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Abstract
Hepatic ischemia-reperfusion injury is commonplace in liver surgery, particularly in hepatic
transplantation, hepatic resection, and trauma. The signaling events contributing to local
hepatocellular damage are diverse and complex, and involve the interaction between hepatocytes,
sinusoidal endothelial cells, Kupffer cells, as well as infiltrating neutrophils, macrophages, and
platelets. Signaling mediators include cytokines, reactive oxygen and nitrogen species, calcium,
complement, and several transcription factors. The purpose of this review article is to summarize the
factors that contribute to the pathophysiology of hepatic ischemia-reperfusion injury.
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Introduction
Interruption of an organ’s blood flow, with its subsequent lack of oxygen and nutrient supply,
is an inherent phenomenon during diverse surgical procedures. In liver surgery, there are
clinical situations in which the ischemic periods can be particularly long, such as during the
resection of large hepatic tumors, management of hepatic trauma of diverse origins, vascular
reconstructions, and liver procurement for transplantation.1–3 Once the blood flow and oxygen
supply are reestablished, reperfusion enhances the injury caused by the ischemic period,
aggravating the damage caused at the cellular level.4, 5 This phenomenon, known as ischemia-
reperfusion (IR) injury, impacts directly on liver viability, especially during transplantation
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and liver surgery.3, 6 During an ischemic period, several functional changes occur at the
cellular level that promote cell injury. A decrease in oxidative phosphorylation results in ATP
depletion and derangements in calcium homeostasis.7

The deleterious effects of ATP catabolism modification are further enhanced by the production
of several substances, including reactive oxygen species (ROS), cytokines, adhesion
molecules, and vasoactive agents (endothelin and thromboxane-A2). These alterations are
accompanied by a decrease of cytoprotective substances including nitric oxide, prostacyclin
and others.8 Hepatic cell death occurs due to both necrosis and apoptosis. 9

MICROCIRCULATORY FAILURE
During the ischemic period, the lack of energetic substrate interferes with active
transmembrane transport, producing edema in Kupffer cells (KC) and endothelial cells (EC).
10 Loss of the delicate equilibrium between nitric oxide (NO) and endothelin (ET) induces
vasoconstriction and narrowing of the sinusoidal lumen, compromising leukocyte flow and
bringing them in close contact with the capillary wall.11 The increase in contact between
leukocytes and EC promotes leukotaxis, and although not occluding the capillary lumen
completely, the trapped leukocytes interfere with the flow of blood through the sinusoidal
capillaries.12–14 Platelet aggregation within the hepatic sinusoids further aggravates the
turbulent flow rate through the partially occluded capillaries.15 On reperfusion of the ischemic
liver, the collapse of the microcirculation maintains areas of ischemic liver parenchyma, in a
phenomenon known as “no-reflow”.8, 16, 17 In addition to the microcirculatory failure, the
activation of KC and neutrophils leads to the synthesis of inflammatory cytokines, further
aggravating the severity of the ischemic injury. The cytokines most frequently implicated in
IR injury are the tumor necrosis factor-alpha (TNF-α), interleukins 1 (IL-1) and 6 (IL-6),
prostaglandins (PG), and ROS, especially superoxide (O2

−) and hydrogen peroxide (H2O2).
18–23 Several relevant factors and mediators such as NO are involved in the ischemic injury
of the liver. NO is synthesized from L-arginine by the action of nitric oxide synthase (NOS).
NO is an important mediator of immunomodulation, neurotransmission, and platelet
aggregation.24 Within EC, NO triggers cGMP to reduce the vascular tone and act as a
vasodilator,24,25 NO can mediate the intensity of the IR injury by modulating neutrophil
adhesion, platelet aggregation, and stellate (Ito) cell relaxation.4, 15, 26 Stellate cells contract
when exposed to endothelin-1 (ET-1), whereas sodium nitroprusside (NO donor) induces their
relaxation.27 Therefore, one of the mechanisms involved in IR injury is loss of the equilibrium
between ET and NO levels during reperfusion.27, 28 At the beginning of reperfusion, NO
levels decrease and ET levels increase, favoring microcirculatory vasoconstriction.29, 30
Ischemia reduces intracellular NADPH and oxygen (factors necessary for NO synthesis) and
induces the release of arginase,31 producing and important reduction in NO synthesis, with a
significant increase in degradation of its precursor L-arginine.31, 32 Both endogenous and
exogenous NO protect hepatocytes and EC against IR injury, apparently by vasodilation, and
by inhibiting the expression of adhesion molecules (E-selectin) within the sinusoidal lumen.
25, 26 In order to produce significant amounts of NO in response to a specific stimulus such
as IR, the inducible nitric oxide synthase enzyme (iNOS) is synthesized de novo, a process that
takes 4 to 6 hours.24, 33 Blockade of the L-arginine/NO synthase pathway has been shown to
worsen hepatic apoptosis and liver transplant preservation injury.34, 35 Augmenting graft
iNOS expression with adenoviral iNOS transduction has also been shown to improve liver
transplant preservation injury an improve survival in severe preservation injury.35 In clinical
practice, an increase in NO concentration, as well as the reduction of ET, have been shown to
decrease the severity of IR injury.36
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FACTORS INVOLVED
CELL TYPES

Kupffer cells—During the initial stages of reperfusion KC are activated, producing
morphologic changes that cause them to protrude into the sinusoids, contributing to the
reduction of blood flow within the sinusoidal lumen.18, 37 Activated KC release a large amount
of both proinflammatory (TNF-α, IL-6, IL-1, and prostaglandins) and anti-inflammatory
mediators (IL-10, IL-13), as well as ROS.22, 23 Some studies show that IR injury can be
attenuated or aggravated by the suppression or potentiation of KC activity, respectively.37,
38 Cold liver preservation induces strong KC activation;39 modulation of KC activity can
therefore attenuate the IR damage in transplanted organs and consequently improve their
survival.

Neutrophils—Activated neutrophils contribute to IR damage through the release of ROS and
several proteases.40 Neutrophils accumulate in the liver at the initial stages of reperfusion, and
their adhesion to EC is mediated by the interaction between selectins and integrins expressed
in the neutrophil membrane, and intercellular adhesion molecules (ICAM) expressed on EC.
41, 42 IR increases ICAM-1 expression in hepatic EC, probably through TNF-α and IL-1
synthesis.43, 44 In fact, increased ICAM-1 expression has been associated with acute liver
rejection,45, 46 and neutralization of ICAM-1 decreases the severity of IR injury.47, 48

Recent studies propose that NK-T cell and T cells also play an important role in hepatic IR
injury.49 Resident lymphocytes found within the liver include conventional alphabeta TCR
cells as well as unconventional NK and gammadelta T cells. These lymphocytes can alter
inflammation through the secretion of soluble mediators such as cytokines and chemokines or
through cognate interactions in an antigen-dependent manner. Expression of these mediators
will then result in the recruitment of more lymphocytes and neutrophils.50

Platelets—Platelets adhere to the hepatic sinusoids and induce programmed EC death upon
reperfusion of transplanted organs.51 Platelets synthesize and release several factors that play
an important role in the liver IR and hepatic regeneration.52 These include cytokines, growth
factors such as transforming growth factor-β (TGF-β), serotonin, and calpain. Platelet-derived
serotonin has recently been shown to promote tissue repair after normothermic hepatic
ischemia in mice. 53 In human platelets, calpain activation is dependent on fibrinogen binding
to integrin and subsequent platelet aggregation, suggesting a potential role for this protease in
the regulation of post-aggregation responses.54 Platelets also produce NO that leads to the
production of peroxynitrite, which acts as a potent inductor of programmed cell death in EC.
55, 56

MEDIATORS
Cytokines—Cytokines play a relevant role in IR injury, both by starting and maintaining the
inflammatory response, as well as modulating its severity.57, 58 The substances most studied
in this context are the TNF-α and interleukins IL-1 and IL-6. These cytokines have large
proinflammatory activity, inducing IL-6 and IL-8 synthesis59 and lower anti-inflammatory
IL-10 levels.60, 61 IL-8 is a potent neutrophil chemotactic and activating factor, and correlates
with the neutrophil infiltration in an IR model.61 The expression of adhesion molecules (β2-
integrins and selectins) also promote leukocyte-EC interaction.43 These factors, together with
chemokines and complement factors, recruit polymorphonuclear leukocytes (PMN)8 that
infiltrate the liver, perpetuating and amplifying the ischemic injury by releasing additional
ROS, TNF-α, and diverse proteases.62 TNF-α by itself produces leukocyte chemotaxis and
activation,19 and induces ROS production by KC.63 In turn, IL-1 induces TNF-α synthesis by
KC and induces neutrophil recruitment, which in turn produce ROS.20, 64 Both TNF-α and
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IL-1 levels are increased during hepatic IR injury,39,45 and their neutralization decreases the
intensity of IR injury.20, 64 Recent studies have confirmed the relationship between IL-1 and
neutrophil recruitment within hepatic tissue after IR, but its relationship to the extent of
hepatocellular injury remains unclear.65

Reactive oxygen species (ROS)—Aerobic metabolism releases ROS, which under
normal circumstances are neutralized through diverse antioxidant mechanisms.66 Under stress
conditions, the balance between ROS and antioxidants shifts towards the former, resulting in
oxidative stress and cytotoxicity.40, 67

Some of the processes involved both directly and indirectly in IR injury by ROS synthesis
include the transformation of xanthine dehydrogenase into xanthine oxidase (an oxygen-
dependant process that produces uric acid, releasing the ROS superoxide and hydrogen
peroxide),68 induction of NADPH oxidase by activated KC and neutrophils (ROS production
is blocked when NADPH oxidase is inhibited), and NO production and its conversion to
peroxynitrite (both considered reactive nitrogen species).56, 67 Within the liver, the cytotoxic
effects of ROS translate into nitrosylation of iron-sulfur groups and tyrosine residues,
inactivation of the heme group, and lipid peroxidation.5, 56

Because of the potential inhibition of ROS by antioxidant agents, several studies have focused
in modulating the severity of IR injury with different mechanisms, including pharmacologic
α-tocopherol,69 allopurinol,70, 71 N-acetylcysteine,72 and enzymatic superoxide dismutase
(SOD)73 and catalase73, 74 therapies. Endogenous antioxidant levels decrease significantly
during reperfusion.69, 75 Therefore, the administration of exogenous antioxidants, particularly
in the early stages of reperfusion, could significantly decrease the severity of IR damage in
transplanted livers.

Complement system—Activation of the complement system has been demonstrated during
IR. The complement system consist of about 30 soluble and membrane bound protein can be
activated by any one of three pathways, the antibody-dependent classical pathway, the
alternative pathway, or mannose-binding lectin (MBL) pathway.76 Activated complement acts
both directly through the formation and deposition of membrane attack complexes,77 and
indirectly by stimulating the production of chemotactic agents and proinflammatory cytokines,
resulting in migration and adhesion of leukocytes and neutrophil recruitment within the
sinusoids.78, 79 Complement inhibitors have been shown to be effective in reducing pathology
of various organ-specific I/R injuries. For example, a partial IR rat model was used to
investigate the efficacy of a small molecule C5a receptor antagonist against hepatic I/R injury.
This antagonist ameliorated neutrophil infiltration, liver injury, and mortality.80 However,
only a few complement inhibitors such as the small molecule C5a receptor antagonist, and
recombinant sCR1 or C5 antibody are currently suitable for clinical testing in humans. 81

Calcium—Calcium was one of the first factors implicated in IR, by modulating the severity
of IR with Ca2+ channel blockers. During IR, Ca2+ is essential for the activation of calcium-
dependent phospholipases, nucleases, and proteases, and it plays a key role in the interruption
of oxidative phosphorylation by decreasing ATP levels.82 Modulation of mitochondrial
calcium management has also been shown to attenuate hepatic warm ischemia-reperfusion
injury. 89

Adenosine—Adenosine is an endogenous compound that is produced by the enzymatic
metabolism of ATP, ADP, and AMP. At high concentrations, it confers certain protection
against ischemia by inhibiting platelet aggregation,83 neutrophil activation,84 and ET and ROS
production while enhancing NO production.84, 85 During liver ischemia reperfusion,
adenosine and inosine are released from the liver, which in turn contributes to homeostasis by
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releasing glucose from the hepatic glycogen through stimulation of A3 adenosine receptors.
86 With reperfusion, inosine can be washed out of the organ,87 thus eliminating completely
its protective effect. Inosine, when converted to hypoxanthine and xanthine, is also involved
in ROS.88

Molecular mechanisms involved in liver ischemia reperfusion—When the liver is
subjected to an ischemic insult, the alterations induced by oxidative stress can exceed the
compensatory capacity of the liver, producing cell death. The ischemic event can reprogram
gene expression of the surviving cells, initiating cellular mechanisms that allow them to
regenerate and remodel. ATP is depleted during the ischemic period, and then liver injury is
further exacerbated during reperfusion. One of the important transcription factors involved in
mediating hepatic IR injury is nuclear factor kappa B (NF-κB).89–91

NF-κB is normally found in the cytoplasm attached to the inhibitory protein IκB.92 During
oxidative stress, IκB is degraded, allowing for the translocation of NF-κB to the nucleus.92,
93 When activated, NF-κB induces the synthesis of iNOS, cytokines (TNF-α), chemokines,
and adhesion molecules (ICAM-1).27, 93 The most important mechanism for NF-κB activation
is ROS production, particularly hydrogen peroxide (H2O2),94 whereas the administration of
antioxidants decreases its activation. NF-κB is activated during two different stages of IR, with
different actions: at an early stage (from 30 min to 3 h of reperfusion), it induces an increase
in the expression of proinflammatory cytokines (IL-1β, IL-6, and TNF-α). At a later stage (9
to 12 h after reperfusion), it acts as an anti-inflammatory agent.95 Other genes that may
participate in IR include those of ET-1, NOS-3, heme-oxygenase, and those of the heat stress
factor proteins.96 ROS have been documented to either activate or modulate all these pathways.

Apoptosis and necrosis—During reperfusion, TNF-α and other mediators activate many
of the proteins involved in apoptosis, such as the proteases caspase-3 and caspase-8, along with
mitochondria cytochrome-C release to the cytoplasm.81 The cascade of events that starts with
these substances leads to DNA destruction and cell death.56 With this in mind, it is reasonable
to think that apoptosis is the final effector of cell death during IR. However, in spite of the fact
that suppression of apoptosis improves survival after ischemia and decreases reperfusion
damage,97–100 some investigators argue that the predominate cell death event during IR is
massive necrosis,101 particularly in steatotic livers. In view of this controversy, Lemasters in
1999, proposed the theory of “necroapoptosis”,102 emphasizing the main mechanisms that
participate in IR at the cellular level and suggesting that both cell death mechanisms, necrosis
and apoptosis, occur simultaneously during ischemia, and that they even imbricate during
reperfusion. The ischemic stimulus can culminate in necrosis or in apoptosis, depending on
the interaction with other determining factors, such as a significant reduction of ATP
levels103 or in the fat content of the liver.104

Conclusion
The cell signaling pathways and mediators of hepatic ischemia reperfusion are summarized in
figure 1. In vitro and pre-clinical animal studies have led to an overall better understanding of
liver anatomy, physiology, and the complex signaling events during IR injury. 105

Application of pharmacologic, genetic, and surgical approaches to reduce hepatic IR injury
have been applied and are increasingly being utilized. Therapeutic approaches include
pharmacologic use of N-acetylcysteine, prostaglandins, prostacyclin, and ischemic pre-
conditioning 56, 106 107, 108 109 110 Careful liver manipulation, and efforts to minimize
warm ischemia time are also important principles. Strategies to improve liver outcomes and
minimize I/R injury were summarized recently in a review by Clavien and colleagues111
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Ultimately, the goal is application to safer clinical liver surgery during hepatic resections, liver
transplantation, and the operative management of liver trauma.
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Figure 1.
Mechanisms involved in hepatic ischemia-reperfusion injury. Hepatocyte (HC), Sinusoidal
Endothelial cell (SEC), Kupffer cell (KC), Neutrophil (PMN), Platelets (Plts), nitric oxide
(NO), Endothelin (ET), Calcium (Ca2+), Adenosine triphosphate (ATP), Platelet activating
factor (PAF), Reactive oxygen species (ROS)
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