisting of

bundled filaments propel bacteria inside their host cells [2]. Due to

the biological complexity, it is a challenging task to track down the

molecular origin of these dynamic processes. Therefore, in vitro

experiments have been proven essential as reconstituted model

systems enable the investigation of biochemical and physical

contributions separately [3].

However, in many studies on dynamic processes Brownian

motion hampers the data analysis. Increasing the viscosity of the

investigated solution is helpful for reducing this problem. For this

purpose, methylcellulose (MC), a polymer that forms highly viscous

solutions, is widely used at concentrations of 0.2–0.5% [4–10]. MC

is not known to specifically interact with actin or other cellular

proteins; however, it has been reported that actin/MC bundles

appear at MC concentrations higher than 0.3% (w/v) [11,12], and

thus biochemical experiments using MC in this concentration range

have to be analyzed with care. Similarly, actin filaments can be

bundled by high concentrations of polyethylene glycol (PEG) even

in the absence of specific actin bundling proteins. The effect of PEG

on the structure and mechanics of F-actin is purely entropic and has

been studied extensively [13,14]. At PEG concentrations below the

bundling transition, depletion forces lead to increasingly effective

physical cross-links giving rise to an increase in the elasticity of the

actin/PEG solution [15]. Because of the higher molecular weight of

MC used in this study it is a priori not clear if MC can also act as an

effective depletion agent. Moreover, a mixture of two polymer

solutions might give rise to additional effects influencing the

structure and mechanical response of the composite material.

In contrast to the well characterized actin/PEG system, only

structural information is available for actin/MC solutions [11,12].

Here, we use macrorheology to investigate the frequency dependent

mechanical response of F-actin solutions in the presence of distinct

MC concentrations. Macrorheology allows quantifying the viscous

and elastic part of the mechanical response of a polymer solution and

therefore is a suitable tool to separate changes in solvent viscosity

from alterations in the viscoelastic response of the solved polymers.

We systematically analyze the effect of increasing MC

concentrations on the frequency dependent mechanical response

of entangled F-actin solutions. Significant changes in the

macrorheological behavior of the solution occur even at MC

concentrations as low as 0.01% (w/v) – however, the structure of

the actin solution remains unaffected. At concentrations higher

than 0.2% (w/v) we report drastic changes in the viscoelastic

response of the solution which can be traced back to filament

bundling, in agreement with previous work [12].

Results

Even in the absence of specific actin bundling proteins, actin

filaments can be organized into bundles by methylcellulose as
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reported by [11]. Popp et al. have demonstrated that the bundling

transition of 10 mM filamentous actin occurs at 0.3% (w/v) MC [12].

Confocal micrographs of actin/MC gels at distinct amounts of

MC are depicted in figure 1. Actin bundles cannot be observed at

low (,0.01% (w/v)) and intermediate (,0.2% (w/v)) MC

concentrations. However, at a critical concentration of 0.2% (w/

v) actin/MC bundles start to form. Surprisingly, the thickness of

the actin/MC bundles does not increase with increasing MC

concentrations but rather seems to decrease while more and more

bundles occur. This result is in contrast to the bundling effect

caused by PEG where a monotonous increase in the bundle

thickness was observed with increasing PEG concentrations [15].

The average thickness of actin/MC bundles can be estimated from

phase contrast microscopy pictures depicted in the insets of figure 2

and is on the order of hundreds of nanometers. The obtained

thicknesses are comparable to those reported for actin bundles that

are induced by depletion forces in the presence of PEG [15] but

are considerably larger compared to bundles that are formed by

actin bundling proteins such as fascin [16].

As already stated, bundles cannot be observed at MC

concentrations below the critical concentration of 0.2% (w/v). In

this regime, the contrast is quite low even for confocal images. This

is due to the fact that confocal microscopy cannot easily resolve

single filaments at high actin concentrations and indicates that

only single filaments are present. To overcome the limitations of

optical microscopy, we use rheological methods to study the actin/

MC gels in more detail.

The viscoelastic frequency response of actin gels depends

sensitively on the microstructure [17–21]. The occurrence of stiff

bundles can lead to changes in the deformation mode of the gel

[16], attractive interactions between single filaments as induced by

entropic depletion forces can serve as virtual cross-links and

therefore significantly affect the frequency spectrum of single

filaments [15]. The loss modulus, G0(f), and storage modulus, G9(f),

of pure MC solutions and composite actin/MC gels are shown in

figure 3 for distinct MC concentrations, cMC. The viscous modulus

of the MC solutions, G0(f), is dramatically increased with increasing

amounts of MC (fig. 3, right lower panel). However, the viscosity

of the solution is not independent from frequency as expected for a

purely viscous fluid. Instead, a plateau emerges at low frequencies

becoming more pronounced with increasing MC concentrations.

If MC is added to a solution of entangled actin filaments, a

qualitative similar behavior is observed for actin/MC gels at low

MC concentrations (fig. 3, left lower panel): The G0(f) spectrum as

obtained for pure actin solutions is shifted to higher values in the

presence of MC. However, the increase in the loss modulus is not

monotonic over the whole concentration range as a significant

drop in the loss modulus occurs at cMC<0.2% (w/v). This

indicates that for a solution of semi-flexible polymers such as actin

filaments the presence of MC affects not only the solvent viscosity

but might also lead to an interaction with the polymers.

Figure 1. Methylcellulose induced actin bundle formation.
Confocal micrographs of F-actin solutions (9.5 mM) with increasing
methylcellulose concentrations. Bundles appear at a MC concentration
of 0.2% (w/v), below this concentration only single filaments can be
observed. At 1% MC, much more bundles occur which seem to be
thinner than those formed at lower MC concentrations (scale bar:
10 mm). The color code corresponds to the three regimes depicted in
figure 2.
doi:10.1371/journal.pone.0002736.g001

Figure 2. Plateau modulus of actin/MC solutions. The plateau
modulus G0 of actin/MC solutions is depicted as a function of MC
concentration, cMC. Three regimes can be distinguished: At low cMC

(below 0.01%, green) the plateau modulus is similar to that of an
entangled F-actin solution. For intermediate cMC (0.01–0.2%, blue) a
weak increase in G0,cMC

0.3 is observed. Above cMC = 0.2% (red) the
dependence of G0 on cMC becomes more complex. Insets: Phase
contrast micrographs (scale bar: 20 mm).
doi:10.1371/journal.pone.0002736.g002

Figure 3. Viscoelastic response of MC and actin/MC solutions.
Frequency spectra of storage (upper panel, closed symbols) and loss
moduli (lower panel, open symbols) of MC solutions with (left) and
without (right) 9.5 mM F-actin. The symbols represent increasing cMC:
0% (w/v) blue diamonds, 0.01% light blue downright triangles, 0.1%
green butterflies, 0.2% yellow upright triangles, 0.5% orange squares
and 1% red circles. G9(f) and G0(f) of actin/MC solutions increase with
increasing MC concentration for cMC#0.2% (w/v), the critical concen-
tration.
doi:10.1371/journal.pone.0002736.g003

Composite Actin/MC Gels
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To test this hypothesis the elastic part of the frequency response of

actin/MC gels is investigated. The G9(f) spectra at distinct MC

concentrations are shown in figure 3 (left upper panel). In the

presence of MC the elasticity is significantly enhanced. Additionally,

the elastic spectrum becomes astonishingly flat at high MC

concentrations (cMC.0.2%). Interestingly, the absolute values of

G9(f) of pure MC solutions are on the same order of magnitude as

G9(f) of actin/MC gels, which is consistent with previously published

results for pure MC solutions [22]. It is important to note, that the

viscoelastic response of MC solutions is highly non-linear as it

crucially depends on the applied strain, while the response of actin/

MC solutions is linear at low strain. Therefore, the spectra of MC

solutions were recorded at the same strain as the corresponding

actin/MC gels to allow for direct comparison of the spectra.

In order to quantify the dependence of the storage modulus of

actin/MC gels on the MC concentration, the plateau modulus

G0 = G9(0.02 Hz) is analyzed (fig. 2). Three different regimes

emerge with respect to cMC: At low MC concentrations

(cMC,0.01% (w/v)) the plateau modulus G0 is independent from

cMC. At intermediate MC concentrations between 0.01 and 0.2%

(w/v) the plateau modulus increases monotonically with cMC,

G0,cMC
0.3. In the third regime at MC concentrations higher than

0.2% (w/v) the modulus depends on the MC concentration in a

non-trivial manner and cannot be described by a simple

mathematical function any more.

In each of the last two regimes the elasticity of the composite

material reaches values larger than those of the two constituting

components alone. This indicates, that assuming that one

component (e.g. the F-actin solution alone) dominates the

mechanical response of the composite gel is not sufficient to

rationalize the observed viscoelastic response. Another simple

approach is to assume, that the polymer systems are mechanically

independent from each other resulting in an additive behavior.

Indeed, this approximation is valid in the second regime between

0.01 and 0.2% (w/v) MC (fig. 4). This indicates that the structure

and mechanical response of entangled actin filaments is not

influenced by MC at intermediate concentrations. At higher MC

concentrations (.0.2%) the spectra of the two constituents can no

longer be summed up to reproduce the mechanical response of the

composite material. Here, not only the absolute values of the

moduli G9(f) and G0(f) are changed but also the shape of the spectra

is affected: A flattening of G9(f) at low frequencies is observed

which is unusual for an entangled F-actin solution but is a typical

signature of cross-linked or bundled actin gels [16,19,23,24]. This

confirms that the structure of the F-actin solution is significantly

changed by high MC concentrations.

Discussion

High concentrations of MC (cMC.0.2% (w/v)) are able to

induce actin bundling as has been shown here by confocal and

phase contrast microscopy in agreement with previous studies

[11,12]. This bundle transition correlates well with major changes

in the frequency dependent mechanical response of actin/MC

solutions. High MC concentrations alter the mechanics of F-actin

solutions by an initial decrease in the elastic response. This may

result from an effective increase in mesh size caused by bundling of

the actin filaments which is supported by confocal images (Fig. 1):

At 0.2% MC individual bundles occur while at 0.5% MC a bundle

network is observed. The rearrangement of filaments into thick

bundles weakens the network elasticity by locally concentrating

material and thus creating a network with a huge mesh size.

Surprisingly, this trend does not persist throughout the whole MC

concentration range and a sudden increase in the plateau modulus

is observed at 1% (w/v) MC. Concomitant with this abrupt

change in the mechanical behavior a completely different network

morphology is observed at this high MC concentration (fig. 1). The

observed structural changes agree well with the mechanical

properties determined with macrorheology.

The occurrence of actin bundles in the presence of small inert

polymers can in principle be attributed to entropic effects known

as depletion forces. Entropic actin bundling was reported for

actin/PEG 6 k solutions by Tharmann et al., where bundles started

to form at 2% (w/w) PEG at 9.5 mM actin [15]. Considering the

higher molecular weight of MC (88 kDa) the corresponding

bundling transition should occur at roughly 5% (w/v) MC.

However, the critical bundling concentration for MC is an order

of magnitude lower compared to this calculated value. This

indicates that additional contributions to the interaction potential

between actin filaments might occur in the MC system. In

Figure 4. Additive behavior of the viscoelastic response of actin/MC solutions in the intermediate concentration regime. The
experimental frequency response of mixed actin/MC solutions (dark blue circles) is compared to the calculated frequency spectrum (light blue
squares) assuming additive behavior as described in the text. Frequency spectra of pure actin are shown as a reference (black lines). At intermediate
MC concentrations (0.01% and 0.1% (w/v)) the additive behavior holds, while at high MC concentrations significant deviations occur.
doi:10.1371/journal.pone.0002736.g004

Composite Actin/MC Gels
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particular, the presence of the MC network might impede the

formation of a fully equilibrated actin network structure. As a

consequence, kinetic trapping effects might play a role [25] and

might explain the occurrence of thinner bundles at high MC

concentration.

More subtle changes in the viscoelastic behavior of actin/MC

solutions are induced by intermediate MC concentrations

(between 0.01 and 0.2% (w/v)). Here, no bundles can be detected

by phase contrast and confocal microscopy. In this regime, the

enhancement of the network elasticity can roughly be approxi-

mated by a power law, G0,cMC
0.3. A similar regime showing a

weak increase in the network elasticity has been determined for

actin/PEG solutions below the bundling transition. There,

G0,cPEG
0.2 was observed and attributed to increasing attractive

forces between single filaments upon addition of depletion agent

[15]. However, a similar scaling law does not directly imply that

the same molecular mechanisms are responsible for the enhance-

ment of the elasticity. Recall, that MC solutions themselves show a

viscoelastic behavior which is not observable for PEG solutions at

these low concentrations. In marked contrast to purely viscous

fluids the loss modulus of MC solutions does not follow G0(f) = g/

(2pf) (fig. 3) and a significant elastic response is observed.

Surprisingly, the absolute values of G0(f) as well as G9(f) are on

the same order of magnitude as the viscoelastic response of F-actin

solutions alone. This suggests that MC concentrations as low as

0.01% (w/v) might already be beyond the overlap concentration

creating an entangled viscoelastic material. In fact, the critical

concentration of a slightly smaller MC was found to be 0.03% (w/

v) [26] which corresponds well to our findings considering the

small differences in the molecular weight.

Due to the significant viscoelastic properties of pure MC

solutions themselves, in this intermediate MC concentration

regime both components, the F-actin and the MC solution,

contribute to the mechanical response of the composite material –

at least in the elasticity dominated frequency regime investigated

in this study. The structural organization of the actin solution

seems not to be altered by low concentrations of MC. Thus, the

elastic regime between 10 mHz and 5 Hz will be dominated by

the entanglements of both polymer solutions and no cooperative

influence on the elasticity (or the viscous dissipation) in this low

frequency regime would be expected. This gives rise to the simple

additive behavior that is observed for both viscoelastic moduli.

Matters might be different at higher frequencies (typically around

,1 kHz and above) where Rouse-like fluctuations of single

filaments in a viscous medium determine the viscoelastic response

of an entangled actin solution [27,28] or cross-linked actin

networks [21]. At such high frequencies the presence of MC

might very well have additional effects on the frequency response

of the actin solution which could defy a simple addition of distinct

frequency spectra in this regime.

However, in the experimentally more relevant frequency regime

,5 Hz the observed mechanical additivity provides a simple

method to derive the mechanical properties of a polymer solution

from a polymer/MC mixture. Using a simple calibration

measurement of the pure MC solution, the viscoelastic response

of MC can be subtracted from the response of the polymer/MC

solution. In contrast, due to structural changes at MC concentra-

tions cMC.0.2% (w/v) this strategy is not applicable in the high

concentration regime.

In conclusion, methylcellulose is not suitable to simply increase

the viscosity of polymer solutions as MC can significantly alter the

structure and mechanics of entangled F-actin solutions at

concentrations higher than 0.2% (w/v) MC. Theses alterations

are observed over the whole elasticity dominated frequency regime

studied here which also represents the time frame of typical

biological and biochemical experiments. Therefore, MC should

very cautiously be used to determine biochemical processes that

take place on comparable time scales. In the intermediate

concentration regime, the contribution of MC can be subtracted

from the frequency spectra of the storage and loss modulus. This is

no longer possible above the critical concentration, as the

structural changes induced by MC defy a simple analysis of the

mechanical properties of the bundled network. However, below

the critical concentration the solvent viscosity cannot be increased

sufficiently which drastically limits the utility of MC.

Materials and Methods

Protein preparation
Actin is prepared from rabbit skeletal muscle [29] and stored in

lyophilized form at -20uC. For measurements the lyophilized actin

is dissolved in deionized water and dialyzed against G-buffer

(2 mM Tris (pH 8), 0.2 mM ATP, 0.2 mM CaCl2, 0.2 mM DTT

and 0.005 % NaN3) at 4uC. The G-actin solutions are stored at

4uC and used within seven days of preparation. The average

length of the actin filaments is controlled by adding gelsolin which

is isolated from bovine plasma serum [30,31].

Sample preparation
Samples are prepared by gently mixing deionized water with

gelsolin and G-actin and buffered to 2 mM Tris/HCl (pH 7.5),

2 mM MgCl2, 0.2 mM CaCl2, 0.2 mM DTT, 100 mM KCl and

0.5 mM ATP. Methylcellulose (Sigma M0512, approx. 88 kDa,

viscosity 4000 cP if dissolved 2% (w/v) in H2O) is dissolved in

deionized water to 2% (w/v) or less and added to the sample

before actin polymerization was induced. An actin concentration

of 9.5 mM, an average filament length of 21 mm and a measuring

temperature of 21uC is used. For experiments with pure MC

solutions deionized water is used instead of G-buffer.

Rheology
Approximately 460 mL sample volume are loaded into a

commercial stress controlled rheometer (Physica MCR301, Anton

Paar, Graz, Austria) with a 50 mm plate-plate geometry and

160 mm plate separation. During polymerization the storage

modulus G9(0.5 Hz) is monitored to ensure completed polymer-

ization before measurements. Oscillatory measurements are

performed with constant strain ranging from 1.5% to 10%,

depending on the sample rigidity.

Phase contrast microscopy
Samples prepared as described above were filled into micro-

scope chambers prior to polymerization. 1 h after the polymer-

ization was initiated, the samples are investigated by phase

contrast microscopy using a 636 oil immersion objective (1.4

numerical aperture).

Confocal microscopy
The samples were prepared as described for phase contrast

microscopy. However, actin filaments were stained by adding

0.95 mM phalloidin-tetramethylrhodamine (Sigma) prior to poly-

merization. Images were taken 1 h after polymerization was

induced using a Leica TCS SP5 confocal microscope. Images were

processed with Leica Microsystems LAS AF software and show

maximal intensity projections of either time series (for 0%–0.1%

MC samples) or z-stacks (for 0.2%–1% MC samples).

Composite Actin/MC Gels
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