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Abstract
What is the role of the Fusiform Face Area (FFA)? Is it specific to face processing, or is it a visual
expertise area? The expertise hypothesis is appealing due to a number of studies showing that the
FFA is activated by pictures of objects within the subject’s domain of expertise (e.g., cars for car
experts, birds for birders, etc.), and that activation of the FFA increases as new expertise is acquired
in the lab. However, it is incumbent upon the proponents of the expertise hypothesis to explain how
it is that an area that is initially specialized for faces becomes recruited for new classes of stimuli.
We dub this the “visual expertise mystery.” One suggested answer to this mystery is that the FFA is
used simply because it is a fine discrimination area, but this account has historically lacked a
mechanism describing exactly how the FFA would be recruited for novel domains of expertise. In
this study, we show that a neurocomputational model trained to perform subordinate-level
discrimination within a visually homogeneous class develops transformations that magnify
differences between similar objects, in marked contrast to networks trained to simply categorize the
objects. This magnification generalizes to novel classes, leading to faster learning of new
discriminations. We suggest this is why the FFA is recruited for new expertise. The model predicts
that individual FFA neurons will have highly variable responses to stimuli within expertise domains.

Introduction
There has been a great deal of progress in understanding how complex objects, in particular,
human faces, are processed by the cortex. At the same time, there is a great deal of controversy
about the role of various cortical areas, especially the Fusiform Face Area (FFA) (Kanwisher
et al., 1997; Kanwisher, 2000; Tarr & Gauthier, 2000). Is the FFA a “module,” specific to the
domain of faces, or is it instead specific to the process of fine level discrimination? Several
fMRI studies showed high activation in the FFA only to face stimuli and not other objects
(Kanwisher et al., 1997; Kanwisher, 2000). Furthermore, studies involving patients with
associative prosopagnosia, the inability to identify individual faces (Farah et al., 1995), and
visual object agnosia, the inability to recognize non-face objects (Moscovitch et al., 1997),
seem to indicate a clear double dissociation between face and object processing. Prosopagnosic
patients had lesions encompassing either right hemisphere or bilateral FFA, while object
agnosic patients’ lesions did not (De Renzi et al., 1994).
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Gauthier and colleagues have challenged the notion of the face specificity of the FFA by
pointing out that the earlier studies failed to equate the level of experience subjects had with
non-face objects with the level of experience they had with faces (Gauthier et al., 1997;
Gauthier et al., 1999a). Gauthier and colleagues showed that the FFA was activated when car
and bird experts were shown pictures of the animals in their area of expertise (Gauthier et al.,
2000). Further, they illustrated that, if properly trained, individuals can develop expertise on
novel, non-face objects (e.g., “Greebles”), and subsequently show increased FFA activation to
them (Gauthier & Tarr, 1997; Gauthier et al., 1999b). Crucially, the same 2 or 3 voxels that
are most active for faces also show the largest increase in activity over the course of expertise
training on non-face stimuli, suggesting that the FFA is recruited as subjects learn to visually
discriminate novel homogeneous stimuli, and is automatically engaged when the subject is an
expert (Tarr & Gauthier, 2000). Hence the theory is that the FFA is a fine level discrimination
area (this is still controversial – see (Grill-Spector et al. 2004; Rhodes et al. 2004) for competing
evidence). However, the idea that the FFA is a fine level discrimination area still does not
answer the question of what mechanism would explain how an area that presumably starts life
as a face processing region is recruited for these other types of stimuli. This is a job for
modeling.

Before addressing this question it is important to define the notion of an “expert.” We use
Gauthier’s operational definition of the term: experts are as fast to verify that a picture of an
object is a particular individual (subordinate level) as they are to verify their category
membership (basic level). For example, a bird expert would be as fast and as accurate at
verifying that a picture of a bird is an “Indigo Bunting” as at identifying it as a “bird.” On the
other hand, a novice will show the fastest reaction time at the basic level, and is slower at both
subordinate and superordinate level (Tanaka & Taylor, 1991). The basic level was first
identified by Rosch as the level at which objects tend to share the same shape and function,
and tends correspond to the first word we use to describe an object (a picture of a chair is
labeled “chair” rather than “furniture” of “office chair”). When training a subject in a novel
category, the downward shift in reaction times in these two tasks is taken as evidence of
expertise.

Previously, we have demonstrated that developmentally appropriate conditions (low spatial
frequency input and learning subordinate/individual level classification) are sufficient for our
neurocomputational model to specialize for faces (Dailey & Cottrell, 1999) Here, we
investigate what properties the FFA might possess that would result in its recruitment for non-
face, subordinate level discrimination tasks.

We compare the properties of two kinds of cortical models: “expert networks” trained to make
subordinate level categorizations (“Is this Bob, Carol, Ted or Alice?”, top path of Figure 1),
and “basic networks” trained to make category level classifications (“Is this a face, cup, can,
or book?”, bottom path of Figure 1) on the stimuli shown in Figure 2. We then show that expert
networks learn individuation of novel categories faster than basic networks. Thus, if cortical
networks compete to solve tasks, this learning advantage suggests that the FFA, as a fine level
discrimination network, would be recruited to perform novel fine-level discrimination tasks
over a network that has no previous experience with such processing. An advantage of
computational modeling is that the “first expertise” domain of the networks need not be faces:
our results do not depend on the order in which domains are learned, suggesting there is nothing
special about faces.

Similar to previous work (Dailey & Cottrell, 1999; Dailey et al. 2002; Palmeri & Gauthier,
2004; Reisenhuber & Poggio, 1999), the model uses layers of processing from low level
features to high level categories: 1) a Gabor filter layer models cortical responses of early visual
cortex (Daugman, 1985); 2) a principal components layer (learnable via Hebbian methods

Joyce et al. Page 2

Brain Res. Author manuscript; available in PMC 2009 April 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Sanger, 1989)) models object representations as correlations between Gabor filter responses;
3) a hidden layer models a task-specific feature representation (representing subordinate or
basic level processing, depending on the task), trained by back-propagation (Rumelhart, et al.,
1986); and 4) a categorization layer that controls the level of discrimination between the stimuli,
either subordinate or basic level. Minor variations of this model have accounted for a variety
of behavioral face processing data (Cottrell et al., 2002; Dailey & Cottrell, 1999; Dailey et al.,
2002; By analyzing the hidden layers of the two types of networks, we found that expert
networks spread out the representations of similar objects in order to distinguish them.
Conversely, basic networks represent invariances among category members, and hence
compress them into a small region of representational space. The transformation performed by
expert networks (i.e. magnifying differences) generalizes to new categories, leading to faster
learning. The simulations predict that FFA neurons will have highly variable responses across
members of an expert category.

Results and Discussion
Network Training

Training of the networks occurred in two phases. During the pre-training phase, two kinds of
networks were trained. Basic-level networks were trained to differentiate a set of stimuli (cups,
cans, books, and faces) (see Figure 2) at the category level. Expert-level networks also had to
perform this basic-level categorization, but were also required to differentiate one of these
classes at the subordinate level. Hence there were four kinds of expert networks – “cup experts,”
“can experts,” “book experts,” and “face experts.” During the second phase of training, a novel
stimulus type, “Greebles1” was introduced and both basic and expert networks were trained
to identify Greebles and to recognize individual Greebles. Training was also continued on the
prior tasks. This reflects the fact that exposure to the new area of expertise is added to the daily
routine of interacting with the world. This is also true in human experiments in creating experts
in the lab, where training typically occurs for an hour a day over one to two weeks (Gauthier
& Tarr, 1997). Not performing this interleaving would be equivalent to taking a human subject
“out of the world,” and allowing them only visual exposure to the objects of expertise, a
situation that seems unrealistic at best. If our model was not trained in such an interleaved
fashion, face expertise would decay over the course of training. This may seem like an
unrealistic prediction of the model. However, it is worth noting that it has recently been reported
that for one class of experts, this prediction would seem to hold up. Kung et al. (2007) examined
bird experts’ FFA activity with respect to their degree of expertise. Expertise was measured
by d’ on a same/different species test with bird images. As might be expected from previous
studies of visual expertise, they found that with increasing levels of bird expertise, the FFA
was more activated by bird images. However, they also found that with increasing levels of
bird expertise, the FFA was less activated by faces. This finding suggests that the FFA is plastic
in its responsiveness depending on the kind of expertise that is most prominent in a particular
subject. Our model would exhibit similar differences if it were trained more frequently on
Greebles than on its original domain of expertise.

Basic networks learned their pre-training task the fastest and maintained the lowest error
(RMSE, see Methods) until between 1280 and 5120 training epochs (one pass through the
training set), when the various expert networks caught up (can, cup, book, and face experts in
that order) (see Figure 3). Conversely, the basic-level networks took by far the longest to learn
the novel task (Figure 4), obtaining no significant benefit from additional pre-training cycles.
A linear trend analysis shows that all of the expert networks (but not the basic networks) learned

1Greebles are a fictitious category of objects created by Isabel Gauthier for her Ph.D. thesis. They were constructed to have some properties
similar to human categories – they have family resemblances, they have a “gender,” and are symmetric. They have gender labels, family
labels, and individual names. Two examples are shown in the last column of Figure 2.
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the novel task faster if they were given more pre-training on their initial expert task, with faces
benefiting the most from additional pre-training (an F-test for non-zero slope with n=100 for
each test (10 networks at 10 time steps) yields p = 0.2962 for basic networks and p < 0.0001
for expert networks). Thus, for the networks learning a harder pre-training task (expert-level
classification), more pre-training lead to faster learning on the secondary, expert-level task. In
this study, we alternately used faces, cups, cans and books as the primary expertise task, and
Greebles as the novel (secondary) expertise task. However, we have replicated these results
consistently with a variety of primary and secondary expertise tasks. For example, a network
with prior expertise with books learns expertise with faces faster than a network with only basic
level experience with books.

The networks learn both the primary and secondary tasks, but are they experts? We model
human subjects’ reaction time as the uncertainty of the maximally activated output (see
Methods). Figure 5b shows the entry-level shift for Greebles in a network that was trained to
be a face expert during pre-training (note that subordinate face model reaction times are already
as low as basic level face reaction time). This curve is quite similar to the entry-level shift
shown by a human subject trained in our lab to individuate Greebles (Figure 5a). Therefore,
according to the criterion used for human subjects, the networks have attained expert status.

Internal Representations
We hypothesized that the learning advantage for expert networks was due to the larger amount
of information that must be carried by the internal representations formed during training. We
can visualize the representations by performing a Principal Components Analysis (PCA) of
the hidden unit activations over the data and then project the data onto a two-dimensional
subspace. We perform this over the training time of the network in order to see how the
representations develop. This is shown in Figure 6, in which the second and third principal
components of the hidden unit activation to each input pattern are plotted against one another
(the first PC just captures the magnitudes of the weights growing over time). Note the larger
separation for the expert network on both subordinate and basic level categories as pre-training
progresses. On the other hand, while the basic network separates the classes, it also compresses
each class into a small blob in the space. Furthermore, we can project the (so far untrained)
Greeble patterns into the same space, and the plot shows that these are also more separated by
the expert network – the spread of representations of homogeneous classes generalizes to a
novel category. This is the fundamental reason for speeded learning of Greebles: it is easier to
“pick off” each Greeble if they are in different locations in feature space to begin with.

A neurophysiological correlate to the above results is that the spread of representations will
correspond to increased variability of single-unit responses across a homogeneous category in
an expert network, and hence, in the FFA. Referring to the PCA visualization in Figure 6, the
two dimensions in that graph correspond to two “virtual unit” responses to the stimuli. Since
the points are more spread out in expert networks, this means that these units have higher
variability of response across a class. We can visualize this in the single unit recordings shown
in Figure 7, which shows the actual activation levels of several hidden units in basic and expert
networks to individual stimuli. As is clear from the figure, there is greater variability across a
single class of stimuli in an expert network versus a basic network, and the greatest variability
is for the class being discriminated. An analysis of variance with 5 levels of category (Expert
networks shown stimuli from their domain of expertise (called Expert), Expert networks shown
stimuli outside their domain of expertise (but trained at the basic-level, called Expert-basic),
Expert networks shown the untrained Greeble stimuli (Expert-Greeble), Basic networks shown
stimuli from the trained basic set (Basic), and Basic networks shown the untrained Greeble
stimuli (Basic-Greeble)) and 11 levels of training epoch (0, 10, 20, 40, 80, 160, 320, 640, 1280,
2560, 5120) was performed to determine effects. For this ANOVA, the mean variance over
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the relevant stimuli was the observation; thus for the expert networks 40 observations of each
mean variance were available (4 types of networks, 10 runs of each), while for basic networks
10 observations were used; this yields a total of 1540 points in the ANOVA. There was a main
effect of category [F(4,1485) = 992.91, p < 0.0001] such that the Expert category showed the
most variance followed in order by the Expert-Basic, Expert-Greeble, Basic, and Basic-Greeble
categories in order. There was also a main effect of epoch [F(10,1485) = 1216.73, p < 0.0001],
with the least variance exhibited initially with variance significantly increasing across training
epochs. There was also a significant interaction of category with epoch [F(40,1485) = 43.51,
p < 0.0001].

To examine how this develops over time, we plot the average variance of response of the hidden
units across a class over training in Figure 8. As expected based on the PCA visualization, the
greatest variability is to the category learned at the subordinate level, and this variability of
response extends to the non-expert categories as well. That is, in expert networks, there is more
variability of response to every stimulus category than in networks that simply do basic-level
categorization. Furthermore, this variability in response extended to the completely novel
Greeble category. Note that Figure 8 shows the response to untrained Greeble stimuli. When
Greebles are then trained, the variance of response to them then increases above the levels
shown in Figure 8 (data not shown).

A post-hoc right-tailed two-sample t-test was performed on the final epoch to determine the
significance of the final ordering; all orderings were significant (p < .00001, with n = 40 or n
= 10 measures of mean variances for expert and basic networks respectively) except for expert
networks shown basic and Greeble stimuli (p = 0.8840). All networks were initialized with
weights drawn from the same distribution and show only the small differences in variance of
response due to differences in stimuli classes, so this result is due to the effects of training with
the pre-training stimulus prior to (and during) training the novel stimulus. Finally, (data not
shown), becoming a Greeble expert increased variability in all networks. This caused the
originally basic-level networks to resemble the other expert networks in that now their
variability was higher to all categories. Based on these results, the model predicts that neurons
involved in fine level discrimination, as is the hypothesis concerning the FFA, will show greater
variability across stimuli that the subject possesses expertise in. This variability of response
will be greater than in areas outside the FFA.

It is possible that these results are simply due to a scaling difference between the two types of
networks, if the weights in a basic level network are simply smaller overall than in an expert
network. To control for this possible artifact, we computed the variance of the object classes
relative to the variance between classes of the internal representation. We find that the relative
variance of the representation of discriminated classes in expert networks is significantly higher
than in networks where these same stimuli are simply being categorized. As the PCA
visualization suggests, we find that if we average together the variability of all classes
categorized at the basic level, and compute the ratio of this to the between class variance (the
variance of the means), there is still a significant difference (using a right-tailed paired t-test
with n = 10, p < 0.0001 for all pairings of expert to basic). This demonstrates that the expert
networks are unnecessarily spreading out the classes they do not need to discriminate. Finally,
we find that objects that are novel to the network (Greebles) also have a higher spread in expert
networks (again using a right-tailed paired t-test with n = 10, p < 0.0001 for all pairings of
expert to basic).

In the simulations discussed above, networks that learned a subordinate level task, and therefore
exhibited a high degree of hidden unit variability, learned a secondary subordinate level task
faster than basic level networks that exhibit little hidden unit variability. This suggests that the
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amount variance a network exhibits in response to a category prior to training on that category
should be predictive of how fast that network will learn to discriminate that category.

To test this hypothesis, we performed a regression on the amount of variability of feature
responses to Greebles prior to Greeble training, versus the number of epochs it takes the
network to learn the Greeble task. There is a strong negative linear correlation between these
two variables (r = -0.6317, p < 0.0001), such that those networks exhibiting the lowest variance
also take the longest to learn the Greeble task (Figure 9).

At this point the careful reader will have noticed that the main effect of being an expert network
is a higher variability of response to stimuli from the categories of expertise, and then wondered
how this could possibly account for the increased BOLD signal seen in fMRI experiments in
the FFA for expertise stimuli. One might assume we should be measuring increases in mean
firing rates, rather than variance. However, we suggest that an increased variance in firing rates
for neurons over a class of stimuli should correlate with higher mean firing rate, by the
following argument: Biological neurons find encodings of the world that tend to maximize
sparsity in order to minimize their firing rates while maintaining high levels of discriminability.
In the interests of simplicity, our model contains no such bias for sparsity, and our artificial
neurons utilize their full range of firing rates with equal probability. Furthermore, since both
positive and negative weights are allowed, the actual activation of a neuron says nothing about
its sensitivity to a particular type of stimuli; sensitivity is instead displayed by changes in
activation, which is related to variance in sparse encodings. In the case of biological neurons
with base rates near zero, an increased firing rate will result in a net increase in the variance.
In particular, if the probability density function of a neuron’s firing rate r follows a steep
exponential distribution (one possible model of sparse coding), as in:

then as the variance increases (given by λ-2), so does the mean (λ-1). While our model’s
activations do not follow this distribution, we argue that a more realistic model that did use
sparse coding would also show the same increase in variance to stimuli of expertise. Indeed,
it seems obvious now that within-class variability in such a model directly corresponds to
having a different pattern of activation for different stimuli, an essential component of the
ability to discriminate. Hence, while the goal of our model was to describe the recruitment of
the FFA to other domains of expertise due to the FFA’s relative fitness for such tasks compared
with other areas, our model also does show the kind of sensitivity to domains of expertise that
correlate with findings from the fMRI literature. A more literal correlation of mean firing rates
would require several additional assumptions in our model that go well beyond the scope of
this paper.

A second concern may arise due to the fact that, at least in the principal components plots of
Figure 6, it would appear that the same dimensions that are sensitive to faces are also sensitive
to other stimuli. Is there really such an overlap in representation in the FFA? Recent work by
Grill-Spector et al. (2006;2007) suggests that there is. After localizing the FFA using standard
fMRI, high-resolution fMRI was used to measure the BOLD response from 1 mm2 voxels in
the FFA. These voxels were assessed for their selectivity to faces, cars, animals, and abstract
sculptures. In the original paper, it appeared that voxels were highly selective for each of these
categories, but that face voxels were simply more numerous. However, in response to critiques
of the analysis technique (Baker et al., 2007;Simmons et al., 2007), a more accurate assessment
of sensitivity was applied. The result was that, while most voxels were most selective for faces,
they were also sensitive to other categories as well. While this does not prove anything about
individual neuron tuning, it does suggest that the FFA is not just responsive to faces; it is a
much more hetergogeneous area than was originally thought. This analysis is also consistent
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with the idea that individual neurons may respond to faces and other categories of stimuli, and
hence is consistent with our model’s suggestion that minor re-tuning of the neural responses
in the FFA is sufficient to account for the responses to new areas of expertise.

Finally, there is still a great deal of controversy whether there is a “face area” at all. Work by
Haxby and colleagues (Haxby et al. 2001; Hanson et al., 2004) has shown that it is possible to
accurately classify the stimulus class being observed by a subject using a standard machine
learning pattern classifier applied to several different regions of cortex, that may or may not
include the FFA. However, these experiments do not address the foremost role that we
hypothesize for the FFA – fine level discrimination of homogeneous categories. It is not
surprising that one can determine at a basic level what is being observed from multiple brain
areas. Indeed, we would predict that from our model. What has not been shown that one can
determine who is being observed from widely distributed brain activations. Thus this data is
not inconsistent with the putative role of the FFA as a fine level discrimination area.

Conclusions
Several effects were observed in these simulations: 1) networks can become experts, by the
behavioral definition of the entry-level shift in reaction times; 2) expert networks learn the
Greeble expertise task faster than basic-level categorizers; 3) this can be attributed to the spread
of representations in expert networks: Greebles are more separated by these features than by
the basic-network features; and 4) this feature variability to the Greeble category prior to
training on it is predictive of the ease with which it will be learned. The results imply some
specific hypotheses about phenomena that might be observable in human and/or primate
subjects. First, though, let us be clear about what these results do not imply. We interpret these
results to be relevant to competing cortical areas, not to different subjects learning different
tasks. Thus, our results should not be interpreted to mean that subjects that have just learned a
hard discrimination task should be more successful at learning a new discrimination task than
subjects who have learned a simple discrimination task. Indeed, it is usually the case that it
takes longer to learn novel categories of visual stimuli like these than it would if the network
were starting from initial random weights. The point is rather that fine level discrimination
areas are better at learning new fine level discriminations than simple object categorization
areas.

What the results do suggest is that if the FFA is performing fine-level discrimination, then that
task requires it to develop representations of the stimuli that separate them in representational
space – the neural responses are highly differentiated. That is, similar objects have the
differences between them magnified by the expert networks. On the other hand, networks that
simply categorize objects map those objects into small, localized regions in representation
space (this is in the space of neural firing patterns, and should not be confused with spatially
localized representations). The magnifying transform of the expert networks generalizes to a
novel category, and this generalization leads to faster learning; hence, the recruitment of the
FFA for Greeble expertise. We have suggested that the hidden layer of the expert networks of
our model corresponds roughly to the FFA based on the equivalency of tasks and have shown
that the nature of the task is sufficient to cause the recruitment of the FFA based on a shared
need for fine-level discrimination; however, the actual brain is of far greater complexity than
our model, and some of the changes observed in the hidden layer may turn out to be distributed
among several brain areas.

An advantage of using simulations is that we were also able to show that this expertise effect
is not limited to face experts. To put it in a somewhat fanciful way, the results suggest that if
our parents were cans, then the Fusiform Can Area would be recruited for Greeble expertise.
Furthermore, other simulations show that this learning advantage is not limited to novel Greeble
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expertise, nor is it dependent on the difference in the number of distinctions the two networks
are making (Tong et al., 2005; Tran et al., 2004).

These simulations also make a prediction concerning the physiological responses of FFA
neurons. They predict that at the physiological level (perhaps using intracranial electrode
arrays), cells in the FFA should show more variability across stimuli within a category than
cells in other high-order visual object areas, and that this variability would be particularly high
for categories for which the viewer possesses expertise (e.g. human and/or monkey faces). This
is a falsifiable prediction of the model, and hence we look forward to our model being put to
the test.

Methods
Training and testing

Neural networks were trained on a subordinate level classification task following various pre-
training regimens. The image preprocessing steps, network configurations, and simulation
procedures are described below.

The stimulus set consisted of 300 64×64 8-bit grayscale images of human faces, books, cans,
cups, and Greebles (60 images per class, 5 images of 12 individuals, see Figure 2). The five
images of each Greeble were created by randomly moving the Greeble 1 pixel in the vertical/
horizontal plane, and rotating up to +/-3 degrees in the image plane. Pictures of objects were
taken under constant lighting and camera position, varying object position slightly over
different images. Pictures of faces were frontal images of people making different facial
expressions while camera angle and lighting remained constant (Cottrell & Metcalfe, 1991).

The images were preprocessed by applying Gabor wavelet filters of five scales and eight
orientations as a simple model of complex cell responses in visual cortex, extracting the
magnitudes, and reducing dimensionality to 40 via principal component analysis (PCA). We
have found that the particular number of principal components used does not make any
significant differences in our results for ranges from 30-50. Greeble images were not used to
generate the principal components in order to model subjects’ lack of experience with this
category.

A standard feed-forward neural network architecture (40 input units, 60 hidden units) was used
(see Figure 1). The hidden layer units used the standard logistic sigmoid function while the
outputs were linear. Networks were trained using backpropagation of error with a learning rate
of 0.01 and a momentum of 0.5.

During pre-training all networks were trained to perform basic level categorization on all 4
non-Greeble categories. The expert networks were additionally taught to perform subordinate
level categorization of one of the four categories. Non-expert networks (basic level task only)
had 4 output nodes corresponding to book, can, cup, and face. Expert networks (subordinate
level task) had 14 outputs: 4 for the basic categories, and 1 for each of the 10 individuals (e.g.
can1, can2, … can10, for a can expert). In phase 2, the pre-trained networks learned subordinate
level Greeble categorization along with their original task. Eleven output nodes were added:
1 for the basic level Greeble categorization, and 1 for each Greeble individual. The network
then learned a 15-way (basic network) or 25-way (expert network) classification task. All
networks were trained on the same 30 images (3 images of 10 individuals) per class during
pre-training. Thus any differences in representation are due to the task, not experience with
exemplars. To test for generalization, 29 images were used (one new image of each of the
expert category individuals (10 + 10), plus 3 images of new basic level exemplars per category).
All networks generalized well.
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Ten networks, each with different random initial weights, were trained on each of the 5 pre-
training tasks (basic, face expert, can expert, cup expert, book expert) for 5120 epochs. Image
sets were randomized. Intermediate weights of each network were stored every 5*2n epochs,
for n=1:10. Phase 2 training was performed at each of these points (“copying” the network at
that point) to observe the time course of expertise effects. Training concluded when the RMSE
of the Greebles fell below .05. Thus, there were a total of 50 phase 2 networks on which to
perform the analyses.

Analysis
The linear trend analysis on the time to learn the novel Greeble identification task as a function
of phase one training time was performed using an F-test on a least-squares linear regression
to test for non-zero slopes. For each of the five networks there were 10 points at each of the
10 sampled epochs, yielding n=100. The time scale used was logarithmic. Although the data
was non-linear, this nevertheless quantified the trend of the networks as they were exposed to
additional training.

Reaction times of the networks were modeled as the uncertainty of the appropriate output. I.e.,
for the Greeble basic versus Greeble subordinate comparison in Figure 4b, we used RT = 1 –
activation, where activation refers to the Greeble output unit for the basic RT, and activation
refers to the output corresponding to the ith Greeble for the subordinate RT. Both of these are
averaged over all 10 Greebles for one network chosen at random for the graph in Figure 2.

The principal components analysis of the hidden layer was performed on a network by
recording the hidden unit activations for every training pattern at every point during which
weights were saved (the initialization and the 10 stages of phase one training). The 60×60
covariance matrix of this data was formed, and the eigenvectors computed. A randomly chosen
set of examples from each class at each time point was then projected onto the second and third
eigenvector and plotted. A representative set of Greeble stimuli were also presented to the
network (without training them), and their hidden unit vectors were projected into the subspace.

The variability plots were formed by computing the variance of each of the 60 hidden unit
activations over the appropriate class of stimuli at different training epochs. Five levels of
category were of interest: Expert networks shown stimuli from their domain of expertise,
Expert networks shown stimuli outside their domain of expertise (but trained at the basic-level),
Expert networks shown the untrained Greeble stimuli, Basic networks shown stimuli from the
trained basic set, and Basic networks shown the untrained Greeble stimuli. The variance of
these was tracked over eleven time samples (the variance of the randomly initialized networks
and the ten stages of training). The variance over the sixty hidden units was then averaged for
each of the 10 networks in a given category and epoch. As there were four categories of experts,
there were 40 samples for each epoch for the expert networks, while there were only 10 for the
basic networks, yielding a total of 1540 samples of average variance. To compensate for uneven
cell sizes, an ANOVA using type 3 sum of squares was performed to measure the effects of
these 5 categories and 11 epochs. We also computed the ratio of the average variability within
a class to the variability between classes, to measure the spread of representations in the two
types of networks, performing a two sample t-test on the variance ratio after phase 1 training
was complete (n = 40 for expert networks, n = 10 for basic).
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Figure 1.
Network Architecture. Input images are 64×64 grayscale images. The first layer of processing
consists of Gabor filters (wavelets) at 8 different orientations (0, π/8, π/4, 3π/8, π/2, 5π/8, 3π/
4 and 7π/8) and 5 different scales (see ref 9 for details). We keep the magnitudes of these filters
(i.e., 40 numbers) from an 8×8 grid of 64 points, resulting in a 2560-dimensional representation
of the image, which we term the perceptual level. The filter magnitudes are z-scored (shifted
and scaled so they have 0 mean and unit standard deviation) on an individual basis across the
data set before applying PCA. The top 40 components, again z-scored, were then used as input
to a one hidden layer network. The hidden layer models the representations used for basic level
categorization or fine-level discrimination, depending on the task. For basic networks,
classification at the output nodes was at the basic level (i.e., four outputs, one per category)
for all stimuli during pre-training and at the subordinate level (10 additional outputs) for
Greebles following pre-training. For expert networks, one category (cars, cups, books, faces)
was learned at the subordinate level and all other at the basic level during pre-training.
Following pre-training Greebles were learned at the subordinate level.
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Figure 2.
Example Network Stimuli9 64×64, 8-bit, grayscale photos of books, cans, cups, faces, and
Greebles used in the network simulations. Greebles are a created class of objects often used in
studying expertise due to their novelty to subjects5. Three different images of each individual
were used in training. Faces of the same person varied in expression, while images of other
individual objects varied slightly in placement of the object in the image.
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Figure 3.
Root Mean Squared Error (RMSE) on the training set over training time for the primary task.
The basic level categorization task is the easiest.
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Figure 4.
Amount of time to learn Greebles as a function of number of epochs of pretraining on the first
task. Training concluded when the RMSE of the Greebles fell below .05. Networks at the basic
level always took longer to learn Greebles than all other networks and did not benefit
significantly from increased experience with the basic level task. All expert level networks
benefited from more pre-training, especially faces. Error bars denote +/-1 standard error.
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Figure 5.
Entry level shift. (a) Typical reduction in reaction time for basic vs. subordinate level judgments
with training in a human subject learning to discriminate Greebles. (b) Reduction in reaction
time in a neural network over training for subordinate versus basic level categorization.
Reaction time is measured as the uncertainty of the maximum output (1-maxoutput).
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Figure 6.
Visualization of the hidden unit representation. The figure shows the second and third principal
components (the first PC simply describes a growth in activation magnitude) of the hidden unit
activation to images from the training set of two types of networks, a face expert (top row) and
a basic-level network (bottom row) over training time. Samples are taken at 0 epochs (column
1), 80 epochs (column 2), and 5120 epochs (column 3) of training on the first task. Colors
correspond to different object categories. Both networks separate the categories over training,
but the face expert (top) also spreads out the representations within each class, with the largest
spread for the category learned at the subordinate level (faces). This difference in representation
corresponds to a difference in variability of response of the hidden units between the expert
networks and the basic networks: The farther apart each point is, the larger the difference in
unit response. To demonstrate the spread of the unseen, novel stimuli (shown in red), Greebles
were presented to the networks and their hidden unit activations were projected onto the
principal components.
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Figure 7.
Single unit recordings of randomly chosen units from the hidden layer of an expert (face)
network (left) and a basic network (right), showing the higher variability of the expert network
feature responses. Each histogram shows the response of one unit to 10 stimuli from five
different categories.
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Figure 8.
Mean variance of hidden unit activations over training. While variance in all networks
increased with training, the increase was largest for expert networks, and for categories learned
at the subordinate level. This variability transferred to the unlearned Greeble category. Error
bars denote +/-1 standard error.
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Figure 9.
Time to learn Greebles over Greeble pre-training activation variance. As the variance of the
hidden layer activations over the Greeble stimuli increases, the training required to learn
Greebles decreases. This correlation is strong (r= -0.6317, p < 0.0001). This variance is taken
before the networks are trained with Greebles and represents the initial spread of Greebles in
representational space.
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