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Peroxisome proliferators-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormone
receptor superfamily. The three PPAR isoforms (α, γ and β/δ) have been found to play a pleiotropic role in cell fat metabolism.
Furthermore, in recent years, evidence has been found regarding the antiproliferative, proapoptotic, and differentiation-promoting
activities displayed by PPAR ligands, particularly by PPARγ ligands. PPAR ligands affect the expression of different growth-related
genes through both PPAR-dependent and PPAR-independent mechanisms. Moreover, an interaction between PPAR ligands and
other molecules which strengthen the effects of PPAR ligands has been described. Here we review the action of PPAR on the control
of gene expression with particular regard to the effect of PPAR ligands on the expression of genes involved in the regulation of cell-
cycle, differentiation, and apoptosis. Moreover, the interaction between PPAR ligands and 4-hydroxynonenal (HNE), the major
product of the lipid peroxidation, has been reviewed.

Copyright © 2008 Giuseppina Barrera et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. THE ROLE OF PPAR IN CONTROLLING
GENE TRANSCRIPTION

Peroxisome proliferator-activated receptors (PPARs) are
members of the steroid hormone nuclear receptor super-
family which act by altering the transcription of PPAR-
regulated genes by means of a recognition sequence known
as a peroxisome proliferation responsive element (PPRE) [1].

The term peroxisome proliferator-activated receptor
is derived from early observations in rodent livers that
certain industrial compounds could cause an increase in
size and number of peroxisomes [2, 3]. Subsequently,
these compounds, including fibrates, were found to bind
to certain recently identified nuclear receptors [4]; hence,
the term “PPAR” arose. PPAR agonists are not known to
induce peroxisome proliferation in primates or humans,
making the term PPARs archaic as well [5]. At least three
subtypes of PPARs have been identified: PPARα, the first

isolated from mice liver in 1990 by Issemann and Green [4]
and involved in fatty acid oxidation; PPARγ, identified by
Tontonoz and collaborators as a transcription factor asso-
ciated with adipocyte determination and differentiation [6];
and PPARβ/δ, ubiquitously expressed and involved in basic
cellular functions [7, 8]. Like other steroid hormone nuclear
receptors, PPARs contain several modulating domains: a
ligand binding domain (LBD) to which the specific PPAR
agonist binds; a transactivating domain (activation function
2, AF 2), which undergoes conformational changes, in
response to ligand binding, allowing the heterodimerization
with RXR and facilitating recruitment of coactivators and
release of corepressor; and finally a DNA-binding domain,
which interacts with PPRE [3, 9–11].

PPAR coactivator and corepressor are small accessory
molecules that are critical determinants of the transcrip-
tional complex. These accessory molecules include coacti-
vator proteins, like PPARγ coactivator-1 (PGC-1); steroid
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Figure 1: Mechanism of PPAR action. PPARs in response to ligand
binding in the cytosol, dimerize with RXR, recruit coactivators
and release corepressor; in the nucleus a multimolecule complex,
formed by PPAR, PPAR ligand, RXR, RXR-ligand, and accessory
proteins bind PPRE DNA sequences in the promoters of target
genes.

receptor coactivator and CREB (cAMP-response element
binding protein)-binding protein, recruited from the acti-
vated PPAR; and corepressor proteins, like nuclear receptor
corepressor (N-CoR) and silencing mediator for retinoid and
thyroid hormone receptors (SMRTs1), released upon PPAR
activation [12, 13]. A multimolecule complex formed by
PPAR, PPAR ligand, RXR, RXR-ligand (purportedly 9-cis-
retinoic acid) and accessory proteins ultimately combine to
cause the PPAR response through the binding with PPRE
sequences consisting of a direct repeat of the consensus half-
site motif (AGGNCA) spaced by a single nucleotide [14]
(Figure 1).

Several genes that are selectively upregulated by a given
PPAR isotype have been identified over the years and a
majority of these genes is known to play a central role in
energy metabolism. Moreover, microarray technology and
genome wide identification of PPREs suggest the existence
of many other target genes that were not previously known
to be regulated by PPAR. The identified PPRE putative
sequences on target genes for PPARs are listed in Table 1.

Recent evidence indicates that the PPAR response can
result both in gene activation and repression. As far as it
regards gene repression, PPARγ was shown to be unable
to bind to DNA while it is associated with the corepressor
complex. In contrast to PPARγ, the interaction between
NCoR/SMRT and PPARβ/δ does not impair its DNA
binding [54, 55]. PPARγ, after ligand binding, dissociates
from the corepressor, and binds to DNA via PPREs. The
liberated corepressor protein SMRT interacts with the signal
transducer and activator of transcription-3 (STAT3), which
inhibits STAT-dependent transactivation [56]. Recent data
suggest that PPARγ-mediated transrepression may involve
stabilization of corepressor recruitment after posttransla-
tional PPAR modification by sumoylation [57].

In macrophages, PPARβ/δ was shown to function as an
activator of the monocyte chemoattractant protein (MCP-1)

gene by sequestering a transcriptional repressor, specifically
the transcriptional repressor B-cell lymphoma-6 (BCL-6)
[37, 58]. The ligand-induced activation of PPARβ/δ releases
the corepressor BCL-6, which is thought to inhibit MCP-
1 expression. Hence, PPARβ/δ can function as an intrinsic
transcriptional repressor, a mechanism that is also shared
by other nuclear receptors such as the thyroid hormone
receptor (NR1A1, NR1A2), retinoic acid receptor (NR1B1,
NR1B2, NR1B3), Rev-Erb (NR1D1, NR1D2) and COUP-TF
(NRT2F3).

The best-documented mechanism by which PPARα can
transrepress non-PPREs containing genes is its ability to
physically interact with the p65 subunit of nuclear factor
(NF)-κB, which inhibits NF-κB-dependent transactivation
[59]. However, PPARα activators do not inhibit all NF-κB-
driven target genes and their effect is promoter context-
dependent. Taken together, data obtained about PPAR
transcriptional regulation demonstrated that PPARs can
also modulate the transcriptional activity of non-PPRE
containing genes via transrepression.

2. PPAR LIGANDS

PPAR ligands are a heterogeneous group that includes both
endogenous and exogenous ligands [60]. Activating ligands
for PPARs are semiselective for the subtype and selectivity
depends on ligand concentration and cell type. Endogenous
ligands include unsaturated fatty acids that bind all three
PPARs, with PPARα exhibiting the highest activity, while
saturated fatty acids are weak PPAR ligands in general
[61]. Biological modifications of linoleic acid, linolenic acid,
eicosapentanoic acid (EPA), and arachidonic acid originate
PPARα activators [62–64]. Moreover, the oxidized form of
EPA, eicosanoids (15-hydroxy-eicosatetranoic acid, HETE
and HODEs), and leukotriene B4 has also been reported to
be PPARα activators [62–66].

The natural ligands of PPARγ include several prostanoids
such as 15-deoxy-prostaglandin J2 (15d-PG J2) and 15-
hydroxy-eicosatetranoic acid (HETE), which are metabolites
of arachidonic acid [67]. 15d-PG J2 (the most widely
used natural ligand for PPARγ) is gamma-selective at low
concentrations but also activates alpha at higher levels
[68, 69]. Like PPARα, PPARβ/δ is activated by long chain
fatty acids, including several polyunsaturated fatty acids and
eicosanoids [3]. Erucic acid has been reported to be more
selective for PPARβ/δ than other PPAR subtypes [70].

Synthetic ligands of PPARs have been demonstrated
to possess pharmacological activity. The triglyceride-
lowering/high-density lipoprotein (HDL)-raising fibrates
(gemfibrozil, fenofibrate, clofibrate, ciprofibrate) are PPARα
agonists used clinically to treat dyslipidemia [71, 72].
The insulin-sensitizing thiazolindinedione (TZD) class
(troglitazone, pioglitazone and rosiglitazone) is PPARγ
activators that are used to treat diabetes mellitus [73, 74].
Several nonsteroidal anti-inflammatory drugs (NSAIDs), in
particular indomethacin and ibuprofen, bind to PPARγ and
are weak PPARγ agonists at high micromolar concentrations
[75, 76].
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The first PPARβ/δ-selective agonists (L-165041 and
GW501516) were shown to augment HDL-C in diabetic mice
as well as in obese rhesus monkeys, in which they decreased
elevated levels of triglycerides and insulin [77, 78].

3. THE ROLE OF PPAR LIGANDS IN AFFECTING CELL
PROLIFERATION AND DIFFERENTIATION

Although a direct control of PPAR transcription is limited to
a very small number of growth-related genes (see Table 1),
the ability of PPAR ligands to inhibit cell growth by inducing
cell differentiation or apoptosis has long been demonstrated
in several cell lines. In general, the PPARα and the PPARγ
ligands display an inhibitory effect on cell growth, while
PPARβ/δ have different effects, strictly dependent on the cell
type. Indeed, in murine colorectal cells, the Apc-β-catenin
tumour-suppressor pathway was shown to repress PPARβ/δ
expression [79]. More recently it was suggested that ligand
activation of PPARβ/δ induces expression of cyclooxygenase-
2 (COX2), which could theoretically promote cell growth
and inhibit apoptosis through mechanisms that involve
the production of prostaglandins and/or inflammation-
dependent signalling [80]. However, there are several obser-
vations that are inconsistent with the idea that ligands of
PPARβ/δ potentiate cell growth. For example, inhibition of
cell growth is observed in a variety of different cells and cell
lines cultured in the presence of highly specific PPARβ/δ
ligands including human colonocytes [81], a human lung
adenocarcinoma cell line [82], mouse lung fibroblasts [83],
rat cardiomyocytes [84], a human keratinocyte cell line
[85], normal human keratinocytes [86], and mouse primary
keratinocytes [87]. Some evidence about the effects of PPAR
ligands on cell differentiation, cell cycle progression, and
apoptosis induction is illustrated as follows.

3.1. Effect of PPAR ligands in differentiation induction

The first demonstration of PPARγ involvement in adipocyte
differentiation was given by Tontonoz et al. (1993) [6].
Subsequently, PPARγ and PPARα ligands have been demon-
strated to induce differentiation alone or in association with
other differentiation inducers. It has been demonstrated
that clofibrate, a PPARα ligand, increases the differentiation
of HL-60 cells induced by retinoic acid and all-trans
retinol [88]. Other PPARα activators, including putative
endogenous ligands such as fatty acids, induce differentiation
and inhibit proliferation in keratinocytes [89]. The PPARα
ligand, ciprofibrate induces differentiation of HL-60 cells and
its effect is potentiated by phorbol 12-myristate 13-acetate
(TPA) [90]. Benzafibrate induces differentiation of HL-60,
U937, and K562 cells [91]. PPARγ ligands induce terminal
differentiation of human liposarcoma cells “in vitro” and
in patients suffering from advanced liposarcoma [92], and
promote terminal differentiation of malignant breast epithe-
lial cells “in vitro” [93]. Our research group demonstrated
that both PPARα (clofibrate and ciprofibrate) and PPARγ
ligands (troglitazone and 15d-PG J2) inhibit growth of HL-
60 human leukemic cells and induced the onset of monocytic
like differentiation [94]. In another leukemic cell line, U937

cells, PPARγ ligands inhibited proliferation but did not
induce differentiation (except the higher doses of 15d-PG
J2 which induced a poor monocytic differentiation) [94]
indicating that the differentiation induction by PPAR ligands
is cell-type specific.

Several experimental results indicate that ligand activa-
tion of PPARβ/δ induces terminal differentiation of ker-
atinocytes [86, 87, 95, 96] and it has also been shown that
differentiation of breast and colon cancer cell lines is asso-
ciated with increased expression of PPARβ/δ [97]. PPARβ/δ
expression also increases following differentiation in human
primary macrophages or in monocyte/macrophage cell lines
[98]. In addition, activation of PPARβ/δ using a selective
agonist promotes oligodendrocyte differentiation in a mouse
cell culture [99].

3.2. Effect of PPAR ligands on cell cycle progression

Evidence has been demonstrated that PPAR ligands inhibit
cell growth by acting on cell cycle progression. Fibrates,
in a dose dependent-manner, significantly alter the cell
cycle distribution, mainly leading to G0/G1 phase increase
and a G2/M phase reduction in human leukemic cell lines
[91]. In HL-60 human leukemic cells, both PPARα and
PPARγ ligands increase the proportion of G0/G1 cells [100].
PPARγ, ectopically expressed in nonprecursor fibroblastic
cell lines, induces the conversion to adipocytes and induces
the expression of p21 and p18, two cyclin/cyclin-dependent
kinase (CDK) inhibitors [101]. Troglitazone arrests U937
cells in the G1 phase of the cell cycle [102] and inhibits
cyclin D1 expression in MCF7 cells [103]. PPARγ acti-
vation induces cell cycle withdrawal of preadipocytes via
suppression of the transcriptional activity of E2F/DP DNA-
binding complex [104]. E2F activity is regulated by the
tumour suppressor retinoblastoma protein (pRb) that, when
hypophosphorylated, binds and inactivates the E2F tran-
scription factor [105]. Interestingly, PPARγ ligands inhibit
pRb phosphorylation in vascular smooth muscle cells [106–
108], increasing the amount of hypophosphorylated pRb
able to bind E2F. Others found that troglitazone inhibits the
growth of six of nine pancreatic cancer cell lines, by inducing
G1 phase cell cycle arrest through the up-regulation of the
expression of p21 [109].

Ligand activation of PPARβ/δ with GW0742 prevents cell
cycle progression from G1 to S phase and attenuates cell
proliferation in N/TERT-1 keratinocyte cells [110].

3.3. Effect of PPAR ligands on apoptosis induction

Inhibition of cell proliferation by PPAR ligands is also sup-
ported by their effect on apoptosis induction. PPARγ ligands
seem to be more effective than PPARα in inducing apoptosis,
since its proapototic activity has been demonstrated in a
wide variety of experimental cancer models [111]. PPARγ
ligands have been reported to reduce levels of FLICE-
inhibitory protein (FLIP), and apoptosis-suppressing protein
that blocks early events in TRAIL/TNF (Tumor necrosis
factor-related apoptosis inducing ligand/Tumor necrosis
factor) family death receptor signalling [112]. 15d-PG J2 and
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Table 1

Genes containing PPRE putative
sequences

Function of gene Ref.

Lipid metabolism

P450 4A6 Omega oxidation of fatty acids [15]

malic enzyme gene Fatty acid synthesis [16]

apoA-I and apoA-II. Components of HDL [17]

LPL (lipoprotein lipase) Hydrolysis of triglycerides [18]

UCP3 (Uncoupling protein 3)
Fatty acid transport and
thermogenesis

[19]

CEH (Cholesteryl ester
hydrolase)

Hydrolysis of stored cholesterol
esters in macrophage foam cells
and release of free cholesterol for
high-density
lipoprotein-mediated efflux

[20]

Aox/ACO (Acyl-CoA oxidase) Beta-oxidation in peroxisome [21]

HD (enoyl-CoA
hydratase/3-hydroxyacyl-CoA
dehydrogenase)

Beta oxidation in perixisome [21]

ILK (Integrin-linked kinase) Integrin-mediated signaling [22]

HMG-CoA
(3-hydroxy-3-methylglutaryl
coenzyme A synthase and
reductase)

Cholesterol biosynthesis [23]

LRP (lipoprotein
receptor-related protein)

Lipoprotein metabolism,
neurological function, tissue
remodelling, protease complex
clearance, cell signal
transduction

[24]

CPT1beta (human carnitine
palmitoyltransferase 1beta)

Fatty acid mitochondrial
beta-oxidation

[25]

FABP (fatty acid binding
protein)

Lipid transport (solubilization of
long-chain fatty acids)

[26]

ADRP (Adipose
differentiation-related protein)

Maintenance of lipid stores in
non-adipocytes

[27]

FIAF (The fasting-induced
adipose factor

Circulating lipoprotein lipase
inhibitor secreted from adipose
tissue

[28]

Carbohydrate metabolism

betaGK (beta-cell-specific
glucokinase)

Glucose-sensing apparatus in
pancreatic beta-cells

[29]

GPDH (Glycerol 3-phosphate
dehydrogenase)

NAD-dependent enzyme that
catalyzes the oxidation of
sn-glycerol 3-phosphate to
dihydroxyacetone phosphate. It
restores NAD+.

[30]

UGDH (UDP-glucose
dehydrogenase)

Biosynthesis of complex
carbohydrates and detoxification
of toxic compounds in the liver

[31]

PDK (Pyruvate dehydrogenase
kinase)

Modulation of pyruvate
dehydrogenase complex activity

[32]

SHP (Small heterodimer
partner)

Bile acid-dependent down
regulation of gluconeogenic gene
expression in liver

[33]

Inflammation

Prm3 (thromboxane receptor
(TP) beta promoter)

Thromboxane receptor (TP) beta
transcription

[34]

IL-1ra (Interleukin-1 receptor
antagonist)

IL-1 receptor signaling blockage [35]
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Table 1: Continued.

Genes containing PPRE putative
sequences

Function of gene Ref.

CD36 (scavenger receptor) Scavenger receptor [36]

sPLA2-IIA (Group IIA secretory
phospholipase A2)

Proinflammatory effect [37]

AhR (Aromatic hydrocarbon
receptor)

Proinflammatory effect [38]

Growth factors and cell cycle
regulators

SSAT (spermidine/spermine
N1-acetyltransferase)

Polyamine catabolism [39]

GOS2 (GO/G1 switch gene 2) Cell cycle regulation [40]

VEGF (Vascular endothelial
growth factor)

Vasculogenesis [41]

IGFBP-1 (Insulin-like growth
factor-binding protein 1)

Binding protein of insulin-like
growth factor (IGF)-I and
IGF-II. Biomarker for metabolic
and hyperproliferative diseases

[42]

Detoxification and redox enzymes

CYP1A1 (Cytochrome P450
1A1)

Degradation of endobiotics and
the bioactivation of numerous
environmental procarcinogens

[43]

GST (glutathione S-transferase
gene)

Antioxidant function [44]

POX (Proline oxidase) Redox enzyme [45]

VDUP-1 (Vitamin
D-upregulated protein-1)

Inhibition of thioredoxin-1
which plays a role in the
regulation of cellular redox
balance (Cellular redox balance)

[46]

Others

BCM (Beta-carotene
15,15′-monooxygenase)

Vitamin A biosynthesis [47]

I-BABP (Ileal bile acid-binding
protein)

Enterohepatic circulation of bile
acids

[48]

PCLN-1 (paracellin-1)
Tight-junction protein,
exclusively, in the kidney

[49]

BACE1(Beta-site amyloid
precursor protein cleaving
enzyme)

Central causal role in
Alzheimer’s disease

[50]

nephrin promoter Nephrin synthesis [51]

CIDEA (Cell death-inducing
DNA fragmentation factor
alpha-like effector A)

Proapoptotic protein [52]

TFF2 (Trefoil factor family 2)
Defense and repair of gastric
mucosa

[53]

troglitazone suppress DNA synthesis and induce apoptosis
in a dose-dependent way in HT-29 colon cancer cells,
whereas ligands for PPARα and β/δ had no significant
effect [113]. Troglitazone inhibited growth of liver cancer
cells PLC/PRF/5, HepG2 and HuH-7, by inducing apoptosis
through caspase-3 activation [114]. In breast cancer cells,
both troglitazone and 15d-PG J2 induce apoptosis [115,
116]. Kondo et al. have shown that the 15d-PG J2-induced

accumulation of p53 results in the activation of a death-
inducing caspase cascade mediated by Fas and the Fas ligand
in neurons [117]. Activation of PPARγ by troglitazone or
15d-PG J2 inhibits cell growth via apoptosis and blocks cell
cycle in human colorectal cancer [118]. However, in some
cell models, both PPARα and PPARγ displayed proapoptotic
activity, as it has been demonstrated in the HL-60 cell line
[100] and in the lymphoblastic leukaemia cell line [119]. In
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keratinocytes [120], ovarian cancer cells [121] and in human
hepatoma cell line SK-HEP-1 [122], PPARα ligands have
been reported to induce apoptosis.

Colon cancer cell lines cultured in the presence of
the PPARβ/δ ligand GW501516 exhibit inhibited levels of
apoptosis [123, 124]. It has been postulated that apoptosis
is inhibited by PPARβ/δ-dependent downregulation of the
tumour suppressor phosphatase and tensin homologue
deleted on chromosome ten (PTEN) and upregulation of
the 3-phosphoinositide-dependent kinase-1 (PDK1) and
integrin-linked kinase-1 (ILK1) [22]. The net effect of this
change in activity would have increased phosphorylation
of protein kinase B (Akt) and inhibition of apoptosis; and
these changes were shown in cultured primary keratinocytes
[22]. In mouse keratinocytes, PPARβ/δ inhibits proliferation
and promotes cell survival and migration [96, 125, 126].
In contrast with these data, prostacyclin (PGI2) was shown
to promote apoptosis in a kidney cell line, most probably
through PPARβ/δ activation [127].

4. THE ROLE OF PPAR LIGANDS IN THE CONTROL
OF GROWTH-RELATED GENE EXPRESSION

The effect of PPAR ligands in the expression of growth
regulatory genes has been in part illustrated in the previous
section. Results obtained until now do not allow the
identification of a precise signalling pathway and the PPAR
target genes that mediate the antiproliferative effects remain
elusive, as genomic responses to PPARγ activation in cancer
cells are highly complicated [128]. PPARγ ligands seem to
be more effective than PPARα ligands in inhibiting cell
growth, thus the majority of data about the gene expression
following treatment with PPAR ligands is obtained in PPARγ
ligand-treated cells. Recently, some evidence has been found
for PPARβ/δ and its ligands in regulating gene expression.
However, the number of growth-regulatory genes, affected
by specific PPARβ/δ ligands, is limited and comprises
growth-inducing genes such as COX2 [80], and Akt, via
transcriptional upregulation of integrin linked kinase (ILK)
and 3-phosphoinositide-dependent kinase-1 (PDK1) [22]
and the decrease in the level of ERK phosphorylation [110].

Reported causal mechanisms for PPARγ growth
inhibitory effects include attenuated expression of protein
phosphatase 2A and subsequent inhibition of E2F/DP
DNA binding [129], the inhibition of cyclins D1 and E,
inflammatory cytokines and transcription factors expression
[130] and increased expression of an array of gene products
linked to growth regulation and cell maturation [128].
Moreover, our and other research groups have demonstrated
that the reduction of cell growth by PPAR ligands is
accompanied by the downregulation of the c-myc gene in
myeloid leukaemia cells [131] and in colon cancer cells
[132, 133]. In the HL-60 cell line, both PPARα (ciprofibrate
and clofibrate) and PPARγ (troglitazone and 15d-PG J2)
ligands inhibit c-myb and cyclin D2 expressions [100]. In
prostate cancer cells PPARγ ligands omega-6 fatty acids
and ciglitazone down-regulated (1-2-fold) beta-catenin
and c-myc expression and the selective PPARγ antagonist
GW9662 abolished the effect of those ligands, demonstrating

a PPAR-dependent mechanism. 15-d PG J2 inhibits N-myc
expression in neuroblastoma cells [134] while it does not
decrease c-myc expression in vascular smooth muscle cells
[135].

The major part of the genes of which expression is
modulated by PPARγ ligands does not contain PPRE putative
sequences in their promoter regions. Besides downregulation
of c-myc, c-myb, and cyclin D2 genes, previously reported,
an array ofnon-PPARγ targets has been implicated in the
antitumor activities of troglitazone and/or ciglitazone in
several cell systems. These targets include intracellular Ca2+

stores [136], phosphorylating activation of extracellular
signal-regulated kinases [137, 138], c-JunN-terminal protein
kinase, and p38 [139], upregulationof early growth response-
1 [140], the CDK inhibitors p27 [141] and p21 [142],
the tumor suppressor protein p53 and the p53-responsive
stress protein Gadd45 [135], and altered expression of B-
cell leukemia/lymphoma 2 (Bcl-2)family members [139].
However, some of these targets appear to be cell-type
specific due to differences insignalling pathways regulating
cell growth and survival in differentcell systems.

Recent findings demonstrate that part of the above men-
tioned growth-regulatory genes are affected by PPAR ligands,
mostly by PPARγ through a PPAR-independent mechanism.
The most important evidence of PPAR-independent effects
displayed by PPAR ligands is illustrated in Table 2.

5. THE PRODUCTS OF LIPID PEROXIDATION
IN THE CONTROL OF GROWTH-RELATED
GENE EXPRESSION

Reactive intermediates produced during oxidative stressful
conditions cause the oxidation of polyunsaturated fatty
acids such as arachidonic, linolenic, and linoleic acids of
membrane lipid bilayers or low-density lipoprotein [156]
leading eventually to the formation of several aldehydes.
Among the products of oxidative breakdown of polyun-
saturated fatty acid, 4-hydroxy-2,3-trans-alkenals have been
proposed as ultimate messengers of lipid peroxidation-
induced injury, because they can diffuse from the site where
they are produced and can reach different intracellular and
extracellular targets [157–159]. 4-hydroxynonenal (HNE),
the aldehyde most represented in the 4-hydroxy-2,3-trans-
alkenal class, has long been investigated, since, at concentra-
tions near to those “physiologically” found in normal cells
and plasma, it modulates cellular functions, gene expression
and biochemical pathways, without cytotoxic effects [160].
For this reason, HNE has been proposed by several authors
as an intracellular signalling mediator, rather than a toxic
product of lipid peroxidation [159, 161]. Previous results
demonstrated the antiproliferative and differentiative effects
of HNE in leukemic cells [162, 163] and the antiproliferative
and proapoptotic effects in a number of different cell models
[164, 165]. Deeper investigations into HL-60 cells showed
that the proliferation block occurred at the level of the G0/G1
stage of the cell cycle [163]. Further experiments showed
that the HNE effects depend on the inhibition of the cyclin
expression, and especially of cyclins D2, D1, and A [166].
The reduction of cyclin expression can result in a reduced
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Table 2: PPAR-independent effects on tumor-related genes.

PPARs ligand PPAR-independent effect Experimental strategies Ref.

PPARγ ligands

Troglitazone in LNCaP
prostate cancer cells

Androgen receptor (AR)
suppression by facilitating the
ubiquitin-dependent proteasomal
degradation of the transcriptional
factor Sp-1

STG28, a PPARγ-inactive
analogue of troglitazone.

[143]

Troglitazone in mice

Rapidly AMP-activated protein
kinase (AMPK) activation through
a yet undefined
PPAR-γ-independent mechanism,
leading to the suppression of
insulin-like growth factor-I
tumor-promoting activity (IGF-1)

Expression of a
dominant-negative AMPK

[144]

Troglitazone and
ciglitazone in MCF-7 breast
cancer

Repression of cyclin D1 expression,
though a post transcriptional
mechanism, via
proteasome-facilitated proteolysis

Proteasome inhibitors [145]

Ciglitazone in HT1080
human fibrosarcoma

Increase of MMP-2 expression
through ROS production and ERK
activation

PPARγ antagonist GW9662 [146]

Troglitazone and
15-deoxy-prostaglandin J2
(15dPGJ2) in prostate and
bladder cancer cells

Troglitazone induces G0/G1 growth
arrest and PGJ2 induces apoptosis

PPARγ antagonist GW9662 [147]

Troglitazone in B cell acute
lymphoblastic leukemia cell
lines

Apoptosis and cell growth
inhibition associated with G1 cell
cycle arrest

PPAR antagonists [148]

Thiazolidinediones (TZD)
in human breast cancer

Inhibition of Cyclin D3 expression
by decreasing cyclin mRNA levels
and by inducing its proteasomal
degradation

A dominant negative
mutant of PPARγ

[149]

Troglitazone in mouse skin
keratinocytes

Inhibition of cyclin D1 expression
PPARγ antagonist GW9662
and dominant Dominant
negative PPARγ.

[150]

Thiazolidinediones (TGZ)
in human colon cancer cells
HTC-116

Egr-1 promoter activity increase Different PPARγ ligands [140]

15-deoxy-prostaglandin J2
(15dPGJ2) in colon
carcinoma cells

COX2 and VEGF inhibition via
AP-1 activity repression

Dominant negative form of
PPARγ and a PPARγ
antagonist

[151]

15-deoxy-prostaglandin J2
(15dPGJ2) induces
apoptosis in human B
lymphocytes

Apoptosis through the induction of
ROS and depletion of glutathione

Dominant negative form of
PPARγ and a PPARγ
antagonist

[152]

15-deoxy-prostaglandin J2
(15dPGJ2) in Jurkat human
leukemic cells and PC3
human prostate cancer cells

Apoptosis by increasing the mRNA
stability of death Receptor 5 (DR5),
a specific receptor for
tumor-necrosis factor-related
apoptosis-inducing ligand (TRAIL)

PPARγ antagonist GW9662 [153]

PPARα ligands

DEHP in mice Induction of hepatic tumorigenesis
Wild-type and PPARα-null
mice in comparison

[154]

WY14,643 in activated
splenocytes isolated from
C57BL/6 mice

Apoptosis
Wild-type and PPARα-null
mice in comparison

[155]

PPARβ/δ ligands

GW0742 in PPARβ-null
mouse model

Induction of keratinocyte terminal
differentiation and inhibition of
keratinocyte proliferation

PPARδ-null mice [86]
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activity of cyclin/CDK complexes which principally regulate
the phosphorylation of the pRb. In highly proliferating
tumour cells, pRb is constantly in the hyperphosphorylated
status. When hyperphosphorylated, pRB cannot bind to
E2F transcription factors that can promote the G1/S cell
cycle phase passage. After HNE treatment, pRb remains
hypophosphorylated, and E2F remains bound to pRb [167].
HNE not only reduces the phosphorylation of pRb, but also
decreases the amount of “free” E2F bound to the P2 c-myc
promoter. These effects can explain the blocking of c-myc
expression demonstrated in HNE-treated cells.

The hypophosphorylation of pRb proteins may depend
on the inhibition of cyclin expression, however, this effect
may also be related to the increase of the expression of p21,
an inhibitor of the cyclin/CDK complexes, induced by HNE
treatment [167]. Another effect of HNE, also important for
cell multiplication, is that displayed on telomerase activity
and hTERT expression. The activity of telomerase and the
expression of its catalytic subunit hTERT, were inhibited by
HNE in three different human leukemic cell lines, HL-60,
U937 and ML-1 [168]. The binding studies of E-box in the
hTERT promoter demonstrated that in HNE-treated HL-60
cells there is a decrease in Myc binding complexes and an
increase in Mad-1 binding complexes which could contribute
to the switch from c-Myc/Max to Mad1/Max with repressor
activity of the transcription.

HNE is able to induce p53 expression in ML-1 cells,
according to previous results demonstrating the induction of
p53 expression by HNE in the SK-N-BE human neuroblas-
toma cell line [165]. Moreover, in SK-N-BE cells apoptosis
was substantially increased even with 1 μM HNE. At the
same time, the expression of the p53 family members, p63
and p73, was strongly increased as well as the expression
of the cyclin/CDK inhibitor p21 and the proapoptotic bax
gene. Since p21 and bax are the two main targets for the
transcription factor p53, these results indicate that HNE, by
acting on p53 gene expression, can regulate the p53 target
genes.

6. INTERACTION BETWEEN PPAR LIGANDS
AND LIPOPEROXIDATION PRODUCTS

The relationship between oxidative stress-related molecules
and PPAR activation has not yet been elucidated. Based
upon their capacity to elicit cellular responses to a variety
of stimuli, PPARs may represent a class of molecules which
allow the biochemical adaptation to a diverse range of
internal and external signals. These include oxidised LDL
[169] and inflammatory agents as well as 15d-PG J2 [170]
and leukotriene B4 [65]. However, other molecules generated
during inflammation may be involved. In the cultured
mesangial cells, PPARγ is activated by various oxidative
stress-related molecules such as TPA, TNF alpha, and H2O2

[171]. The physiological ligand of PPARγ, 15d-PG J2, is
a potential inducer of intracellular oxidative stress that
mediates the cytotoxic effects in human neuroblastoma cells
[172]. On the other hand, the activation of PPARα leads to
increased oxidative stress in liver cells [173]. On the basis of
this link between oxidative stress and PPAR activation and

between oxidative stress and lipoperoxidation induction, our
research group investigated, for the first time, the interaction
between the major lipoperoxidation product, HNE, and
PPAR activation in HL-60 and U937 human leukemic cells
[94]. We demonstrated that HNE increases the monocytic
differentiation induced by the PPARα ligand ciprofibrate,
and PPARγ ligands, troglitazone and 15d-PG J2, in HL-60
cells. Whereas, neither PPARα nor PPARγ ligands induce
U937 differentiation. Moreover, in this cell line, only PPARγ
ligands reduce cell growth. HNE also significantly inhibits
cell growth when given alone, and strengthens the growth
inhibitory effect of a low dose of PPARγ ligands. HNE
promotes at the same time a great increase in the expression
of PPARγ in both HL-60 and U937 cells, without any
modification of the PPARα expression. These results suggest
a synergistic effect of HNE and PPARγ ligands in blocking
cell growth and in promoting the differentiation in HL-60
cells.

More recently, we analysed the effects of PPARγ ligands
(rosiglitazone and 15d-PG J2) and HNE, alone or in associa-
tion, on proliferation, apoptosis, differentiation, and growth-
related and apoptosis-related gene expressions in CaCo-2,
colon cancer cells. Results obtained indicate that, in this
cell line, PPARγ ligands and HNE inhibited cell growth and
induced differentiation or apoptosis by different signalling
pathways. The common feature consisted of the inhibition
of c-myc expression, whereas the apoptosis was induced by
15d-PG J2 and HNE and, to a minor extent, by rosiglitazone
and the differentiation was induced by rosiglitazone and by
15d-PG J2, but not by HNE. Moreover, HNE induced p21
expression, while PPARγ ligands did not. Bax expression was
increased by HNE and 15d-PG J2, but not by rosiglitazone.
HNE did not induce an increase of PPARγ expression and did
not display synergism or antagonism towards PPARγ ligands.

These various results, obtained in different cell mod-
els, strongly demonstrate that the gene expression control
exerted by PPAR ligands is dependent on the cell type
examined.

An interaction between HNE and PPARγ has also been
demonstrated by Muzio et al. (2006) [174]. These authors
found that arachidonic acid induces suppression of human
lung tumor A549 cell growth, increases lipid peroxidation
and decreases aldehyde dehydrogenase 3A1 ALDH3A1,
which may determine an accumulation of endogenous
HNE. These phenomena are associated with the increased
expression of PPARγ, suggesting a relationship between
endogenous HNE levels and PPARγ expression. Moreover, it
has been postulated that HNE can represent an endogenous
modulator of PPARβ/δ activity, since HNE is an endogenous
ligand for PPARβ/δ and activates PPARβ/δ target genes
[175]. This datum suggest that the binding between HNE
and PPARβ/δ can modulate PPARβ/δ activity in all cell types,
since PPARβ/δ is ubiquitously expressed.

The different interactions between HNE and PPAR are
summarized in Figure 2.

These findings represent an intriguing suggestion about
the role played by the lipoperoxidation products in control-
ling cellular PPAR-dependent responses, not only regarding
cell proliferation control but also in the regulation of
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Figure 2: Different interactions between HNE and PPAR. (a) HNE
increases PPARγ expression in leukemic cell lines; (b) HNE binds
and activates PPARβ/δ.

different metabolic pathways, and indicate that the inter-
action between oxidative stress products and PPAR activity
represents a new research field in expansion.
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