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Recently, a considerable growth of interest in projected gradient (PG) methods has been observed due to their high efficiency
in solving large-scale convex minimization problems subject to linear constraints. Since the minimization problems underlying
nonnegative matrix factorization (NMF) of large matrices well matches this class of minimization problems, we investigate and
test some recent PG methods in the context of their applicability to NMF. In particular, the paper focuses on the following modified
methods: projected Landweber, Barzilai-Borwein gradient projection, projected sequential subspace optimization (PSESOP),
interior-point Newton (IPN), and sequential coordinate-wise. The proposed and implemented NMF PG algorithms are compared
with respect to their performance in terms of signal-to-interference ratio (SIR) and elapsed time, using a simple benchmark of
mixed partially dependent nonnegative signals.
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1. Introduction and Problem Statement

Nonnegative matrix factorization (NMF) finds such nonneg-
ative factors (matrices) A = [ai j] ∈ RI×J and X = [xjt] ∈
RJ×T with a ai j ≥ 0, xjt ≥ 0 that Y ∼= AX, given the
observation matrix Y = [yit] ∈ RI×T , the lower-rank J , and
possibly other statistical information on the observed data or
the factors to be estimated.

This method has found a variety of real-world applica-
tions in the areas such as blind separation of images and
nonnegative signals [1–6], spectra recovering [7–10], pattern
recognition and feature extraction [11–16], dimensionality
reduction, segmentation and clustering [17–32], language
modeling, text mining [25, 33], music transcription [34], and
neurobiology (gene separation) [35, 36].

Depending on an application, the estimated factors
may have different interpretation. For example, Lee and
Seung [11] introduced NMF as a method for decomposing

an image (face) into parts-based representations (parts
reminiscent of features such as lips, eyes, nose, etc.). In blind
source separation (BSS) [1, 37, 38], the matrix Y represents
the observed mixed (superposed) signals or images, A is a
mixing operator, and X is a matrix of true source signals
or images. Each row of Y or X is a signal or 1D image
representation, where I is a number of observed mixed
signals and J is a number of hidden (source) components.
The index t usually denotes a sample (discrete time instant),
where T is the number of available samples. In BSS, we
usually have T � I ≥ J , and J is known or can be relatively
easily estimated using SVD or PCA.

Our objective is to estimate the mixing matrix A and
sources X subject to nonnegativity constraints of all the
entries, given Y and possibly the knowledge on a statistical
distribution of noisy disturbances.

Obviously, NMF is not unique in general case, and it is
characterized by a scale and permutation indeterminacies.
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These problems have been addressed recently by many
researchers [39–42], and in this paper, the problems will
not be discussed. However, we have shown by extensive
computer simulations that in practice with overwhelming
probability we are able to achieve a unique nonnegative fac-
torization (neglecting unavoidable scaling and permutation
ambiguities) if data are sufficiently sparse and a suitable NMF
algorithm is applied [43]. This is consistent with very recent
theoretical results [40].

The noise distribution is strongly application-dependent,
however, in many BSS applications, a Gaussian noise is
expected. Here our considerations are restricted to this
case, however, the alternative NMF algorithms optimized to
different distributions of the noise exist and can be found, for
example, in [37, 44, 45].

NMF was proposed by Paatero and Tapper [46, 47] but
Lee and Seung [11, 48] highly popularized this method by
using simple multiplicative algorithms to perform NMF. An
extensive study on convergence of multiplicative algorithms
for NMF can be found in [49]. In general, the multiplicative
algorithms are known to be very slowly convergent for
large-scale problems. Due to this reason, there is a need to
search more efficient and fast algorithms for NMF. Many
approaches have been proposed in the literature to relax these
problems. One of them is to apply projected gradient (PG)
algorithms [50–53] or projected alternating least-squares
(ALS) algorithms [33, 54, 55] instead of multiplicative ones.
Lin [52] suggested applying the Armijo rule to estimate
the learning parameters in projected gradient updates for
NMF. The NMF PG algorithms proposed by us in [53] also
address the issue with selecting such a learning parameter
that is the steepest descent and also keeps some distance
to a boundary of the nonnegative orthant (subspace of
real nonnegative numbers). Another very robust technique
concerns exploiting the information from the second-order
Taylor expansion term of a cost function to speed up the
convergence. This approach was proposed in [45, 56], where
the mixing matrix A is updated with the projected Newton
method, and the sources in X are computed with the
projected least-squares method (the fixed point algorithm).

In this paper, we extend our approach to NMF that we
have initialized in [53]. We have investigated, extended, and
tested several recently proposed PG algorithms such as the
oblique projected Landweber [57], Barzilai-Borwein gradi-
ent projection [58], projected sequential subspace optimiza-
tion [59, 60], interior-point Newton [61], and sequential
coordinate-wise [62]. All the presented algorithms in this
paper are quite efficient for solving large-scale minimization
problems subject to nonnegativity and sparsity constraints.

The main objective of this paper is to develop, extend,
and/or modify some of the most promising PG algorithms to
a standard NMF problem and to find optimal conditions or
parameters for such a class of NMF algorithms. The second
objective is to compare the performance and complexity
of these algorithms for NMF problems, and to discover
or establish the most efficient and promising algorithms.
We would like to emphasize that most of the discussed
algorithms have not been implemented neither used till now
or even tested before for NMF problems, but they have been

rather considered for solving a standard system of algebraic
equations: Ax(k) = y(k) (for only k = 1) where the matrix
A and the vectors y are known. In this paper, we consider
a much more difficult and complicated problem in which
we have two sets of parameters and additional constraints
of nonnegativity and/or sparsity. So it was not clear till now
whether such algorithms would work efficiently for NMF
problems, and if so, what kind of projected algorithms is the
most efficient? To our best knowledge only the Lin-PG NMF
algorithm is widely used and known for NMF problems.
We have demonstrated experimentally that there are several
novel PG gradient algorithms which are much more efficient
and consistent than the Lin-PG algorithm.

In Section 2, we briefly discuss the PG approach to NMF.
Section 3 describes the tested algorithms. The experimental
results are illustrated in Section 4. Finally, some conclusions
are given in Section 5.

2. Projected Gradient Algorithms

In contrast to the multiplicative algorithms, the class of PG
algorithms has additive updates. The algorithms discussed
here approximately solve nonnegative least squares (NNLS)
problems with the basic alternating minimization technique
that is used in NMF:

min
xt≥0

DF
(

yt||Axt
) = 1

2

∥
∥yt − Axt

∥
∥2

2, t = 1, . . . ,T , (1)

min
ai≥0

DF
(

y
i
||XTai

) = 1
2

∥
∥y

i
−XTai

∥
∥2

2, i = 1, . . . , I (2)

or in the equivalent matrix form

min
xjt≥0

DF(Y||AX) = 1
2
‖Y− AX‖2

F , (3)

min
ai j≥0

DF
(

YT ||XTAT
) = 1

2

∥
∥YT −XTAT

∥
∥2
F , (4)

where A = [a1, . . . , aJ] ∈ RI×J , AT = [a1, . . . , aI] ∈ RJ×I ,
X = [x1, . . . , xT] ∈ RJ×T , XT = [x1, . . . , xJ] ∈ RT×J , Y =
[y1, . . . , yT] ∈ RI×T , YT = [y

1
, . . . , y

I
] ∈ RI×T , and usually

I ≥ J . The matrix A is assumed to be a full-rank matrix, so
there exists a unique solution X∗ ∈ RJ×T for any matrix Y
since the NNLS problem is strictly convex (with respect to
one set of variables {X}).

The solution x∗t to (1) satisfies the Karush-Kuhn-Tucker
(KKT) conditions:

x∗t ≥ 0, gX
(

x∗t
) ≥ 0, gX

(
x∗t
)T

x∗t = 0, (5)

or in the matrix notation

X∗ ≥ 0, GX
(

X∗
) ≥ 0, tr

{
GX
(

X∗
)T

X∗
} = 0,

(6)

where gX and GX are the corresponding gradient vector and
gradient matrix:

gX
(

xt
) = ∇xtDF

(
yt||Axt

) = AT
(

Axt − yt
)
, (7)

GX(X) = ∇XDF(Y||AX) = AT(AX− Y). (8)
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Similarly, the KKT conditions for the solution a∗ to (2),
and the solution A∗ to (4) are as follows:

a∗i ≥ 0, gA
(

a∗i
) ≥ 0, gA

(
a∗i
)T

a∗i = 0, (9)

or in the matrix notation:

A∗ ≥ 0, GA
(

A∗
) ≥ 0, tr

{
A∗GA

(
A∗
)T} = 0,

(10)

where gA and GA are the gradient vector and gradient matrix
of the objective function:

gA
(

at
) = ∇aiDF

(
y
i
||XTai

) = (XTai − y
i

)
,

GA(A) = ∇ADF
(

YT ||XTAT
) = (AX− Y)XT .

(11)

There are many approaches to solve the problems (1) and
(2), or equivalently (3) and (4). In this paper, we discuss
selected projected gradient methods that can be generally
expressed by iterative updates:

X(k+1) = PΩ
[

X(k) − η(k)
X P(k)

X

]
,

A(k+1) = PΩ
[

A(k) − η(k)
A P(k)

A

]
,

(12)

where PΩ[ξ] is a projection of ξ onto a convex feasible set
Ω = {ξ ∈ R : ξ ≥ 0}, namely, the nonnegative orthant R+

(the subspace of nonnegative real numbers), P(k)
X and P(k)

A are

descent directions for X and A, and η(k)
X and η(k)

A are learning
rules, respectively.

The projection PΩ[ξ] can be performed in several ways.
One of the simplest techniques is to replace all negative
entries in ξ by zero-values, or in practical cases, by a small
positive number ε to avoid numerical instabilities. Thus,

P[ξ] = max{ε, ξ}. (13)

However, this is not the only way to carry out the projection
PΩ(ξ). It is typically more efficient to choose the learning

rates η(k)
X and η(k)

A so as to preserve nonnegativity of the
solutions. The nonnegativity can be also maintained by solv-
ing least-squares problems subject to the constraints (6) and
(10). Here we present the exemplary PG methods that work
for NMF problems quite efficiently, and we implemented
them in the Matlab toolboxm, NMFLAB/NTFLAB, for signal
and image processing [43]. For simplicity, we focus our
considerations on updating the matrix X, assuming that the
updates for A can be obtained in a similar way. Note that the
updates for A can be readily obtained solving the transposed
system XTAT = YT , having X fixed (updated in the previous
step).

3. Algorithms

3.1. Oblique Projected Landweber Method

The Landweber method [63] performs gradient-descent
minimization with the following iterative scheme:

X(k+1) = X(k) − ηG(k)
X , (14)

Set A, X, % Initialization

η(X)
j = 2

(ATA1J ) j
,

For k = 1, 2, . . ., % Inner iterations for X
GX = AT(AX− Y), % Gradient with respect to X
X ← PΩ[X− diag{ηj}GX], % Updating

End

Algorithm 1: (OPL).

where the gradient is given by (8), and the learning rate
η ∈ (0,ηmax). The updating formula assures an asymptotical
convergence to the minimal-norm least squares solution for
the convergence radius defined by

ηmax = 2
λmax

(
ATA

) , (15)

where λmax(ATA) is the maximal eigenvalue of ATA.
Since A is a nonnegative matrix, we have λmax(ATA) ≤
max j[ATA1J] j , where 1J = [1, . . . , 1]T ∈ RJ . Thus the
modified Landweber iterations can be expressed by the
formula

X(k+1) = PΩ
[

X(k) − diag
{
ηj
}

G(k)
X

]
, where ηj = 2

(
ATA1J

)
j

.

(16)

In the obliqueprojected Landweber (OPL) method [57],
which can be regarded as a particular case of the PG
iterative formula (12), the solution obtained with (14) in
each iterative step is projected onto the feasible set. Finally,
we have Algorithm 1 for updating X.

3.2. Projected Gradient

One of the fundamental PG algorithms for NMF was
proposed by Lin in [52]. This algorithm, which we refer to
as the Lin-PG, uses the Armijo rule along the projection arc

to determine the steplengths η(k)
X and η(k)

A in the iterative
updates (12). For the cost function being the squared
Euclidean distance, PX = (A(k))T(A(k)X(k) − Y) and PA =
(A(k)X(k+1) − Y)(X(k+1))T .

For computation of X, such a value of ηX is decided, on
which

η(k)
X = βmk , (17)

where mk is the first nonnegative integer m that satisfies

DF
(

Y||AX(k+1))−DF
(

Y||AX(k))

≤ σ∇XDF
(

Y||AX(k))T(X(k+1) −X(k)).
(18)

The parameters β ∈ (0, 1) and σ ∈ (0, 1) decide about a
convergence speed. In this algorithm we set σ = 0.01, β = 0.1
experimentally as default.

The Matlab implementation of the Lin-PG algorithm is
given in [52].
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Set A, X,αmin,αmax,α(0) ∈ [αmin,αmax] ∈ RT %
Initialization

For k = 1, 2, . . ., % Inner iterations
Δ(k) = PΩ[X(k) − α(k)∇XDF(Y||AX(k))]−X(k),
λ(k) = arg min

λ
(k)
t ∈[0,1]

DF(Y||A(X + Δ(k)diag{λ})),

where λ = [λt] ∈ RT ,
X(k+1) = X(k) + Δ(k)diag{λ},
γ(k) = diag{(Δ(k))TATAΔ(k)},
If γ(k)

t = 0: α(k+1)
t = αmax,

Else α(k+1)
t = min{αmax, max{αmin,

[(Δ(k))TΔ(k)]tt/γ
(k)
t }},

End
End % Inner iterations

Algorithm 2: (GPSR-BB).

3.3. Barzilai-Borwein Gradient Projection

The Barzilai-Borwein gradient projection method [58, 64] is
motivated by the quasi-Newton approach, that is, the inverse
of the Hessian is replaced with an identity matrix Hk = αkI,
where the scalar αk is selected so that the inverse Hessian has
similar behavior as the true Hessian in the recent iteration.
Thus,

X(k+1)−X(k)≈αk
(∇XD

(
Y||A(k)X(k+1))−∇XD

(
Y||A(k)X(k))).

(19)

In comparison to, for example, Lin’s method [52], this
method does not ensure that the objective function decreases
at every iteration, but its general convergence has been
proven analytically [58]. The general scheme of the Barzilai-
Borwein gradient projection algorithm for updating X is in
Algorithm 2.

Since DF(Y||AX) is a quadratic function, the line search
parameter λ(k) can be derived in the following closed-form
formula:

λ(k) = max
{

0, min
{

1,
diag

{(
Δ(k))T∇XDF(Y||AX)

}

diag
{(
Δ(k))TATAΔ(k)}

}}
.

(20)

The Matlab implementation of the GPSR-BB algorithm,
which solves the system AX = Y of multiple measurement
vectors subject to nonnegativity constraints, is given in
Algorithm 4 (see also NMFLAB).

3.4. Projected Sequential Subspace
Optimization

The projected sequential subspace optimization (PSESOP)
method [59, 60] carries out a projected minimization of
a smooth objective function over a subspace spanned by
several directions which include the current gradient and
gradient from the previous iterations, and the Nemirovski
directions. Nemirovski [65] suggested that convex smooth

Set A, x(0)
t , p % Initialization

For k = 1, 2, . . ., % Inner iterations
d(k)

1 = x(k) − x(0),
g(k) = ∇xtDF(yt||Axt),
G(p) = [g(k−1), g(k−2), . . . , g(k−p)] ∈ RJ×p,

wk =
⎧
⎨

⎩
1 if k = 1,

1/2 +
√

1/4 +w2
k−1 if k > 1,

w(k) = [wk ,wk−1, . . . ,wk−p+1]T ∈ Rp,
d(k)

2 = G(p)w(k),
D(k) = [d(k)

1 , d(k)
2 , g(k), G(p)],

α(k)
∗ = arg minαDF(yt||A(x(k)

t + D(k)α(k))),
x(k+1) = PΩ[x(k) + D(k)α(k)

∗ ]
End % Inner iterations

Algorithm 3: (NMF-PSESOP).

unconstrained optimization is optimal if the optimization
is performed over a subspace which includes the current

gradient g(x), the directions d(k)
1 = x(k) − x(0), and the linear

combination of the previous gradients d(k)
2 = ∑k−1

n=0wng(xn)
with the coefficients wn, n = 0, . . . , k − 1. The directions
should be orthogonal to the current gradient. Narkiss and
Zibulevsky [59] also suggested to include another direction:
p(k) = x(k)−x(k−1), which is motivated by a natural extension
of the conjugate gradient (CG) method to a nonquadratic
case. However, our practical observations showed that this
direction does not have a strong impact on the NMF
components, thus we neglected it in our NMF-PSESOP
algorithm. Finally, we have Algorithm 3 for updating xt
which is a single column vector of X.

The parameter p denotes the number of previous iterates
that are taken into account to determine the current update.

The line search vector α(k)
∗ derived in a closed form for

the objective function DF(yt||Axt) is as follows:

α(k)
∗ = −

((
D(k))TATAD(k) + λI

)−1(
D(k))T∇xtDF

(
yt||Axt

)
.

(21)

The regularization parameter can be set as a very small
constant to avoid instabilities in inverting a rank-deficient
matrix in case that D(k) has zero-value or dependent
columns.

3.5. Interior Point Newton Algorithm

The interior point Newton (IPN) algorithm [61] solves the
NNLS problem (1) by searching the solution satisfying the
KKT conditions (5) which equivalently can be expressed by
the nonlinear equations

D
(

xt
)

g
(

xt
) = 0, (22)

where D(xt) = diag{d1(xt), . . . ,dJ(xt)}, xt ≥ 0, and

dj
(

xt
) =

⎧
⎨

⎩

xjt if gj
(

xt
) ≥ 0,

1 otherwise.
(23)
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% Barzilai-Borwein gradient projection (GPSR-BB) algorithm

%
function [X] = nmf gpsr bb(A,Y,X,no iter)
%
% [X] = nmf gpsr bb(A,Y,X,no iter) finds such matrix X that solves
% the equation AX = Y subject to nonnegativity constraints.
%
% INPUTS:
% A - system matrix of dimension [I by J]
% Y - matrix of observations [I by T]
% X - matrix of initial guess [J by T]
% no iter - maximum number of iterations
%
% OUTPUTS:
% X - matrix of estimated sources [J by T]
%
% #########################################################################
% Parameters
alpha min = 1E-8; alpha max = 1;
alpha = .1∗ones(1,size(Y,2));
B = A’∗A; Yt = A’∗Y;

for k=1:no iter

G = B∗X - Yt;
delta = max(eps, X - repmat(alpha,size(G,1),1).∗G) - X;
deltaB = B∗delta;
lambda = max(0, min(1, -sum(delta.∗G,1)./(sum(delta.∗deltaB,1) + eps)));
X = max(eps,X + delta.∗repmat(lambda,size(delta,1),1));
gamma = sum(delta.∗deltaB,1) + eps;
if gamma

alpha = min(alpha max, max(alpha min, sum(delta.̂ 2,1)./gamma ));
else

alpha = alpha max;
end

end

Algorithm 4

Applying the Newton method to (22), we have in the kth
iterative step

(
Dk
(

xt
)

ATA + Ek
(

xt
))

pk = −Dk
(

xt
)

gk
(

xt
)
, (24)

where

Ek
(

xt
) = diag

{
e1
(

xt
)
, . . . , eJ

(
xt
)}
. (25)

In [61], the entries of the matrix Ek(xt) are defined by

ej
(

xt
) =

{
gj
(

xt
)

if 0 ≤ gj
(

xt
)
< x

γ
jt, or

(
gj
(

xt
))γ

> xjt,

1 otherwise,
(26)

for 1 < γ ≤ 2.
If the solution is degenerate, that is, t = 1, . . . ,T , ∃ j :

x∗jt = 0, and gjt = 0, the matrix Dk(xt)ATA + Ek(xt) may be
singular. To avoid such a case, the system of equations has
been rescaled to the following form:

Wk
(

xt
)

Dk
(

xt
)

Mk
(

xt
)

pk = −Wk
(

xt
)

Dk
(

xt
)

gk
(

xt
)

(27)

with

Mk
(

xt
) = ATA + Dk

(
xt
)−1

Ek
(

xt
)
,

Wk
(

xt
) = diag

{
w1
(

xt
)
, . . . ,wJ

(
xt
)}

,

wj
(

xt
) = (dj

(
xt
)

+ ej
(

xt
))−1

,

(28)

for xt > 0. In [61], the system (27) is solved by the inexact
Newton method, which leads to the following updates:

Wk
(

xt
)

Dk
(

xt
)

Mk
(

xt
)

pk = −Wk
(

xt
)

Dk
(

xt
)

gk
(

xt
)

+ rk
(

xt
)
,

(29)

p̂k=max
{
σ , 1−∥∥PΩ

[
x(k)
t +pk

]−x(k)
t

∥
∥

2

}(
PΩ
[
x(k)
t +pk

]−x(k)
t

)
,

(30)

x(k+1)
t = x(k)

t + p̂k, (31)

where σ ∈ (0, 1), rk(xt) = AT(Axt − yt), and PΩ[·] is a
projection onto a feasible set Ω.
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The transformation of the normal matrix ATA by the
matrix Wk(xt)Dk(xt) in (27) means the system matrix
Wk(xt)Dk(xt)Mk(xt) is no longer symmetric and positive-
definite. There are many methods for handling such sys-
tems of linear equations, like QMR [66], BiCG [67, 68],
BiCGSTAB [69], or GMRES-like methods [70], however,
they are more complicated and computationally demanding
than, for example, the basic CG algorithm [71]. To apply the
CG algorithm the system matrix in (27) must be converted
to a positive-definite symmetric matrix, which can be easily
done with normal equations. The methods like CGLS [72]
or LSQR [73] are therefore suitable for such tasks. The
transformed system has the form

Zk
(

xt
)

p̃k = −Sk
(

xt
)

gk
(

xt
)

+ r̃k
(

xt
)
, (32)

Sk
(

xt
) =

√
Wk
(

xt
)

Dk
(

xt
)
, (33)

Zk
(

xt
) = Sk

(
xt
)

Mk
(

xt
)

Sk
(

xt
)

= Sk
(

xt
)

ATASk
(

xt
)

+ Wk
(

xt
)

Ek
(

xt
)
,

(34)

with p̃k = S−1
k (xt)pk and r̃k = S−1

k (xt)rk(xt).
Since our cost function is quadratic, its minimization

in a single step is performed with combining the projected
Newton step with the constrained scaled Cauchy step that is
given in the form

p(C)
k = −τkDk

(
xt
)

gk
(

xt
)
, τk > 0. (35)

Assuming x(k)
t + p(C)

k > 0, τk is chosen as being either
the unconstrained minimizer of the quadratic function
ψk(−τkDk(xt)gk(xt)) or a scalar proportional to the distance
to the boundary along −Dk(xt)gk(xt), where

ψk(p) = 1
2

pTMk
(

xt
)

p + pTgk
(

xt
)

= 1
2

pT
(

ATA+D−1
k

(
xt
)

Ek
(

xt
))

p+pTAT
(

Ax(k)
t −yt

)
.

(36)

Thus

τk=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1 = arg min
τ
ψk
(− τkDk

(
xt
)

gk
(

xt
))

if x(k)
t − τ1Dk

(
xt
)

gk
(

xt
)
> 0,

τ2=θmin
j

{ x(k)
jt

(
Dk
(

xt
)

gk
(

xt
))

j

:
(

Dk
(

xt
)

gk
(

xt
))

j >0
}

otherwise,
(37)

where ψk(−τkDk(xt)gk(xt)) = (gk(xt))TDk(xt)gk(xt)/(Dk ×
(xt)gk(xt))

TMk(xt)Dk(xt)gk(xt) with θ∈ (0, 1). For ψk(p(C)
k ) <

0, the global convergence is achieved if red(x(k+1)
t −x(k)

t ) ≥ β,
β ∈ (0, 1) with

red(p) = ψk(p)

ψk
(

p(C)
k

) . (38)

The usage of the constrained scaled Cauchy step leads to
the following updates:

s(k)
t = t

(
p(C)
k − p̂k

)
+ p̂k,

x(k+1)
t = x(k)

t + s(k)
t ,

(39)

with t ∈ [0, 1), p̂k and p(C)
k are given by (30) and (35), res-

pectively, and t is the smaller square root (laying in (0, 1)) of
the quadratic equation:

π(t) = ψk
(
t
(

p(C)
k − p̂k

)
+ p̂k

)− βψk
(

p(C)
k

) = 0. (40)

The Matlab code of the IPN algorithm, which solves the
system Axt = yt subject to nonnegativity constraints, is given
in Algorithm 5. To solve the transformed system (32), we use
the LSQR method implemented in Matlab 7.0.

3.6. Sequential Coordinate-Wise Algorithm

The NNLS problem (1) can be expressed in terms of the
following quadratic problem (QP) [62]:

min
xt≥0

Ψ
(

xt
)
, (t = 1, . . . ,T), (41)

where

Ψ
(

xt
) = 1

2
xTt Hxt + cTt xt , (42)

with H = ATA and ct = −ATyt.
The sequential coordinate-wise algorithm (SCWA) pro-

posed first by Franc et al. [62] solves the QP problem given
by (41) updating only single variable xjt in one iterative step.
It should be noted that the sequential updates can be easily
done, if the function Ψ(xt) is equivalently rewritten as

Ψ
(

xt
) = 1

2

∑

p∈I

∑

r∈I

xptxrt
(

ATA
)
pr +

∑

p∈I

xpt
(

ATyt
)
pt

= 1
2
x2
jt

(
ATA

)
j j + xjt

(
ATyt

)
jt

+ xjt
∑

p∈I\{ j}
xpt
(

ATA
)
p j +

∑

p∈I\{ j}
xpt
(

ATyt
)
pt

+
1
2

∑

p∈I\{ j}

∑

r∈I\{ j}
xptxrt

(
ATA

)
pr

= 1
2
x2
jth j j + xjtβjt + γjt,

(43)

where I = {1, . . . , J}, and

hj j =
(

ATA
)
j j ,

βjt =
(

ATyt
)
jt +

∑

p∈I\{ j}
xpt
(

ATA
)
p j

= [ATAxt + ATyt
]
jt −

(
ATA

)
j jx jt,

γjt =
∑

p∈I\{ j}
xpt
(

ATyt
)
pt +

1
2

∑

p∈I\{ j}

∑

r∈I\{ j}
xptxrt

(
ATA

)
pr .

(44)
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% Interior Point Newton (IPN) algorithm function
%
function [x] = nmf ipn(A,y,x,no iter)
%
% [x]=nmf ipn(A,y,x,no iter) finds such x that solves the equation Ax = y
% subject to nonnegativity constraints.
%
% INPUTS:
% A - system matrix of dimension [I by J]
% y - vector of observations [I by 1]
% x - vector of initial guess [J by 1]
% no iter - maximum number of iterations
%
% OUTPUTS:
% x - vector of estimated sources [J by 1]
%
% #########################################################################
% Parameters
s = 1.8; theta = 0.5; rho = .1; beta = 1;
H = A’∗A; yt = A’∗y; J = size(x,1);

% Main loop
for k=1:no iter

g = H∗x - yt; d = ones(J,1); d(g >= 0) = x(g >= 0);
ek = zeros(J,1); ek(g >=0 & g < x.̂ s) = g(g >=0 & g < x.̂ s);
M = H + diag(ek./d);
dg = d.∗g;
tau1 = (g’∗dg)/(dg’∗M∗dg); tau 2vec = x./dg;
tau2 = theta∗min(tau 2vec(dg > 0));
tau = tau1∗ones(J,1); tau(x - tau1∗dg <= 0) = tau2;
w = 1./(d + ek); sk = sqrt(w.∗d); pc = - tau.∗dg;
Z = repmat(sk,1,J).∗M.∗repmat(sk’,J,1);
rt = -g./sk;
[pt,flag,relres,iter,resvec] = lsqr(Z,rt - g.∗sk,1E-8);
p = pt.∗sk;
phx = max(0, x + p) - x;
ph = max(rho, 1 - norm(phx))∗phx;
Phi pc = .5∗pc’∗M∗pc + pc’∗g; Phi ph = .5∗ph’∗M∗ph + ph’∗g;
red p = Phi ph/Phi pc; dp = pc - ph;

if red p >= beta
t = 0;

else
ax = .5∗dp’∗M∗dp; bx = dp’∗(M∗ph + g);
cx = Phi ph - beta∗Phi pc;
Deltas = sqrt(bx̂ 2 - 4∗ax∗cx);
t1 = .5∗(-bx + Deltas)/ax; t2 = .5∗(-bx - Deltas)/ax;
t1s = t1 > 0 & t1 < 1; t2s = t2 > 0 & t2 < 1; t = min(t1, t2);
if (t <= 0)

if t1s
t = t1s;

else
t = t2s;

end
end

end

sk = t∗dp + ph;
x = x + sk;

end % for k

Algorithm 5
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Figure 1: Dataset: (a) original 4 source signals, (b) observed 8 mixed signals.

Considering the optimization of Ψ(xt) with respect to the
selected variable xjt, the following analytical solution can be
derived:

x∗jt = arg minΨ
([
x1t, . . . , xjt, . . . , xJt

]T)

= arg min
1
2
x2
jth j j + xjtβjt + γjt

= max
(

0,− βjt
hj j

)

= max
(

0, xjt −
[

ATAxt
]
jt +

[
ATyt

]
jt

(
ATA

)
j j

)
.

(45)

Updating only single variable xjt in one iterative step, we
have

x(k+1)
pt = x(k)

pt , ∀p ∈ I \ { j}, x(k+1)
jt /= x(k)

jt . (46)

Any optimal solution to the QP (41) satisfies the KKT
conditions given by (5) and the stationarity condition of the
following Lagrange function:

L
(

xt, λt
) = 1

2
xTt Hxt + cTt xt − λTt xt, (47)

where λt ∈ RJ is a vector of Lagrange multipliers
(or dual variables) corresponding to the vector xt. Thus,
∇xtL(xt, λt) = Hxt + ct − λt = 0. In the SCWA, the Lagrange

multipliers are updated in each iteration according to the
formula

λ(k+1)
t = λ(k)

t +
(
x(k+1)
jt − x(k)

jt

)
h j , (48)

where h j is the jth column of H, and λ(0)
t = ct .

Finally, the SCWA can take the following updates:

x(k+1)
jt = max

(
0, x(k)

jt −
λ(k)
j

(
ATA

)
j j

)
,

x(k+1)
pt = x(k)

pt , ∀p ∈ I \ { j}

λ(k+1)
t = λ(k)

t +
(
x(k+1)
jt − x(k)

jt

)
h j .

(49)

4. Simulations

All the proposed algorithms were implemented in our
NMFLAB, and evaluated with the numerical tests related to
typical BSS problems. We used the synthetic benchmark of 4
partially dependent nonnegative signals (with only T = 1000
samples) which are illustrated in Figure 1(a). The signals are
mixed by random, uniformly distributed nonnegative matrix
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A ∈ R8×4 with the condition number cond{A} = 4.11. The
matrix A is displayed in

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0631 0.7666 0.0174 0.6596

0.2642 0.6661 0.8194 0.2141

0.9995 0.1309 0.6211 0.6021

0.2120 0.0954 0.5602 0.6049

0.4984 0.0149 0.2440 0.6595

0.2905 0.2882 0.8220 0.1834

0.6728 0.8167 0.2632 0.6365

0.9580 0.9855 0.7536 0.1703

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (50)

The mixing signals are shown in Figure 1(b).
Because the number of variables in X is much greater

than in A, that is, I × J = 32 and J × T = 4000, we test
the projected gradient algorithms only for updating A. The
variables in X are updated with the standard projected fixed
point alternating least squares (FP-ALS) algorithm that is
extensively analyzed in [55].

In general, the FP-ALS algorithm solves the least-squares
problem

X∗ = arg min
X

{
1
2
‖Y− AX‖2

F

}
(51)

with the Moore-Penrose pseudoinverse of a system matrix,
that is, in our case, the matrix A. Since in NMF usually
I ≥ J , we formulate normal equations as ATAX = ATY,
and the least-squares solution of minimal l2-norm to the
normal equations is XLS = (ATA)−1ATY = A+Y, where
A+ is the Moore-Penrose pseudoinverse of A. The projected
FP-ALS algorithm is obtained with a simple “half-rectified”
projection, that is,

X = PΩ
[

A+Y
]
. (52)

The alternating minimization is nonconvex in spite of
the cost function being convex with respect to one set of
variables. Thus, most NMF algorithms may get stuck in local
minima, and hence, the initialization plays a key role. In
the performed tests, we applied the multistart initialization
described in [53] with the following parameters: N = 10
(number of restarts), Ki = 30 (number of initial alternating
steps), and Kf = 1000 (number of final alternating steps).
Each initial sample of A and X has been randomly generated
from a uniform distribution. Each algorithm has been tested
for two cases of inner iterations, that is, with k = 1 and k = 5.
The inner iterations mean a number of iterative steps that
are performed to update only A (with fixed X, i.e., before
going to the update of X and vice versa). Additionally, the
multilayer technique [53, 54] with 3 layers (L = 3) is applied.

The multilayer technique can be regarded as multistep
decomposition. In the first step, we perform the basic decom-
position Y = A1X1 using any available NMF algorithm,
where A1 ∈ RI×J and X1 ∈ RJ×T with I ≥ J . In the
second stage, the results obtained from the first stage are used
to perform the similar decomposition: X1 = A2X2, where
A2 ∈ RJ×J and X2 ∈ RJ×T , using the same or different update

rules, and so on. We continue our decomposition taking
into account only the last achieved components. The process
can be repeated arbitrary many times until some stopping
criteria are satisfied. In each step, we usually obtain gradual
improvements of the performance. Thus, our model has the
form Y = A1A2 · · ·ALXL with the basis matrix defined as
A = A1A2 · · ·AL ∈ RI×J . Physically, this means that we build
up a system that has many layers or cascade connection of L
mixing subsystems.

There are many stopping criteria for terminating the
alternating steps. We stop the iterations if s ≥ Kf = 1000
or the following condition ‖A(s)−A(s−1)‖F < ε is held, where
s stands for the number of alternating step, and ε = 10−5.
Note that the condition (20) can be also used as a stopping
criterion, especially as the gradient is computed in each
iteration of the PG algorithms.

The algorithms have been evaluated with the signal-
to-interference ratio (SIR) measures, calculated separately
for each source signal and each column in the mixing
matrix. Since NMF suffers from scale and permutation
indeterminacies, the estimated components are adequately
permuted and rescaled. First, the source and estimated
signals are normalized to a uniform variance, and then
the estimated signals are permuted to keep the same order
as the source signals. In NMFLAB [43], each estimated
signal is compared to each source signal, which results in
the performance (SIR) matrix that is involved to make the
permutation matrix. Let x j and x̂ j be the jth source and
its corresponding (reordered) estimated signal, respectively.
Analogically, let a j and â j be the jth column of the true
and its corresponding estimated mixing matrix, respectively.
Thus, the SIRs for the sources are given by

SIR(X)
j = −20 log

{∥∥x̂ j − x j

∥
∥

2∥∥x j

∥∥
2

}
, j = 1, . . . , J , [dB]

(53)

and similarly for each column in A we have

SIR(A)
j = −20 log

{∥∥â j − a j
∥
∥

2∥
∥a j
∥
∥

2

}
, j = 1, . . . , J , [dB].

(54)

We test the algorithms with the Monte Carlo (MC)
analysis, running each algorithm 100 times. Each run has
been initialized with the multistart procedure. The algo-
rithms have been evaluated with the mean-SIR values that
are calculated as follows:

SIRX = 1
J

J∑

j=1

SIR(X)
j ,

SIRA = 1
J

J∑

j=1

SIR(A)
j ,

(55)

for each MC sample. The mean-SIRs for the worst (with the
lowest mean-SIR values) and best (with the highest mean-
SIR values) samples are given in Table 1. The number k
means the number of inner iterations for updating A, and
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Table 1: Mean-SIRs [dB] obtained with 100 samples of Monte Carlo analysis for the estimation of sources and columns of mixing matrix
from noise-free mixtures of signals in Figure 1. Sources X are estimated with the projected pseudoinverse. The number of inner iterations
for updating A is denoted by k, and the number of layers (in the multilayer technique) by L. The notation best or worst in parenthesis that
follows the algorithm name means that the mean-SIR value is calculated for the best or worst sample from Monte Carlo analysis, respectively.
In the last column, the elapsed time [in seconds] is given for each algorithm with k = 1 and L = 1.

Algorithm
Mean-SIRA [dB] Mean-SIRX [dB]

TimeL = 1 L = 3 L = 1 L = 3

k = 1 k = 5 k = 1 k = 5 k = 1 k = 5 k = 1 k = 5

M-NMF (best) 21 22.1 42.6 37.3 26.6 27.3 44.7 40.7
1.9M-NMF (mean) 13.1 13.8 26.7 23.1 14.7 15.2 28.9 27.6

M-NMF (worst) 5.5 5.7 5.3 6.3 5.8 6.5 5 5.5

OPL(best) 22.9 25.3 46.5 42 23.9 23.5 55.8 51
1.9OPL(mean) 14.7 14 25.5 27.2 15.3 14.8 23.9 25.4

OPL(worst) 4.8 4.8 4.8 5.0 4.6 4.6 4.6 4.8

Lin-PG(best) 36.3 23.6 78.6 103.7 34.2 33.3 78.5 92.8
8.8Lin-PG(mean) 19.7 18.3 40.9 61.2 18.5 18.2 38.4 55.4

Lin-PG(worst) 14.4 13.1 17.5 40.1 13.9 13.8 18.1 34.4

GPSR-BB(best) 18.2 22.7 7.3 113.8 22.8 54.3 9.4 108.1
2.4GPSR-BB(mean) 11.2 20.2 7 53.1 11 20.5 5.1 53.1

GPSR-BB(worst) 7.4 17.3 6.8 24.9 4.6 14.7 2 23

PSESOP(best) 21.2 22.6 71.1 132.2 23.4 55.5 56.5 137.2
5.4PSESOP(mean) 15.2 20 29.4 57.3 15.9 34.5 27.4 65.3

PSESOP(worst) 8.3 15.8 6.9 28.7 8.2 16.6 7.2 30.9

IPG(best) 20.6 22.2 52.1 84.3 35.7 28.6 54.2 81.4
2.7IPG(mean) 20.1 18.2 35.3 44.1 19.7 19.1 33.8 36.7

IPG(worst) 10.5 13.4 9.4 21.2 10.2 13.5 8.9 15.5

IPN(best) 20.8 22.6 59.9 65.8 53.5 52.4 68.6 67.2
14.2IPN(mean) 19.4 17.3 38.2 22.5 22.8 19.1 36.6 21

IPN(worst) 11.7 15.2 7.5 7.1 5.7 2 1.5 2

RMRNSD(best) 24.7 21.6 22.2 57.9 30.2 43.5 25.5 62.4
3.8RMRNSD(mean) 14.3 19.2 8.3 33.8 17 21.5 8.4 33.4

RMRNSD(worst) 5.5 15.9 3.6 8.4 4.7 13.8 1 3.9

SCWA(best) 12.1 20.4 10.6 24.5 6.3 25.6 11.9 34.4
2.5SCWA(mean) 11.2 16.3 9.3 20.9 5.3 18.6 9.4 21.7

SCWA(worst) 7.3 11.4 6.9 12.8 3.8 10 3.3 10.8

L denotes the number of layers in the multilayer technique
[53, 54]. The notation L = 1 means that the multilayer
technique was not used. The elapsed time [in seconds] is
measured in Matlab, and it informs us in some sense about a
degree of complexity of the algorithm.

For comparison, Table 1 contains also the results
obtained for the standard multiplicative NMF algorithm
(denoted as M-NMF) that minimizes the squared Euclidean
distance. Additionally, the results of testing the PG algo-
rithms which were proposed in [53] have been also
included. The acronyms Lin-PG, IPG, RMRNSD refer to
the following algorithms: projected gradient proposed by
Lin [52], interior-point gradient, and regularized minimal
residual norm steepest descent (the regularized version of the
MRNSD algorithm that was proposed by Nagy and Strakos
[74]). These NMF algorithms have been implemented and

investigated in [53] in the context of their usefulness to BSS
problems.

5. Conclusions

The performance of the proposed NMF algorithms can be
inferred from the results given in Table 1. In particular, the
results show how the algorithms are sensitive to initialization,
or in other words, how easily they fall in local minima. Also
the complexity of the algorithms can be estimated from the
information on the elapsed time that is measured in Matlab.

It is easy to notice that our NMF-PSESOP algorithm
gives the best estimation (the sample which has the highest
best-SIR value), and it gives only slightly lower mean-SIR
values than the Lin-PG algorithm. Considering the elapsed
time, the PL, GPSR-BB, SCWA, and IPG belong to the fastest
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algorithms, while the Lin-PG and IPN algorithms are the
slowest.

The multilayer technique generally improves the perfor-
mance and consistency of all the tested algorithms if the
number of observation is close to the number of nonnegative
components. The highest improvement can be observed for
the NMF-PSESOP algorithm, especially when the number of
inner iterations is greater than one (typically, k = 5).

In summary, the best and the most promising NMG-
PG algorithms are NMF-PSESOP, GPSR-BB, and IPG algo-
rithms. However, the final selection of the algorithm depends
on a size of the problem to be solved. Nevertheless, the
projected gradient NMF algorithms seem to be much better
(in the sense of speed and performance) in our tests than
the multiplicative algorithms, provided that we can use the
squared Euclidean cost function which is optimal for data
with a Gaussian noise.
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[20] D. Guillamet and J. Vitrià, “Nonnegative matrix factorization
for face recognition,” in Proceedings of the 5th Catalan
Conference on Artificial Intelligence (CCIA ’02), pp. 336–344,
Castello de la Plana, Spain, October 2002.

[21] D. Guillamet, J. Vitrià, and B. Schiele, “Introducing a weighted
nonnegative matrix factorization for image classification,”
Pattern Recognition Letters, vol. 24, no. 14, pp. 2447–2454,
2003.

[22] O. G. Okun, “Nonnegative matrix factorization and classifiers:
experimental study,” in Proceedings of the 4th IASTED Interna-
tional Conference on Visualization, Imaging, and Image Process-
ing (VIIP ’04), pp. 550–555, Marbella, Spain, September 2004.

[23] O. G. Okun and H. Priisalu, “Fast nonnegative matrix
factorization and its application for protein fold recognition,”
EURASIP Journal on Applied Signal Processing, vol. 2006,
Article ID 71817, 8 pages, 2006.



12 Computational Intelligence and Neuroscience

[24] A. Pascual-Montano, J. M. Carazo, K. Kochi, D. Lehmann,
and R. D. Pascual-Marqui, “Non-smooth nonnegative matrix
factorization (nsNMF),” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 28, no. 3, pp. 403–415, 2006.

[25] V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J. Plemmons,
“Text mining using nonnegative matrix factorizations,” in
Proceedings of the 4th SIAM International Conference on Data
Mining (SDM ’04), pp. 452–456, Lake Buena Vista, Fla, USA,
April 2004.

[26] F. Shahnaz, M. W. Berry, V. P. Pauca, and R. J. Plemmons,
“Document clustering using nonnegative matrix factoriza-
tion,” Journal on Information Processing & Management, vol.
42, no. 2, pp. 373–386, 2006.

[27] T. Li and C. Ding, “The relationships among various non-
negative matrix factorization methods for clustering,” in
Proceedings of the 6th IEEE International Conference on Data
Mining (ICDM ’06), pp. 362–371, Hong Kong, December
2006.

[28] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal nonnegative
matrix tri-factorizations for clustering,” in Proceedings of the
12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’06), pp. 126–135, Philadel-
phia, Pa, USA, August 2006.

[29] R. Zass and A. Shashua, “A unifying approach to hard
and probabilistic clustering,” in Proceedings of the 10th IEEE
International Conference on Computer Vision (ICCV ’05), vol.
1, pp. 294–301, Beijing, China, October 2005.

[30] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering
with Bregman divergences,” in Proceedings of the 4th SIAM
International Conference on Data Mining (SDM ’04), pp. 234–
245, Lake Buena Vista, Fla, USA, April 2004.

[31] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra, “Minimum sum-
squared residue co-clustering of gene expression data,” in
Proceedings of the 4th SIAM International Conference on Data
Mining (SDM ’04), pp. 114–125, Lake Buena Vista, Fla, USA,
April 2004.

[32] S. Wild, Seeding nonnegative matrix factorization with the
spherical k-means clustering, M.S. thesis, University of Col-
orado, Boulder, Colo, USA, 2000.

[33] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R.
J. Plemmons, “Algorithms and applications for approximate
nonnegative matrix factorization,” Computational Statistics
and Data Analysis, vol. 52, no. 1, pp. 155–173, 2007.

[34] Y.-C. Cho and S. Choi, “Nonnegative features of spectro-
temporal sounds for classification,” Pattern Recognition Letters,
vol. 26, no. 9, pp. 1327–1336, 2005.

[35] J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov,
“Metagenes and molecular pattern discovery using matrix
factorization,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 101, no. 12, pp. 4164–4169,
2004.

[36] N. Rao and S. J. Shepherd, “Extracting characteristic patterns
from genome-wide expression data by nonnegative matrix fac-
torization,” in Proceedings of the IEEE Computational Systems
Bioinformatics Conference (CSB ’04), pp. 570–571, Stanford,
Calif, USA, August 2004.

[37] A. Cichocki, R. Zdunek, and S. Amari, “Csiszár’s divergences
for nonnegative matrix factorization: family of new algo-
rithms,” in Independent Component Analysis and Blind Signal
Separation, vol. 3889 of Lecture Notes in Computer Science, pp.
32–39, Springer, New York, NY, USA, 2006.

[38] A. Cichocki, R. Zdunek, and S. Amari, “Nonnegative matrix
and tensor factorization,” IEEE Signal Processing Magazine,
vol. 25, no. 1, pp. 142–145, 2008.

[39] D. Donoho and V. Stodden, “When does nonnegative matrix
factorization give a correct decomposition into parts?” in
Advances in Neural Information Processing Systems 16, Vancou-
ver, Canada, 2003.

[40] A. M. Bruckstein, M. Elad, and M. Zibulevsky, “Sparse
nonnegative solution of a linear system of equations is
unique,” in Proceedings of the 3rd International Symposium on
Communications, Control and Signal Processing (ISCCSP ’08),
St. Julians, Malta, March 2008.

[41] F. J. Theis, K. Stadlthanner, and T. Tanaka, “First results on
uniqueness of sparse nonnegative matrix factorization,” in
Proceedings of the 13th European Signal Processing Conference
(EUSIPCO ’05), Antalya, Turkey, September 2005.

[42] H. Laurberg, M. G. Christensen, M. D. Plumbley, L. K.
Hansen, and S. H. Jensen, “Theorems on positive data:
on the uniqueness of NMF,” Computational Intelligence and
Neuroscience, vol. 2008, Article ID 764206, 9 pages, 2008.

[43] A. Cichocki and R. Zdunek, “NMFLAB for signal and image
processing,” Tech. Rep., Laboratory for Advanced Brain Signal
Processing, BSI, RIKEN, Saitama, Japan, 2006.

[44] A. Cichocki, S. Amari, R. Zdunek, R. Kompass, G. Hori, and
Z. He, “Extended SMART algorithms for nonnegative matrix
factorization,” in Proceedings of the 8th International Confer-
ence on Artificial Intelligence and Soft Computing (ICAISC ’06),
vol. 4029 of Lecture Notes in Computer Science, pp. 548–562,
Springer, Zakopane, Poland, June 2006.

[45] R. Zdunek and A. Cichocki, “Nonnegative matrix factor-
ization with quasi-Newton optimization,” in Proceedings of
the 8th International Conference on Artificial Intelligence and
Soft Computing (ICAISC ’06), vol. 4029 of Lecture Notes in
Computer Science, pp. 870–879, Zakopane, Poland, June 2006.

[46] P. Paatero, “Least-squares formulation of robust nonnegative
factor analysis,” Chemometrics and Intelligent Laboratory Sys-
tems, vol. 37, no. 1, pp. 23–35, 1997.

[47] P. Paatero and U. Tapper, “Positive matrix factorization: a
nonnegative factor model with optimal utilization of error
estimates of data values,” Environmetrics, vol. 5, no. 2, pp. 111–
126, 1994.

[48] D. D. Lee and H. S. Seung, “Algorithms for nonnegative matrix
factorization,” in Advances in Neural Information Processing
Systems 13, pp. 556–562, Denver, Colo, USA, 2000.

[49] Ch.-J. Lin., “On the convergence of multiplicative update
algorithms for nonnegative matrix factorization,” IEEE Trans-
actions on Neural Networks, vol. 18, no. 6, pp. 1589–1596, 2007.

[50] M. T. Chu, F. Diele, R. Plemmons, and S. Ragni, “Optimal-
ity, computation, and interpretation of nonnegative matrix
factorizations,” Tech. Rep., Departments of Mathematics and
Computer Science, Wake Forest University, Winston-Salem,
NC, USA, 2004.

[51] P. O. Hoyer, “Nonnegative matrix factorization with sparse-
ness constraints,” Journal of Machine Learning Research, vol. 5,
pp. 1457–1469, 2004.

[52] C.-J. Lin, “Projected gradient methods for nonnegative matrix
factorization,” Neural Computation, vol. 19, no. 10, pp. 2756–
2779, 2007.

[53] A. Cichocki and R. Zdunek, “Multilayer nonnegative matrix
factorization using projected gradient approaches,” Interna-
tional Journal of Neural Systems, vol. 17, no. 6, pp. 431–446,
2007.

[54] A Cichocki and R. Zdunek, “Multilayer nonnegative matrix
factorization,” Electronics Letters, vol. 42, no. 16, pp. 947–948,
2006.



Computational Intelligence and Neuroscience 13

[55] A. Cichocki and R. Zdunek, “Regularized alternating least
squares algorithms for nonnegative matrix/tensor factoriza-
tions,” in Proceedings of the 4th International Symposium on
Neural Networks on Advances in Neural Networks (ISNN ’07),
vol. 4493 of Lecture Notes in Computer Science, pp. 793–802,
Springer, Nanjing, China, June 2007.

[56] R. Zdunek and A. Cichocki, “Nonnegative matrix factor-
ization with constrained second-order optimization,” Signal
Processing, vol. 87, no. 8, pp. 1904–1916, 2007.

[57] B. Johansson, T. Elfving, V. Kozlov, Y. Censor, P.-E. Forssén,
and G. Granlund, “The application of an oblique-projected
Landweber method to a model of supervised learning,”
Mathematical and Computer Modelling, vol. 43, no. 7-8, pp.
892–909, 2006.

[58] J. Barzilai and J. M. Borwein, “Two-point step size gradient
methods,” IMA Journal of Numerical Analysis, vol. 8, no. 1, pp.
141–148, 1988.

[59] G. Narkiss and M. Zibulevsky, “Sequential subspace optimiza-
tion method for large-scale unconstrained problems,” Tech.
Rep. 559, Department of Electrical Engineering, Technion,
Israel Institute of Technology, Haifa, Israel, October 2005.

[60] M. Elad, B. Matalon, and M. Zibulevsky, “Coordinate and
subspace optimization methods for linear least squares with
non-quadratic regularization,” Applied and Computational
Harmonic Analysis, vol. 23, no. 3, pp. 346–367, 2007.

[61] S. Bellavia, M. Macconi, and B. Morini, “An interior point
Newton-like method for nonnegative least-squares problems
with degenerate solution,” Numerical Linear Algebra with
Applications, vol. 13, no. 10, pp. 825–846, 2006.
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