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An increasing number of proteins with weak sequence similarity
have been found to assume similar three-dimensional fold and
often have similar or related biochemical or biophysical functions.
We propose a method for detecting the fold similarity between
two proteins with low sequence similarity based on their amino
acid properties alone. The method, the proximity correlation ma-
trix (PCM) method, is built on the observation that the physical
properties of neighboring amino acid residues in sequence at
structurally equivalent positions of two proteins of similar fold are
often correlated even when amino acid sequences are different.
The hydrophobicity is shown to be the most strongly correlated
property for all protein fold classes. The PCM method was tested
on 420 proteins belonging to 64 different known folds, each having
at least three proteins with little sequence similarity. The method
was able to detect fold similarities for 40% of the 420 sequences.
Compared with sequence comparison and several fold-recognition
methods, the method demonstrates good performance in detect-
ing fold similarities among the proteins with low sequence iden-
tity. Applied to the complete genome of Methanococcus jannaschii,
the method recognized the folds for 22 hypothetical proteins.

The tremendous explosion in the amount of genome se-
quences during the past few years makes functional charac-

terization of gene products overwhelming. The most common
way of inferring the function of a new gene is based on sequence
similarity with proteins of known function. Classical sequence
comparison algorithms like SSEARCH (1), FASTA (2), or BLAST (3)
were designed to assess the degree of sequence similarities
between compared sequences. However, an increasing number
of proteins with weak sequence similarity has been found to
assume similar three-dimensional (3D) folds, referred here as
remote homologues, and often have similar or related biochem-
ical or biophysical functions. (In this work remote homologues
imply only structure similarity of proteins rather than their
evolutionary relationship, because the latter is often difficult to
establish reliably for strongly divergent sequences.) To detect
such fold similarity a variety of 3D-threading methods have been
developed; in these methods, amino acid sequence of a new
protein is compared with the 3D amino acid profiles of proteins
with known structures (4–8).

Because 3D-threading methods require the knowledge of the 3D
structure of one of the two compared proteins, they are effective
only for finding the remote homologues of the proteins with known
3D structures. To overcome this limitation, sequence alignment was
combined with alignment of structural properties predicted or
derived from sequence [one-dimensional (1D) threading]. The
alignment of the predicted secondary structure only (9) or the
predicted secondary structure and solvent accessibility of proteins
(10) was shown to be useful for fold recognition. Adding sequence
information by using a sequence similarity matrix works better
(11–14), though finding the optimal matrix remains a challenge. The
matrices currently available were derived from the statistics of
known protein sequences or structures (11–16) and, thus, may be
biased toward the current databases (17).

Because the three-dimensional structure of a protein is deter-
mined by the physical and chemical properties of all residues, we
make a simplifying assumption that the local interactions in prox-

imity of each residue in the protein are similar to those of the
corresponding residue in its remote homologues. We make a
further assumption that, because sequentially adjacent residues are
usually proximal to each other in structure, the sequential arrange-
ment of physical properties of amino acids flanking a given residue
is likely to be correlated to that of the corresponding residue in
remote homologues. This hypothesis is the basis of our method, the
proximity correlation matrix (PCM) method, for detecting fold
similarities between two protein sequences.

Detection of protein fold similarities has two major applications:
(i) fold recognition, where a query sequence is compared with those
of the proteins of known fold, and (ii) fold classification, where
protein sequences are clustered into groups with the same predicted
fold even when the fold information is not available. Here we
present the results of the first application of the PCM method. The
method is tested on a number of proteins with known structures and
known remote homologues, compared with PSI-BLAST (18) and
several 1D-threading techniques (11–15), and applied to the com-
plete genome of Methanococcus jannaschii (19).

Algorithm
Data Sets. For query proteins representing 64 folds (Table 1), we
looked for their remote homologues in a target set composed of
1,390 protein sequences with sequence identity among them not
exceeding 25% [nonredundant set of FSSP database (20)]. Using
structural classification of proteins (SCOP) (21), we chose the 64
protein fold families, each including at least three remote homo-
logues in the target set. Four hundred and twenty of 1,390 proteins
in the target set belong to these fold families. Protein domains with
fewer than 90 residues as well as the composite fold domains, i.e.,
consisting of more than one polypeptide chain or sequentially
distant parts of the same chain, were eliminated.

Protein Representation. Each amino acid residue in a protein is
described in terms of two quantities: secondary structure confor-
mation (helix, strand, or coil) and one of the five physical properties
representing the five major clusters of amino acid indices summa-
rized by Tomii and Kanehisa (22). They are hydrophobicity (23),
volume (24), normalized frequencies of a-helix (25), normalized
frequencies of b-sheet (25), and relative frequency of occurrence
(26). Both real [assigned by DSSP (27)] and predicted [using
program PSIPRED by David Jones (28)] secondary structures are
used for testing.

Proximity Correlation Matrix. For an amino acid residue i we defined
its proximity by a ‘‘window,’’ i.e., a short fragment of the protein
sequence extended from position i to i 2 l in one direction and to
i 1 l in the other. The size of the window, L 5 2l 1 1 (l 5 1, 2, 3)
is varied in different experiments. For two given fragments in the
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two sequences compared, each fragment represented by the middle
position (i and j, respectively; see Fig. 1a), we defined the correla-
tion of a physical property p as:

corr~i , j! 5
1

2l 1 1

O
m52l

l

~pi1m 2 p̄i!~pj1m 2 p̄ j!

sisj , [1]

where p̄ i and s i are the average and SD, respectively, of the
property in the fragment defined by the window centered at i.

To reduce noise from chance correlation of physical properties
between two randomly chosen short fragments we required that
polypeptide chains must have the same secondary structure type in
structurally aligned positions. In other words, we constrained the
alignments between two sequences to the regions where their
secondary structures match (Fig. 1b).

Finally, for a pair of sequences of lengths M and N, we composed
a M 3 N proximity correlation matrix, where the matrix element,
pcmij, is:

pcmij 5
corr~i , j!, if SS~i! 5 SS~j!;
0, if SS~i! Þ SS~j!;
0, if i , l , or j , l , or i . N 2 1, or j , M 2 1

i , ~0,N!, j , ~0,M!,

[2]

where SS(i) is the secondary structure conformation of residue
i, and corr(i, j) is calculated by Eq. 1. This matrix is used to find
the optimal alignment between the sequence pair (Fig. 1c).

Alignment. The alignment procedure is based on the global align-
ment algorithm of Needleman and Wunsch (29), with no penalties
for terminal gaps. Because it is difficult to estimate the dependence
of the alignment score on the lengths of the aligned sequences,
especially if internal gaps are introduced,† we used a simplified
procedure, which compares only the whole sequences or sequence
fragments of approximately the same length. The query and target
sequences are directly compared if the difference in their lengths is
less than 50 residues. If the length of a target sequence is longer than
the query by more than 50 residues, the former is sliced into
overlapping fragments of the length of the query sequence with
50-residue overlap between two adjacent fragments.

For a pair of sequences q and t, the alignment score, Sqt, is
calculated as:

Sqt 5 Opcmij 1 O@O 1 ~xk 2 1!E#,

†Alexandrov, N. N. & Solovyev, V. V., Proceedings of the Pacific Symposium on Biocomputing
1998, January 4–9, 1998, Hawaii, pp. 463–472.

Table 1. The most-populated protein folds and their
representative query proteins

Fold name Class N Protein L

59 to 39 exonuclease a/b 3 1tfr 283
6-Bladed b-propeller b 3 2sil 381
7-Bladed b-propeller b 3 2bbkH 355
Acid proteases b 5 1fmb 104
Actin-depolymerizing proteins a 1 b 3 1svr 94
Adenine nucleotide a-hydrolase a/b 5 1nsyA 271
Barrel-sandwich hybrid b 5 1htp 131
Biotin carboxylase,

N-term/ATP-grasp
Multi 3/6 1gsa 122/192

C2 domain-like b 3 1rsy 135
Class II aaRS and biotin

synthetases
a 1 b 6 1sesA 311

ConA-like lectins b 7 1lcl 141
C-type lectin-like a 1 b 6 1lit 129
Cupredoxins b 8 1plc 99
Cyclin-like a 3 1volA 95/109
Cystatin-like a 1 b 7 1opy 123
Cysteine proteinases a 1 b 3 1ppn 212
Cytochrome c a 5 1cyj 90
Cytochrome P450 a 5 1phd 405
Double psi b-barrel b 3 2eng 205
Double-stranded b-helix b 6 1caxB 184
EF hand-like a 11 1ncx 162
Enolase, N-term a 1 b 3 2mnr 130
FAD/NAD(P)-binding domain a/b 8 1trb 126
Ferredoxin-like a 1 b 17 2ula 90
Ferritin-like a 8 1bcfA 157
Flavodoxin-like a/b 14 3chy 128
Fold of diphtheria toxin b 6 1exg 110
Four-helical cytokines a 11 1bgc 158
Four-helical up-and-down

bundle
a 9 2ccyA 127

Galactose-binding domain-like b 3 1ulo 152
Globin-like a 12 2fal 146
Immunoglobulin-like b-sandwich b 39 1tlk 103
Lipocalins b 6 1mup 157
Lysozyme-like a 1 b 4 1chkA 238
Methyltransferases a/b 4 1vid 214
NAD(P)-binding Rossmann-fold

domains
a/b 24 1eny 268

OB-fold b 16 1prtF 98
Periplasmic-binding protein-like I a/b 7 2dri 271
Periplasmic-binding protein-like II a/b 8 1sbp 309
PH domain-like b 7 1dynA 113
Phosphoribosyltransferases a/b 4 1nulA 142
Phosphorylase/hydrolase-like a/b 6 1xjo 271
P-loop containing NTP

hydrolases
a/b 9 1hurA 180

PLP-dependent transferases a/b 3 2dkb 431
Porins TM 4 2por 301
Protein kinases Multi 5 1csn 293
Reductase/ferredoxin reductase,

C-term.
Multi 7/4 1fnc 136/160

Restriction endonucleases a/b 5 1pvuA 154
Ribonuclease H-like motif a/b 12 1itg 142
Single-stranded left-handed

b-helix
b 3 1thjA 213

Sugar phosphatases Multi 3 1imbA 272
The ‘‘swiveling’’ b/b/a-domain a/b 3 1zymA 247
Thiamin-binding a/b 3 1pvdA 180/196
Thioredoxin fold a/b 9 1thx 108
Toxins’s membrane translocation

domains
TM 5 1colA 197

Table 1. (Continued)

Fold name Class N Protein L

Trypsin-like serine proteases b 5 2sga 181
Viral coat and capsid proteins b 17 1bbt1 186
Zincin-like a 1 b 7 1kuh 132
a/b-hydrolases a/b 12 1whtB 153
b/a (TIM)-barrel a/b 46 1nar 289
b-clip b 3 1dupA 136
b-Grasp a 1 b 4 1put 106
b-Prism I b 3 1vmoA 163
b-Trefoil b 5 1hce 118

Fold name and Class are assigned according to SCOP classification (21), N is
numberofproteins (domains) in thegivenfold in thetarget set;ProteinDatabase
code and length of a representative protein are listed under Protein and L,
respectively. Inamultidomainprotein, thelengthsandfoldnamesofdomainsare
separated with a slash.
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where the first term is the sum of correlation coefficients (Eq.
2) over all aligned positions qi and tj, and the second term is the
sum of the penalties for opening (O 5 3.0) and elongation (E 5
0.3) of all gaps (insertions or deletions), each extending for xk
positions.

All possible alignments are evaluated with Z score:

Zqt 5 ~Sqt 2 S̄q!/ss

where S̄q and ss are the average score and SD, respectively, of
the alignments of the query (q) with all the targets (t). We found
that the optimal window size (L) varies with different folds in
detecting fold homologues. Therefore, for a given pair of se-
quences we took the best Z score among those obtained with
different window sizes.

The overall f lowchart of the PCM procedure is shown in Fig.
2.

Results and Discussion
Remote Homologues. Remote homologues in our test are defined as
proteins with similar fold but sequence identity not more than 25%.

In calculating sequence identity, only the structurally aligned po-
sitions, as indicated in the FSSP database (20), are considered. To
judge whether two folds are similar to each other, we used both
manual [SCOP (21)] and automated (FSSP) classifications of
protein structures. SCOP, often referred to as the most reliable
classification (30), involves expert judgment but provides no align-
ment information, whereas FSSP is objective but requires careful
assessment to exclude proteins with the same local structural motif
but different folds.

The extent of structural similarity in FSSP is provided by the
DALI Z score (31). Although true remote homologues are found
toward the top of the DALI list (ordered by the decreasing
magnitude of Z score), the boundary between the true remote
homologues and all other proteins is not well defined. We have
observed that in most cases this boundary coincides with transition
from ‘‘discrete’’ to ‘‘continuous’’ spectrum of Z scores and is
marked with a prominent gap between adjacent Z scores in the
DALI list (Fig. 3). Therefore, as an alternative to the classical,
hard-cutoff model, Zcutoff 5 b 5 const, we introduced a new,
heuristic model, which can be formally described as:

Zcutoff 5 Zi, if Zi 2 Zi11 . « and Zj 2 Zj11 # e

for any j . i and Zj . 0, « 5 const . [3]

The models were compared for their ability to find the true
remote homologues (as indicated by SCOP) of 64 query proteins
(Table 1) among those automatically detected in the FSSP
database. The constants, b and «, were optimized with criteria:

DT/DF 5 1, [4]

where DT (or DF) stands for the incremental number of true (or
false) structural homologues with Z . Zcutoff. With a higher
cutoff we lose more true than false remote homologues (DT .
DF), whereas with lower cutoff we include more false than true
positives (DT , DF).

The optimal cutoffs, b 5 6.5 and « 50.5, find 58% and 67% of
all true remote homologues, respectively, with less than 5% of false
positives in both cases. Moreover, the heuristic cutoff, «, works
consistently better than the hard cutoff, b, for getting true remote
homologues from the FSSP database (Fig. 4). Therefore, for

Fig. 1. Construction of a proximity correlation matrix. In each panel, the
segment of amino acid sequence of a query protein (using a one-letter code) and
the corresponding vector of properties are shown vertically. Those of a target
protein are shown horizontally. (a) First, the coefficient of correlation (Eq. 1) of a
given physical property [e.g., hydrophobicity (23)] between two short sequence
fragments (i 2 1, i 1 1) and (j 2 1, j 1 1) of two proteins is assigned to the matrix
element (i, j). (b) Second, all matrix elements (i, j) where secondary structure
conformations (h-helix, s-strand, or c-coil) of the corresponding residues, i and j,
mismatch,areassignedwithzeros. (c) Finally, theoptimalalignment, correspond-
ing to the trace in the matrix with the maximum score (Eq. 3), is determined by
using the dynamic programming algorithm (29).

Fig. 2. Detecting fold similarities with PCM: a flowchart of the overall proce-
dure.
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proteins not yet classified by SCOP, we used the FSSP data with
cutoff « 5 0.5 to establish their remote homology.

Correlation of Physical Properties in Remote Homologues. For a pair
of remote homologues in FSSP we calculated the correlation
coefficient of amino acid properties within a window of three, five,
or seven residues (l 5 1, 2, or 3, respectively) for each structurally
aligned position by using Eq. 1. The sum of the coefficients, a total
correlation, is compared with those obtained for the pairs of other
members of the same fold with shuffled sequences as well as those
for the pairs of other proteins with limited fold similarity according

to FSSP. Among the five tested amino acid properties, hydropho-
bicity and b-sheet frequency are the two best properties to distin-
guish between true remote homologues of the globin fold and other
proteins (Fig. 5). However, in general, hydrophobicity is the best
property to detect remote homology by PCM for all fold types. The
results described below were obtained by using this property.

Fold Recognition by PCM. Using each of 420 proteins representing
the 64 well populated folds as query protein, we searched for its
remote homologues among 1,390 proteins in the target set. With
real or predicted secondary structure, the PCM method finds 178
or 167 true remote homologues, respectively. They correspond to
more than 40% of all remote homologues within the 64 selected
fold families.

The cutoff value for PCM predictions has been determined by
the optimal ratio of true remote homologues and false positives (Eq.
4). The heuristic cutoff (Eq. 3) performs better than the hard one,
and we found the optimal cutoff, « 5 0.9, is the same using PCM
combined with either real or predicted secondary structure. The
number of false positives with this cutoff is equal to 16% (8%) for
PCM with predicted (real) secondary structure.

For several highly populated folds like globins, EF hand, periplas-
mic-binding proteins, and Rossman-fold, PCM detected more than
70% of their remote homologues. In most populated folds, ayb
(TIM) barrels and immunoglobulins, which tolerate slight varia-
tions in size and topology, about 40% of remote homologues were
recognized. For some queries, the true remote homologues were
predicted with a Z score below the cutoff. For others, either the
property correlation in structurally aligned regions is low, close to
that in random sequences, or secondary structure pattern is not
conserved between remote homologues.

Comparison with 1D-Threading Methods. We compared the PCM
method with four different 1D-threading methods available on the
Internet: PredictProtein (11, 12), FoldFit (14), ‘‘Gon1predSS’’
(13), and H3P2 (15). Predictions were obtained for the same 64

Fig. 3. Structural homologues in FSSP ordered by DALI Z score (31). For most
queries the heuristic cutoff, i.e., the first large gap from the bottom, DZ 5 Zi 2
Zi11 . « (vertical lines), separates the true remote homologs (black lines on the
top) from all other proteins (gray lines on the bottom) according to SCOP
classification (21).

Fig. 4. Cutoff optimization on FSSP database. The number of true remote
homologues (T) and other proteins (F) is determined for each value of the hard
(gray lines) and heuristic (black lines) cutoffs. The optimal values (in bold) are
chosen where DTyDF 5 1.

Fig. 5. Distribution of the total correlation of physical properties in structural
alignments of globin, 2FAL, and its true remote homologs (black lines) according
to SCOP (21), proteins with limited structural similarity in FSSP (gray lines), and
random sequences (dashed lines).
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queries by using the default parameters and fold library (Table 2)
of each method. Because these methods use different fold libraries
and scores, strict comparison is not possible. Therefore, success of
fold recognition is determined by a uniform performance criteria:
finding, at least one remote homologue in the top five proteins with
the highest Z score. Before ranking, all predicted homologues with
sequence identity more than 25% have been excluded. Because the
identity of protein sequences is determined on the basis of struc-
tural alignment, pairs of proteins with low structural similarity (Z ,
2.0 in FSSP) have been eliminated as well.

The results of fold recognition are summarized in Table 2. The
PCM method using real secondary structure tops the performance
and provides the highest numbers of correct prediction of remote
homologues: 57 of 64 query proteins found correct remote homo-
logues, including 39 cases in which the true remote homologues
appear as the first choices. With predicted secondary structure, the
PCM method is comparable to ‘‘Gon1predSS,’’ the next best
performer (Table 2). Comparing these three, we found that in two
cases (1HTP and 1PUT) ‘‘Gon1predSS’’ is better than both
versions of PCM and worse in the other four (1COLA, 1KUH,
1LIT, and 1WHTB). For some query proteins correct fold is
recognized only by one method: 1GSA and 1PRTF by PCM, 1HTP
and 1PUT by ‘‘Gon1predSS,’’ and 1ZYMA by PredictProtein.
Combining the results of all of these methods (excluding PCM with
real secondary structure), 57 of 64 queries found correct folds.
Including additional properties of amino acids is likely to improve
the PCM method further.

Comparison with PSI-BLAST. An advanced sequence-comparison
method PSI-BLAST (18) was shown to be able to detect efficiently
some remote homologues (32–36). We compared the PCM method
with PSI-BLAST by using the same queries and target proteins for
both methods, which allows us to compare the results directly (in
contrast to comparison with 1D-threading, where each method uses
its own fold library). All 420 remote homologues of the 64 most-
populated folds were used as queries. PSI-BLAST predictions were

obtained in three iterations. Two different e-value cutoffs, 1023 and
1024, that had been effective in other studies (32–36), were tested
here. The other parameters were default.

The PCM method with predicted secondary structure predicts
more false positives ('16%) than PSI-BLAST ('2%). However,
when compared for a similar number of predicted true remote
homologues, PSI-BLAST is more successful in detecting remote
homologues with sequence identities greater than 15%, whereas
PCM does better for sequences with lower identities (Fig. 6).
Therefore, a combination of these methods may be more efficient
for predicting larger numbers of remote homologues.

Fold Recognition in Methanococcus jannaschii Genome. We used
PCM to discover remote homologues of the 64 protein folds from
all the predicted proteins of the M. jannaschii genome (19). The
predicted secondary structure was used for these proteins, and the
real secondary structures were used for the query proteins. All 420
remote homologues of the 64 most-populated folds were used as
queries to maximize the number of fold assignments. The cutoff, «
5 0.9, was applied to PCM predictions.

Of the 64 tested folds, 29 were detected in the genome of M.
jannaschii (Fig. 7). Fold is assigned to 75 proteins; 22 of them listed
in Table 3 currently are annotated as hypothetical proteins (Meth-
anococcus jannaschii Genome Database: http:yywww.tigr.orgytdby
mdbymjdbymjdb.html).

Conclusions
We propose a new approach for detecting fold similarities
between two proteins with weak or no sequence similarities by

Fig. 6. Distribution of remote homologues in the 64 query protein folds
detected by PCM by using real or predicted secondary structure and PSI-BLAST with
different cutoffs.

Fig. 7. Protein folds detected by PCM in the M. jannaschii genome and their
population.

Table 2. Fold recognition by different methods

Method WWW address

Fold library Number of
correct

predicted folds
for query set

Number of protein
chains per domains

Maximum sequence
identity

Predict protein http:yydodo.cpmc.columbia.eduypredictprotein 1,200 25% 44
Fold Fit http:yybonsai.lif.icnet.ukyfoldfitnew 1,560 40% 38
H2P3 http:yyfold.doe-mbi.ucla.edu 2,943 Unknown 34
Gon 1 predSS ;2,000 50% 48
PCM RealSS

PredSS
1,390 25%

57
47
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using the PCM of amino acid properties combined with pre-
dicted (or real) secondary structures of the proteins. The

approach is based on our observation that physical properties of
amino acid residues surrounding the corresponding residues in
two proteins with the same fold are correlated along the
sequences. Among the different properties tested in this work,
hydrophobicity is shown to be the most strongly correlated
property for all fold classes. In our future studies, we plan to
incorporate the other properties that are correlated in some but
not other fold classes.

The PCM method detects more than 40% of 420 remote
homologues in the 64 selected folds. When the correct secondary
structure is used, 89% of 64 query proteins, each representing a
distinct fold, found at least one remote homologue among the top
five choices. This number goes down to 73% after using predicted
secondary structure. As the secondary structure prediction method
improves, the performance of PCM is expected to improve as well.
A test application of PCM method to the complete genome of M.
jannaschii reveals its ability to infer fold information to hypothetical
proteins as well as others with no fold information available with
existing methods.

Compared with PSI-BLAST, our method demonstrates better
sensitivity in detecting remote homologues with a sequence identity
of less than 15%. Combined with existing methods, such as PSI-
BLAST andyor 1D-threading, the PCM method can provide ad-
ditional fold information for proteins with low sequence similarities.
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76SF00098) and National Science Foundation (DBI-9723352) and used
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Center at Lawrence Berkeley National Laboratory, Berkeley, CA.
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Table 3. PCM fold recognition of hypothetical proteins in
genome of M. jannascii

ORF Protein fold

MJ0018 Trypsin-like serine proteases
MJ0094 Cytochrome c
MJ0213 Viral coat and capsid proteins
MJ0425 Ferredoxin-like
MJ0590 59–39 exonuclease
MJ0644 Ferredoxin-like
MJ0870 TIM-barrel 1 Enolase and

muconate-lactonizing enzyme, N-term
MJ0917 Flavodoxin-like 1 ATP-grasp
MJ0954 PH-domain-like
MJ0996 Cysteine proteinases
MJ1147 Ferritin-like
MJ1178 Viral coat and capsid proteins
MJ1403 Double-stranded b-helix
MJ1428 4-helical cytokines
MJ1477 OB-fold
MJ1519 Class II aaRS and biotin synthetases
MJ1526 Trypsin-like serine proteases
MJ1535 Cysteine proteinases
MJ1542 Immunoglobulin-like b-sandwich
MJ1625 Cytochrome c
MJ1630 A/B-hydrolases
MJ1674 Reductase/isomerase/elongation factor

common domain 1 P-loop NTPase
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