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While it is possible to interpret microarray experiments a single gene at a time, most studies generate long lists of differentially
expressed genes whose interpretation requires the integration of prior biological knowledge. This prior knowledge is stored in
various public and private databases and covers several aspects of gene function and biological information. In this review, we
will describe the tools and places where to find prior accurate biological information and how to process and incorporate them to
interpret microarray data analyses. Here, we highlight selected tools and resources for gene class level ontology analysis (Section
2), gene coexpression analysis (Section 3), gene network analysis (Section 4), biological pathway analysis (Section 5), analysis
of transcriptional regulation (Section 6), and omics data integration (Section 7). The overall goal of this review is to provide
researchers with tools and information to facilitate the interpretation of microarray data.
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1. INTRODUCTION

Microarray analysis is exploratory and very high dimen-
sional, and the primary purpose is to generate a list of
differentially regulated genes that can provide insight into
the biological phenomena under investigation. However,
analysis should not stop with a list, it should be the starting
point for secondary analyses that aim at deciphering
the molecular mechanisms underlying the biological
phenotypes analyzed. Combining microarray data with
prior biological knowledge is a fundamental key to the
interpretation of the list of genes. This prior knowledge is
stored in various public and private databases and covers
several aspects of genes functions and biological information
such as regulatory sequence analysis, gene ontology, and
pathway information. In this review, we will describe the
tools and places where to find prior accurate biological
information and how to incorporate them into the analysis
of microarray data. The plant genome outreach portal
(http://www.plantgdb.org/PGROP/pgrop.php?app=pgrop)
list many of these resources and other tools and resources
such as EST resources and BLAST that are not covered in

this review. We also address some theoretical aspects and
methodological issues of the algorithms implemented in the
tools that have been recently developed for bioinformatic
and what needs to be considered when selecting a tool for
use.

2. CLASS LEVEL FUNCTIONAL ANNOTATION TOOLS

The goal of these class level functional annotation tools is to
relate the expression data to other attributes such as cellular
localization, biological process, and molecular function
for groups of related genes. The most common way to
functionally analyze a gene list is to gather information from
the literature or from databases covering the whole genome.
The recent developments in technologies and instrumenta-
tion enabled a rapid accumulation of large amount of in
silico data in the area of genomics, transcriptomics, and
proteomics as well. The gene ontology (GO) consortium was
created to develop consistent descriptions of gene products
in different databases [1]. The GO provides researchers with
a powerful way to query and analyze this information in a
way that is independent of species [2]. GO allows for the
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annotation of genes at different levels of abstraction due to
the directed acyclic graph (DAG) structure of the GO. In this
particular hierarchical structure, each term can have one or
more child terms as well as one or more parent terms. For
instance, the same gene list is annotated with a more general
GO term such as “cell communication” at a higher level of
abstraction, whereas the lowest level provides a more specific
ontology term such as “intracellular signaling cascade.”

In recent years, various tools have been developed
to assess the statistical significance of association of a
list of genes with GO annotations terms, and new ones
are being regularly released [3]. There has been extensive
discussion of the most appropriate methods for the class
level analysis of microarray data [4–6]. The methods and
tools are based on different methodological assumptions.
There are two key points to consider: (1) whether the
method uses gene sampling or subject sampling and (2)
whether the method uses competitive or self-contained pro-
cedures. The subject sampling methods are preferred and
the competitive versus self-contained debate continues. Gene
sampling methods base their calculation of the p-value for
the geneset on a distribution in which the gene is the unit
of sampling, while the subject sampling methods take the
subject as the sampling unit. The latter is more valid for
the unit of randomization is the subjects not the genes
[7–9].

Competitive tests, which encompass most of the existing
tools, test whether a gene class, defined by a specific GO
term or pathway or similar, is overrepresented in the list of
genes differentially expressed compared to a reference set of
genes. A self-contained test compares the gene set toa fixed
standard that does not depend on the measurements of genes
outside the gene set. Goeman et al. [10, 11], Mansmann and
Meister [7], and Tomfohr et al. [9] applied the self-contained
methods.

Another important aspect of ontological analysis regard-
less of the tool or statistical method is the choice of the
reference gene list against which the list of differentially
regulated genes is compared. Inappropriate choice of refer-
ence genes may lead to false functional characterization of
the differentiated gene list. Khatri and Drǎghici [3] pointed
out that only the genes represented on the array, although
quite incomplete, should be used as reference list instead of
the whole genome as it is a common practice. In addition
correct, up to date, and complete annotation of genes with
GO terms is critical. The competitive and gene sample-
based procedures tend to have better and more complete
databases. GO allows for the annotation of genes at different
levels of abstraction due to the directed acyclic graph (DAG)
structure of the GO. In this particular hierarchical structure,
each term can have one or more child terms as well as
one or more parent terms. For instance, the same gene list
is annotated with a more general GO term such as “cell
communication” at a higher level of abstraction, whereas
the lowest level provides a more specific ontology term
such as “intracellular signaling cascade.” It is important to
integrate the hierarchical structure of the GO in the analysis
since various levels of abstraction usually give different
p-values. The large number (hundreds or thousands) of

tests performed during ontological analysis may lead to
spurious associations just by chance, thus correction for
multiple testing is a necessary step to take. We present here
a nonexhaustive list of tools available that can be used
to perform functional annotation of gene list and attempt
to compare their functionalities (Table 1). All tools accept
input data from Arabidopsis thaliana, the most used model
organism in plant studies, as well as many animal organism
models.

Onto-Express (OE): http://vortex.cs.wayne.edu/
projects.htm#Onto-Express

Onto-Express is a software application used to translate a
list of differentially regulated genes into a functional profile
[12, 13]. Onto-Express constructs a profile for each of the GO
categories: cellular component, biological process, molecular
function, and chromosome location as well. Onto-Express
implements hypergeometric, binomial, X2 and Fisher’s exact
tests. The results are displayed in a graphical form that
allows the user to collapse or expand GO node and visualize
the p-values associated with each level of GO abstraction.
Onto-Express performs Bonferroni, Holm, Sidak, and FDR
corrections to adjust for multiple testing. Users have an
option of either providing their own reference gene list or
selecting a microarray platform as reference gene list. An
extensive list of up to date annotations is provided for many
arrays.

FuncAssociate: http://llama.med.harvard.edu/cgi/
func/funcassociate

FuncAssociate is a web-based tool that characterizes large
sets of genes with GO terms using the Fisher’s exact test
[14]. Among all annotation tools FuncAssociate stands out
in that it implements a Monte Carlo simulation to correct for
multiple testing. In addition the tools can conduct analysis
on ranked list of query genes. Although FuncAssociate
supports 10 organisms, it does not provide visualization or
level information for the GO annotation.

SAFE (Significance Analysis of Function and Expression)

SAFE is a Bioconductor/R algorithm that first computes
gene-specific statistics in order to test for association between
gene expression and the phenotype of interest [15]. Gene-
specific statistics are used to estimate global statistics that
detects shifts in the local statistics within a gene category. The
significance of the global statistics is assessed by repeatedly
permuting the response values. SAFE implements a rank-
based global statistics that enables a better use of marginally
significant genes than those based on a p-value cutoff.

Global test

Global test is a Bioconductor/R package that tests the
association of expression pattern of a group of genes with
selected phenotypes of interest using self-contained methods
[10]. The method is based on a penalized regression model
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Table 1: Recapitulative list of GO annotations tools.

Tool name Statistical model
GO abstraction
level

GO
visualization

Multiple testing Type of array
Other
annotation

OS

Onto-Express
hypergeometric,
Fisher’s exact test,
binomial, X2

Available DAG
Bonferroni,
Holm, Sidak,
FDR

172 commercial
arrays

Chromosomal
position

Any

FatiGO+ Fisher’s exact test Available
One level at a
time

FDR User-provided

KEGG
pathways,
SwissPROT
keywords

Any

FuncAssociate Fisher’s exact test Not available Not available
Monte Carlo
simulation

User-provided Not available Web-based

GoToolBox
hypergeometric
test, Fisher’s exact
test or binomial

Available
One level at a
time

Bonferroni User-provided Not available Any

CLENCH2
Hypergeometric,
binomial, X2 Static global DAG None User-provided Not available Windows

BiNGO
Hypergeometric,
binomial

Available,
GOSlim

DAG
FDR,
Bonferroni

commercial
arrays

Not available

GoSurfer X2 Lowest level DAG FDR Affymetrix only Not available Windows

that shrinks regression coefficient between gene expression
and phenotype toward a common mean. The algorithm
allows the users to testbiological hypothesis or to search GO
databases for potential pathways. The results of gene lists of
various sizes can be compared.

FatiGO+ (Fast Assignment and Transference of
Information): http://babelomics2.bioinfo.cipf.es/fatigoplus/
cgi-bin/fatigoplus.cgi

FatiGO+ tests for significant difference in distribution of GO
terms between any two groups of genes (ideally a group of
interest and a reference set of genes) using a Fisher’s exact
test for 2 by 2 contingency table [16]. FatiGO+ implements
an inclusive analysis in which at a given level in the GO DAG
hierarchy, genes annotated with child GO terms take the
annotation from the parent. This increases the power of the
test. The software returns adjusted p-values using the FDR
method [17].

GOToolBox: http://burgundy.cmmt.ubc.ca/GOToolBox/

GOToolBox identifies over-or under-represented GO terms
in a gene set using either hypergeometric distribution-based
tests or binomial test [18]. The user has the option of
choosing between the total set of genes in the genome as
reference or provides his own list of reference genes. The
software implements Bonferroni correction to adjust for
multiple testing. Its also allows the user to select a specific
level of GO abstraction prior to the analysis.

CLENCH2 (CLuster ENriCHment):
http://www.stanford.edu/∼nigam/cgi-bin/dokuwiki/
doku.php?id=clench

Clench is used to calculate cluster enrichment for GO terms
[19]. The program accepts two lists of genes: a reference set

of genes and the list of changed genes. CLENCH performs
hypergeometric, binomial and X2 tests to estimate GO terms
enrichment. The program allows the user to choose an FDR
cutoff in order to account for multiple testing.

BiNGO (Biological Network Gene Ontology tool):
http://www.psb.ugent.be/cbd/papers/BiNGO/

BiNGO is a Java-based tool to determine which gene ontol-
ogy (GO) categories are statistically overrepresented in a set
of genes or a subgraph of a biological network [20]. BiNGO
is implemented as a plugin for Cytoscape, which is an open
source bioinformatics software platform for visualizing and
integrating molecular interaction networks. The program
implements hypergeometric test and binomial test and
performs FDR to control multiple testing. BiNGO maps
predominant functional themes of the tested genes on the
GO hierarchy. It allows a customizable visual representation
of the results. One limitation is that the user can only choose
between the whole genome or the network under study as
reference set of gene for the enrichment test.

GoSurfer: http://bioinformatics.bioen.uiuc.edu/gosurfer/

GoSurfer is used to visualize and compare gene sets by
mapping them onto gene ontology (GO) information in the
form of a hierarchical tree [21]. Users can manipulate the
tree output by various means, like setting heuristic thresholds
or using statistical tests. Significantly important GO terms
resulting from a X2 test can be highlighted. The software
controls for false discovery rate.

3. GENE COEXPRESSION ANALYSIS TOOLS

In most microarray studies, gene expressions are measured
on a small number of arrays or samples; however, large
collections of arrays are available in microarray database
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that contain transcript levels data from thousands of genes
across a wide variety of experiments and samples. These
tools provide scientists with the opportunity to analyze the
transcriptome by pooling gene expression information from
multiple data sets. This meta-analytic approach allows biolo-
gists to test the consistency of gene expression patterns across
different studies. Most importantly, the analysis of concerted
changes in transcript levels between genes can lead to biolog-
ical function discovery. It has been demonstrated that genes
which protein products cooperate in the same pathway or are
in a multimeric protein complex display similar expression
patterns across a variety of experimental conditions [22, 23].
Using the guilt-by-association principle, investigators can
functionally characterize a previously uncharacterized gene
when it displays expression pattern similar to that of known
genes. The coexpression relationship between two genes
is usually assessed by computing the Pearson’s correlation
coefficient or other distance measures. Prior to the coex-
pression analysis, a set of “bait-genes” is selected based on
previous biological or literature information. Then the genes
which expression is significantly correlated with bait-genes
expression are analyzed to identify new potential actors in a
given pathway or biological process. However, coexpression
between two genes does not necessarily translate into similar
function between both genes. Some statistically significant
correlations may occur by chance. Some authors suggest
that to be sustainable the gene coexpressions observed in
one species should be confirmed in other evolutionary close
species [24]. Tools have been developed that make use of the
large sample size available in these databases to identify more
reliable concerted changes in transcripts levels as well as to
examine the coordinated change of gene expression levels.

Cress-express:http://www.cressexpress.org/

Cress-express estimates the coexpression between a user-
provided list of genes and all genes from Affymetrix Ath1
platform using up to 1779 arrays. Cress-express also per-
forms pathway-level coexpression (PLC) [25]. PLC identifies
and ranks genes based on their coexpression with a group
of genes. Cress-express also delivers results in “bulk” formats
suitable for downstream data mining via web services. The
tool generates files for easy import into Cytoscape for
visualization. The tool has the data processed with a variety
of image processing methods: RMA, MAS5, and GCRMA.
Investigators can select which of over 100 experiments to
include in coexpression analysis.

ATTED-II (Arabidopsis thaliana transfactor and cis-element
prediction database): http://www.atted.bio.titech.ac.jp/

ATTED-II provides coregulated gene relationships in Ara-
bidopsis thaliana to estimate gene functions. In addition,
it can predict overrepresented cis-elements based upon all
possible heptamers. There is also several visualization tools
and databases of annotations attached to the coexpression.

Genevestigator: http://www.genevestigator.ethz.ch/

Genevestigator is a web-based discovery tool to study the
expression and regulation of genes, pathways, and networks
[26, 27]. Among other applications, the software allows
the user to look at individual gene expression or group of
genes coexpression in many different tissues, at multiple
developmental stages, or in response to large sets of stimuli,
diseases, drug treatments, or mutations. In addition, elec-
tronic northern blots and other analyses may be conducted.

BAR (the botany array resource) expression ANGLER:
http://www.bar.utoronto.ca/

The expression anger allows the user to identify genes with
similar expression profile with the user provided gene across
multiple samples [28]. The user can specify the Pearson
correlation coefficient threshold and the array database to
use for the coexpression analysis.

AthCor@CSB.DB (A. thaliana coresponse database):
http://csbdb.mpimp-golm.mpg.de/csbdb/dbcor/ath.html

AthCor is a coexpression tool that allows the use of
functional ontology filter to identify genes coexpressed
with a gene of interest filtering the search by functional
ontologies [29]. The user can select between parametric and
nonparametric correlation tests.

PLEXdb (Plant Expression Database): http://www.plexdb.org/

PLEXdb serves as a comprehensive public repository for gene
expression for plants and plant pathogens [30]. PLEXdb
integrates new gene expression datasets with traditional
genomics and phenotypic data. The integrated tools of
PLEXdb allow plant investigators to perform comparative
and functional genomics analyses using large-scale expres-
sion data sets.

ACT (Arabidopsis Coexpression Data mining Tool):
http://www.arabidopsis.leeds.ac.uk/act/index.php

ACT estimates the coexpression of 21 891 Arabidopsis genes
based on Affymetrix ATH1 platform using a simple correla-
tion test [31]. The web server includes a database that stores
precalculated correlation results from over 300 arrays of the
NASC/GARNet dataset. A “clique finder” tool allows the user
to identify groups of consistently coexpressed genes within a
user-defined list of genes. The identification of genes with
a known function within a cluster allows inference to be
made about the other genes. Users can also visualize the
coexpression scatter plots of all genes against a group of
genes.

4. GENE NETWORK ANALYSIS

Genes and their protein products are related to each other
through a complex network of interactions. In higher meta-
zoa, on average each gene is estimated to interact with five

http://www.cressexpress.org/
http://www.atted.bio.titech.ac.jp/
http://www.genevestigator.ethz.ch/
http://www.bar.utoronto.ca/
http://csbdb.mpimp-golm.mpg.de/csbdb/dbcor/ath.html
http://www.plexdb.org/
http://www.arabidopsis.leeds.ac.uk/act/index.php


I. Coulibaly and GrierP. Page 5

other genes [32], and to be involved in ten different biological
functions during development [33]. On a molecular level,
the function of a gene depends on its cellular context, and
the activity of a cell is determined by which genes are being
expressed and which are not and how they interact with
each other. In such high interconnectedness, analyzing a
network as a whole is essential to understanding the complex
molecular processes underlying biological systems. The
traditional reductionist approach that investigates biological
phenomena by analyzing one gene at a time cannot address
this complexity. By using systems biology approach and
network theories, investigators can analyze the behavior
and relationships of all of the elements in a particular
biological system to arrive at a more complete description
of how the system functions [34]. High-throughput gene
expression profiling offers the opportunity to analyze gene
interrelationships at the genome scale. Clustering analysis on
microarray expression data only extracts lists of coregulated
genes out of a large-scale expression data. It does not tell
us who is regulating whom and how. However, the task of
modeling dynamic systems with large number of variables
can be computationally challenging. In gene regulatory
networks, genes, mRNA, or proteins correspond to the
network nodes and the links among the nodes stand for the
regulatory interactions (activations or inhibitions). In this
section, we will describe some of the methods and tools used
to reconstruct, visualize, and explore gene networks.

4.1. Gene network reconstruction algorithms

Two main approaches have been used to develop models
for gene regulatory networks [35]. One method is based
on Bayesian inference theory which seeks to find the most
probable network given the observed expression patterns of
the genes to be included in the network. The regulatory inter-
actions among genes and their directions are derived from
expression data. Several network structures are proposed and
scored on the basis of how well they explain the data as it
has been successfully implemented in yeast [36]. The second
approach is based on “mutual information” as a measure
of correlation between gene expression patterns [37]. A
regulatory interaction between two genes is established if
the mutual information on their expression patterns is
significantly larger than a p-threshold value calculated from
the mutual information between random permutations of
the same patterns. Unlike the Bayesian theory, which tries
out whole networks and selects the one that best explains the
observed data, the mutual information method constructs
a network by selecting or rejecting regulatory interactions
between pairs of genes. This method does not provide
the direction of regulatory interactions. We present below
selected tools that implement either of the aforementioned
approaches to reverse-engineer gene regulatory networks.

BNArray (Bayesian Network Array):
http://www.cls.zju.edu.cn/binfo/BNArray/

BNArray is a tool developed in R for inferring gene
regulatory networks from DNA microarray data by using

a Bayesian network [38]. It allows the reconstruction of
significant submodules within regulatory networks using
an extended subnetwork mining algorithm. BNArray can
handle microarray data with missing values.

BANJO (Bayesian Network Inference with Java Objects):
http://www.cs.duke.edu/∼amink/software/banjo/

Banjo is a tool developed in Java for inferring gene networks
[39]. Banjo implements Bayesian and dynamic Bayesian
networks to infer networks from both steady-state and time-
series expression data. A “proposer” component of Banjo
uses heuristic approaches to search the network space for
potential network structures. Each network structure is
explored and an overall network’s score is computed based
on the parameters of the conditional probability density
distribution. The network with the best overall score is
accepted by a “decider” component of the software. The
network retained is processed by Banjo to compute influence
scores on the edges indicating the direction of the regulation
between genes. The software displays the output network.

GNA (Genetic Network Analyzer):
http://www-helix.inrialpes.fr/article122.html

GNA is a freely available software used for modeling and
simulating genetic regulatory networks from gene expression
data and regulatory interaction information [40]. In GNA,
the dynamics of a regulatory network is modeled by a class
of piecewise-linear differential equations. The biological data
are transformed into mathematical formalism. Thus the
software uses qualitative constraints in the form of algebraic
inequalities instead of numerical values.

PathwayAssist http://www.ariadnegenomics.com/products/
pathway-studio

PathwayAssist allows the users to create their own pathways
by combining the user-submitted microarray expression data
with knowledge from biological databases such as BIND,
KEGG, DIP [41]. The software provides a graphical user
interface and publication quality figures.

4.2. Network visualization tools

As a result of the explosion and advances in experimental
technologies that allow genome-wide characterization of
molecular states and interactions among thousands of genes,
researchers are often faced with the need for tools for the
visualization, display, and evaluation of large structure data.
The main aim of these tools is to provide a summarized
yet understandable view of large amount of data while
integrating additional information regarding the biological
processes and functions. Several network visualization tools
have been developed of which we will describe some of the
most popular.
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Cytoscape—http://www.cytoscape.org/

Cytoscape is a general-purpose, open-source software envi-
ronment for the large scale integration of molecular inter-
action network data [42]. Dynamic states on molecules
and molecular interactions are handled as attributes on
nodes and edges, whereas static hierarchical data, such
as protein-functional ontologies, are supported by use of
annotations. The Cytoscape core handles basic features such
as network layout and mapping of data attributes to visual
display properties. Many Cytoscape plug-ins extend this core
functionality.

CellDesigner http://www.celldesigner.org/

CellDesigner is a structured diagram editor for drawing
gene-regulatory and biochemical networks based on stan-
dardized technologies and with wide transportability to
other systems biology markup language (SBML) compliant
applications and systems biology workbench (SBW) [43].
Networks are drawn based on the process diagram, with
graphical notation system. The user can browse and modify
existing SBML models with references to existing databases,
simulate and view the dynamics through an intuitive graphi-
cal interface. CellDesigner runs on Windows, MacOS X, and
Linux.

VANTED (Visualization and Analysis of Networks with related
Experimental Data): http://vanted.ipk-gatersleben.de/

Vanted is a freely available tool for network visualization
that allows users to map their own experimental data
on networks drawn in the tool, downloaded from KEGG
pathway database, or imported using standard imported
formats [44]. The software graphically represents the genes
in their underlying metabolic context. Statistical methods
implemented in VANTED allow the comparison between
treatments or groups of genes, the generation of correlation
matrix, or the clustering of genes based on expression
pattern.

Osprey http://biodata.mshri.on.ca/osprey/servlet/Index

Osprey is a software for visualization and manipulation
of complex interaction networks [45]. Osprey allows user
defined colors to indicate gene function, experimental sys-
tems, and data sources. Genes are colored by their biological
process as defined by standardized gene ontology (GO)
annotations. As a network complexity increases, Osprey
simplifies network layouts through user-implemented node
relaxation, which disperses nodes and edges according to
anyone of a number of layout options.

VisANT (Integrative Visual Analysis Tool for Biological
Networks and Pathways): http://visant.bu.edu/

VisANT is a freely available open-source tool for integrating
biomolecular interaction data into a cohesive, graphical
interface [45–47]. VisANT offers an online interface for a

large range of published datasets on biomolecular inter-
actions, as well as databases for organized annotation,
including GenBank, KEGG, and SwissProt.

4.3. Network exploration tools

One of the main focuses in the postgenomic era is to study
the network of molecular interactions in order to reveal
the complex roles played by genes, gene products, and the
cellular environments in different biological processes. The
nodes (genes) of a network can be associated with additional
information regarding the gene products, gene positions
in the chromosome, or the gene functional annotation.
The edges in the network symbolize specific interaction
that can be associated with a transcription factor-promoter
bond for instance. This information can be automatically
retrieved in a number of specialized and publicly acces-
sible databases containing data about the nodes and the
interactions. Network exploration tools enable the user to
perform analysis on single genes, gene families, patterns of
molecular interactions, as well as on the global structure
of the network. These tools are able to incorporate both
microscale and macroscale analysis using heterogenous data.
They can connect to a large number of disparate databases.
The user usually has an option to construct interaction
networks either by curation or by computation and to
associate microarray expression data with known metabolic
pathways. Here, we describe some of the most popular
network exploration tools.

MetNet (Metabolic Networking Database):
http://www.metnetdb.org/

MetNet is a publicly available software for analysis of
genome-wide mRNA, protein, and metabolite profiling data
[48]. The software is designed to enable the biologist to
visualize, statistically analyze, and model a metabolic and
regulatory network map of Arabidopsis, combined with gene
expression profiling data. MetNet provides a framework
for the formulation of testable hypotheses regarding the
function of specific genes. The tools within MetNet allow
the user to map metabolic and regulatory networks; to
integrate and visualize data together; to explore and model
the metabolic and regulatory flow in the network.

BiologicalNetworks: http://biologicalnetworks.net/

BiologicalNetworks is a bioinformatics and systems biology
software platform for visualizing molecular interaction net-
works, sequence and 3D structure information [49]. The
tool performs easy retrieval, construction, and visualiza-
tion of complex biological networks, including genome-
scale integrated networks of protein-protein, protein-DNA,
and genetic interactions. BiologicalNetworks also allow the
analysis and the mapping of expression profiles of genes or
proteins onto regulatory, metabolic, and cellular networks.

http://www.cytoscape.org/
http://www.celldesigner.org/
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PaVESy (Pathway Visualization Editing System):
http://pavesy.mpimp-golm.mpg.de/PaVESy.htm

PaVESy is a data managing system for editing and visual-
ization of biological pathways [50]. The main component
of PaVESy is a relational SQL database system that stores
biological objects, such as metabolites, proteins, genes, and
their interrelationships. The user can annotate the biological
objects with specific attributes that are integrated in the
database. The specific roles of the objects are derived from
these attributes in the context of user-defined interactions.
PaVESy can display an individualized view on the database
content that facilitates user customization.

Genevestigator: https://www.genevestigator.ethz.ch

Genevestigator provides a detailed analysis and naviga-
tion through biochemical and/or regulatory pathways. It
combines automatically produced or user-created graphical
representations of networks (e.g., gene modules or pathways)
for the exploratory analysis of a large compendium of
gene expression profiles. Effects on gene expression can be
projected onto these networks for the following ontologies:
anatomy, development, stimulus, and mutation, in form of
comparison sets.

5. BIOLOGICAL PATHWAY RESOURCES

One of the downstream applications of the reconstruction
of a gene regulatory networks or the identification of
clusters of functionally related genes is to associate the
genes and their interconnections with known metabolic
pathways. Biochemists summarized the sequence of enzyme-
catalyzed metabolic reactions between biomolecules as a
network of interactions that results from the conversion
of one organic substance (substrate) to another (product).
Depending on the type of interactions analyzed, several types
of biochemical networks are identified. These biochemical
networks represent the potential mechanistic associations
between genes and gene products that are involved in
specific biological processes [52]. Because of the curse of
dimensionality that sometimes hampers the whole network
analysis, investigators often focus on “pathway” rather than
“network” when they are investigated a small number of
gene interactions. Many specialized databases are available
that store and summarize large amount of information on
metabolic reactions. Increasingly, identifying and searching
the right database is a critical and necessary step in most
biological researches. This task can be tedious due to the large
number of databases available. For a more comprehensive
list of biological pathways resources on the web, the reader is
referred to pathguide (http://www.pathguide.org). Following
is the list of the most popular pathways resources on the web.

KEGG (Kyoto Encyclopedia of Genes and Genomes):
http://www.genome.jp/kegg

KEGG aims to link lower-level information (genes, proteins,
enzymes, reaction molecules, etc.) with higher-level infor-

mation (interactions, enzymatic reactions, pathways, etc.).
Pathways are included for over 100 species.

MetaCyc: http://MetaCyc.org/

MetaCyc is a database of metabolic pathways and enzymes
[53]. Its goal is to serve as a metabolic encyclopedia, con-
taining a collection of nonredundant pathways, enzymatic
reactions, enzymes, chemical compounds, genes and review-
level comments. Enzyme information includes substrate
specificity, kinetic properties, activators, inhibitors, cofactor
requirements and links to sequence and structure databases.
AracCyc (http://www.arabidopsis.org/biocyc/index.jsp) uses
MetaCyc as reference database for visualization of Arabidop-
sis thaliana biochemical pathways. Table 2 indicates web links
to more online pathways databases.

BioCarta: http://www.biocarta.com/genes/index.asp

BioCarta is a web-based resource for exploring biological
pathways. BioCarta catalogs pathways, regulation and inter-
action information for over 120,000 genes covering most
model organisms. Data in BioCarta are constantly updated,
and new pathways are suggested by the life science research
community.

GeneNeT: http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/

The GeneNet system is designed for formalized description
and automated visualization of gene networks [54]. The
GeneNet system includes database on gene network com-
ponents, Java program for the data visualization. GeneNet
allows the users to select entities that are involved in the
functioning of a particular gene network, to describe the
regulatory relations for a particular gene network, and to
search for potential transcription factors.

6. TRANSCRIPTION REGULATION ANALYSIS TOOLS

Most organisms encode a large number of DNA-binding
proteins that act as transcription factors. In Arabidopsis,
more than 5% of the genes have been estimated to encode
transcription factors [55]. Transcription factors bind to
short conserved DNA motifs (cis-acting regulatory elements
CARE) located at the 5’end of the gene (in a region called
promoter) to initiate mRNA transcription. Thus DNA-
binding proteins play a key role in all aspects of genetic
activity within an organism. They participate in promoting
or repressing the transcription of specific genes. Elucidating
the mechanisms that underlie the expression of genomes is
one of the major challenges in bioinformatics. An interesting
hypothesis one might formulate after a successful microarray
study is that the genes that are coexpressed may also be
coregulated at the transcriptional level. One way to test this
hypothesis is to identify overrepresented oligonucleotides
sequences as potential binding sites for transcriptions factors
in promoter regions of genes clustered in the same group.
The statistical test for overrepresentation of regulatory motifs
in intergenic regions is the general principle implemented in

http://pavesy.mpimp-golm.mpg.de/PaVESy.htm
https://www.genevestigator.ethz.ch
http://www.pathguide.org
http://www.genome.jp/kegg
http://MetaCyc.org/
http://www.arabidopsis.org/biocyc/index.jsp
http://www.biocarta.com/genes/index.asp
http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/
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Table 2: Additional links for pathways databases on the internet.

Database name Description URL

PathDB Biochemical pathways, compounds
and metabolism

http://www.ncgr.org/pathdb

UM-BBD University of Minnesota biocatalysis
and biodegradation database

http://umbbd.ahc.umn.edu/

BIND Biomolecular interaction network
database

http://www.bind.ca/

BRITE
Biomolecular relations in
information transmission and
expression, part of KEGG

http://www.genome.ad.jp/brite/

PAJEK Program for large network analysis http://vlado.fmf.uni-lj.si/pub/networks/pajek/

DDIB Database of domain interactions
and binding

http://www.ddib.org/

DIP
Database of interacting proteins:
experimentally determined
protein-protein interactions

http://dip.doe-mbi.ucla.edu/

IntAct project Protein-protein interaction data http://www.ebi.ac.uk/intact/

InterDom Putative protein domain
interactions

http://interdom.i2r.a-star.edu.sg/

PSIbase Interaction of proteins with known
3D structures

Reactome A knowledgebase of biological
pathways

http://www.reactome.org/

STRING Predicted functional associations
between proteins

http://string.embl.de/

TRANSPATH Gene regulatory networks and
microarray analysis

http://www.biobase-international.com/pages/index.php?id=transpathdatabases

most algorithms for regulatory motif detection [55]. CAREs
can also be predicted through phylogenetic footprinting
that is based on sequence similarity between orthologous
promoters [56]. Some other approaches have been pro-
posed that integrates comparative, structural, and functional
genomics to identify conserved motifs in coregulated genes.
The detailed description of these approaches is beyond the
scope of this chapter. Following is a list of transcription
factors database and tools (Table 3).

Plant Promoter Database (PlantProm DB):
http://mendel.cs.rhul.ac.uk or http://www.softberry.com/

PlantProm is a plant promoter database. The database
represents a collection of annotated, nonredundant proximal
promoter sequences for RNA polymerase II with experimen-
tally determined transcription start site from various plant
species [57].

The Arabidopsis information resource (TAIR) motif
analysis software: http://www.arabidopsis.org/tools/bulk/
motiffinder/index.jsp

The motif analysis tool of the TAIR compares the frequency
of 6-mer motif in promoter regions of query set of genes with
the frequency of the 6-mer motif in the whole A. thaliana

genome. A binomial distribution p-value is computed for
each motif identified. The user can specify the size of the
genes 5’upstream region to 500 bp or 1 kb. The tool does not
account for multiple testing.

TRANSFAC:
http://www.biobase-international.com/pages/index.php?
id=transfacdatabases

TRANSFAC is an international unique database on eukary-
otic transcriptional regulation [58]. The database contains
data on transcription factors, their target genes and their
experimental-proven binding sites in genes. Tools within
TRANSFAC allow the users to automatically visualize gene-
regulatory networks based on interlinked factor and gene
entries in the database.

AthaMap: http://www.athamap.de/index.php

AthaMap is a database that organizes a genome-wide map
of potential transcription factor binding sites in Arabidopsis
thaliana [59]. AthaMap allows the user to test for the
overrepresentation of transcription factors in a set of query
genes. A colocalization tool performs combinatorial analysis
to identify synchronized binding of pairs of transcription
factors.

http://www.ncgr.org/pathdb
http://umbbd.ahc.umn.edu/
http://www.bind.ca/
http://www.genome.ad.jp/brite/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://www.ddib.org/
http://dip.doe-mbi.ucla.edu/
http://www.ebi.ac.uk/intact/
http://interdom.i2r.a-star.edu.sg/
http://www.reactome.org/
http://string.embl.de/
http://www.biobase-international.com/pages/index.php?id=transpathdatabases
http://mendel.cs.rhul.ac.uk
http://www.softberry.com/
http://www.arabidopsis.org/tools/bulk/motiffinder/index.jsp
http://www.arabidopsis.org/tools/bulk/motiffinder/index.jsp
http://www.biobase-international.com/pages/index.php?id=transfacdatabases
http://www.biobase-international.com/pages/index.php?id=transfacdatabases
http://www.athamap.de/index.php
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Table 3: Databases for transcription factors available on the internet.

Databse name Description URL

ACTIVITY Functional DNA/RNA site activity http://wwwmgs.bionet.nsc.ru/mgs/systems/activity/

DoOP Database of orthologous promoters:
chordates and plants

http://doop.abc.hu/

EPD Eukaryotic promoter database http://www.epd.isb-sib.ch/

JASPAR PSSMs for transcription factor
DNA-binding sites

http://jaspar.cgb.ki.se/

MAPPER Putative transcription factor
binding sites in various genomes

http://bio.chip.org/mapper

TESS Transcription element search
system

http://www.cbil.upenn.edu/tess/

TRANSCompel
Composite regulatory elements
affecting gene transcription in
eukaryotes

http://www.gene-regulation.com/pub/databases.html#transcompel

TRED Transcriptional regulatory element
database

http://rulai.cshl.edu/tred/

TRRD Transcription regulatory regions of
eukaryotic genes

http://www.bionet.nsc.ru/trrd/

AthaMap
Genome-wide map of putative
transcription factor binding sites in
Arabidopsis thaliana

http://www.athamap.de/

DATF Database of Arabidopsis
transcription factors

http://datf.cbi.pku.edu.cn/

PlantCARE (Plant Cis-Acting Regulatory Elements):
http://bioinformatics.psb.ugent.be/webtools/plantcare/
html/

PlantCARE is a database of plant cis-acting regulatory ele-
ments and a portal to tools for in silico analysis of promoter
sequences [60]. The database can be queried on names of TF
binding sites, function, species, cell type, genes, and reference
literatures. The program returns a list of entries with links
to other information within the database or beyond through
accession to TRANSFAC, EMBL, GenBANK, or MEDLINE.

PLACE (Plant Cis-acting regulatory DNA Elements):
http://www.dna.affrc.go.jp/PLACE/

PLACE is a database of motifs found in plant cis-acting
regulatory DNA elements, all from previously published
reports [61]. In addition to the motifs originally reported
their variations in other genes or in other plant species
reported later are also compiled. The PLACE database also
contains a brief description of each motif and relevant
literature with PubMed ID numbers.

Athena: http://www.bioinformatics2.wsu.edu/cgi-bin/
Athena/cgi/home.pl

Athena is a database which contains over 30 000 predicted
Arabidopsis promoters sequences and consensus sequences
for 105 previously characterized TF binding sites [62].
Athena enables the user to visualize and rapidly inspect key
regulatory elements in multiple promoters. The software
includes tools for testing the overrepresentation of TF sites

among subset of promoters. A data-mining tool allows
the selection of promoter sequences containing specific
combination of TF binding sites. Athena does not adjust for
multiple testing.

AGRIS (Arabidopsis Gene Regulatory Information Server):
http://arabidopsis.med.ohio-state.edu/

AGRIS is an information resource for retrieving Arabidopsis
promoter sequences, transcription factors and their target
genes [63]. AGRIS integrates transcriptional regulatory
information from multiple sources. Users can query the
database with a gene name, gene symbol to retrieve its
promoter along with other genes regulated by the same
transcription factor.

7. ‘OMICS DATA INTEGRATION TOOLS

Various innovative and advanced technologies have allowed
scientists to rapidly generate genome-scale or “omics”
datasets at virtually every cellular level. These individual
omics provide a wealth of information about living cells
and organisms. However, it is only by integrating genomics,
transcriptomics proteomics, metabolomics, and other recent
omics types of data such as “interactomics,” “localizomics,”
“lipidomics,” and “phenomics” that biologists can gain
access to a more complete picture of living organisms and
unexplored areas of biology. This challenging task requires a
systems level approach to perform systematic data mining,
cross-knowledge validation, and cross-species interpolation.
Some investigators attempted the integration of genomic
data and transcriptomic data [64], and the integration of

http://wwwmgs.bionet.nsc.ru/mgs/systems/activity/
http://doop.abc.hu/
http://www.epd.isb-sib.ch/
http://jaspar.cgb.ki.se/
http://bio.chip.org/mapper
http://www.cbil.upenn.edu/tess/
http://www.gene-regulation.com/pub/databases.html#transcompel
http://rulai.cshl.edu/tred/
http://www.bionet.nsc.ru/trrd/
http://www.athamap.de/
http://datf.cbi.pku.edu.cn/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://www.dna.affrc.go.jp/PLACE/
http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl
http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl
http://arabidopsis.med.ohio-state.edu/
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Table 4: Proteomics databases available on the internet.

Databse name Description URL

RPD Rice proteome database http://gene64.dna.affrc.go.jp/RPD/

ANPD Arabidopsis nucleolar protein
database

http://bioinf.scri.sari.ac.uk/cgi-bin/atnopdb/home/

AMPD Arabidopsis mitochondrial protein
database

http://www.plantenergy.uwa.edu.au/applications/ampdb/index.html/

PA-GOSUB
Protein sequences from model
organisma, GO assignement and
subcellular localization

http://www.cs.ualberta.ca/∼bioinfo/PA/GOSUB/

Swiss-Prot
A curated protein sequence
database which strives to provide a
high level of annotation

http://expasy.org/sprot/

AAindex

Database of various
physicochemical and biochemical
properties of amino acids and pairs
of amino acids

http://www.genome.ad.jp/aaindex/

Prosite
Database of protein domains,
families and functional sites, as well
as associated patterns and profiles

http://www.expasy.ch/prosite/

PLANT-PIs

Database of information on the
distribution and functional
properties of protease inhibitors in
higher plants

http://www.ba.itb.cnr.it/PLANT-PIs/

GeneFarm Annotation of Arabidopsis genes
and proteins

http://urgi.versailles.inra.fr/Genefarm/

protein-protein interation data and transcriptomic data [65]
to analyze the dynamics of biological networks in yeast. The
approach commonly used comprises three steps: (1) identifi-
cation of the network that describes all interactions between
cellular components from integrating various genome scale
data; (2) decomposing the network into its constituent
parts or network modules; (3) building a mathematical
model that simulates biological systems for the purpose of
simulation or prediction [66]. We describe below proteomics
and metabolomics, and the potential of their integration
with transcritomic data.

7.1. Proteomics

Gene mRNA expression profiling on a global scale in
response to specific conditions is not sufficient to render
the complexities and dynamics of systems biology. The
ultimate products of genes are proteins. Furthermore, mRNA
levels are not always well correlated with the levels of the
corresponding protein [67] and one gene can produce several
protein species. Indeed, proteins undergo a series of post-
translational molecular modifications such as glycosylation,
phosphorylation, cleavage or complex formation may also
occur that overall influence their function. Proteomics is the
systematic large-scale study of proteins of an organism or a
specific type of tissue, particularly their structure, function,
and spatiotemporal distribution. Thus proteomics is an
essential component of any functional genomics study aim-
ing at understanding biological processes. The integration of
transcriptome and proteome data has not always resulted in
consistent results [68]. The methods and techniques used to

measure the transcript level and the protein level may affect
the results concordance. Nonetheless, the interpretation of
the data in terms of biological pathways or functional groups
gives better correlation of transcriptome with proteome in
yeast [69].

Many plant proteomics databases have been constructed
in recent years. As the plant model organism of choice, Ara-
bidopsis proteome database contains more data compared to
other species. Protein amino acid sequence databases and
repositories for two-dimensional polyacrylamide gel electro-
phoresis as reference maps of proteomes are becoming popu-
lar as tools for analyzing and comparing the plant proteome.
SWISS-2DPAGE is a two-dimensional polyacrylamide gel
electrophoresis database (http://expasy.org/ch2d). PhytoProt
(http://urgi.versailles.inra.fr/phytoprot) is a database of clus-
ters of all the plants full-length protein sequences retrieved
from SwissProt/TrEMBL. Proteins are grouped into clusters
based on their peptide sequence similarity in order to
track erroneous annotations made at the genome level. The
database can be searched for any protein or group of proteins
using protein ID or words appearing in protein description.
Additional plant proteomics databases are provided in
Table 4.

7.2. Metabolomics

Metabolomics is the study of all low molecular weight
chemicals in a plant as the end products of the cellular
processes. The metabolome represents the collection of all
metabolites in an organism. Metabolic profiling provides
an instantaneous snapshot of the chemistry of a sample

http://gene64.dna.affrc.go.jp/RPD/
http://bioinf.scri.sari.ac.uk/cgi-bin/atnopdb/home/
http://www.plantenergy.uwa.edu.au/applications/ampdb/index.html/
http://www.cs.ualberta.ca/~bioinfo/PA/GOSUB/
http://expasy.org/sprot/
http://www.genome.ad.jp/aaindex/
http://www.expasy.ch/prosite/
http://www.ba.itb.cnr.it/PLANT-PIs/
http://urgi.versailles.inra.fr/Genefarm/
http://expasy.org/ch2d
http://urgi.versailles.inra.fr/phytoprot
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Table 5: Main features of the types of bioinformatics tools used for the analysis of DNA microarray data.

Tools and resources Goal Methods

Class level functional
Annotation

Determine a biological meaning to
groups of related genes identified by
microarray analysis

Overrepresentation test of gene
ontology (GO) terms

Gene coexpression
Identify common expression patterns
between genes in order to infer
biological function

Correlation tests of gene expression

Gene network Analysis
Capture the interconnectedness of
cellular components in order to
explain biological phenomena

Systems biology approach

Gene network
reconstruction

Develop models for gene regulatory
networks

Bayesian inference theory Mutual
information theory

Network visualization
Display a simplified view of large
amount biological components and
their interactions

Graph theory

Network exploration
Associate network nodes and edges
with biological information

Incorporate heterogeneous data from
various databases

Biological pathway
resources

Map biological pathways information
into inferred network

Collect and process information from
pathway databases

Transcriptional regulation
analysis

Identify transcription factors that
regulate gene expression

Overrepresentation test of regulatory
motifs in promoter regions of related
genes

and defines the biochemical phenotype of a cell or a tissue
[70]. Similar to transcript level and protein level, the level
of metabolites in an organism or a tissue is influenced by
the biological context [71]. Thus measure of mRNA gene
expression and protein content of a sample do not tell the
whole story of biological phenomena unfolding in that sam-
ple. Although plant metabolomics is still in its infancy, recent
advances in mass spectrometry have enabled the accumula-
tion of metabolites data on a large scale for some species.
Applications of metabolomics data to functional genomics
are numerous. Metabolomics provide scientist with the
ability (1) to characterize genotypes, ecotypes, or phenotypes
with metabolites levels; (2) to identify sites within a genetic
network where metabolites levels are regulated; (3) to analyze
genes functions at the light of metabolites levels [70].
Currently, one of the most pressing needs in the fields of
metabolomics for bioinformatics application is the creation
of specific databases and biochemical ontologies. Such tools
would help clearly describe the function, localization, and
interaction of metabolites. However, databases imbedded in
KEGG and AraCyc can be useful at least in part for the
purpose of metabolites referencing.

8. CONCLUSION

The deluge of large-scale biological data in the recent years
has made the development of computational tools critical to
biological investigation. Microarray studies enables scientist
to simultaneously interrogate thousands of genes throughout
the genome. A great variety of tools have been developed
for the specific task of drawing biological meaning from
microarray data. Most of the tools available exploit prior
biological knowledge accumulated in numerous publicly

available databases in an attempt to provide a comprehensive
view of biological phenomena. Table 5 summarizes the main
features of each class of bioinformatics tool described. These
tools differ in many respects and the guidance provided
in this review will help biologists with little knowledge
in statistics understand some of the key concepts. The
integration of transcriptomics data with all other omics data
is a challenging task that can be addressed by a systems-
levelapproach.
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