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Abstract
The purpose of this study was to predict future implant survival using information on risk factors
and on the survival status of an individual’s existing implant(s). We considered a retrospective cohort
study with 677 individuals having 2349 implants placed. We proposed to predict the survival
probabilities using the Cox proportional hazards frailty model, with three important risk factors:
smoking status, timing of placement, and implant staging. For a non-smoking individual with 2
implants placed, an immediate implant and in one stage, the marginal probability that 1 implant would
survive 12 months was 85.8% (95%CI: 77%, 91.7%), and the predicted joint probability of surviving
for 12 months was 75.1% (95%CI: 62.1%, 84.7%). If 1 implant was placed earlier and had survived
for 12 months, then the second implant had an 87.5% (95%CI: 80.3%, 92.4%) chance of surviving
12 months. Such conditional and joint predictions can assist in clinical decision-making for
individuals.

Keywords
clustered data; survival predictions; frailty; correlated survival analysis; proportional hazards model;
dental implants

INTRODUCTION
In clinical dental research, each participant often contributes multiple, potentially clustered
observations to a database. For example, in dental implants, multiple implants placed within
the same individual will be clustered or correlated. It is common practice for those conducting
dental research to assume independent outcome observations in survival analyses (Higuchi et
al., 1995; Wheeler, 1996; Buser et al., 1997; Brocard et al., 2000; Testori et al., 2001). These
approaches tend to underestimate the variability of the estimated covariate effects or survival
probabilities, because the possible within-cluster correlations are overlooked. To account for
correlation, many authors have recommended randomly selecting 1 implant per person, and
the use of only the subset for analysis (Lekholm et al., 1999; Herrmann et al., 1999, 2005;
Gomez-Roman et al., 2001; Weibrich et al., 2001). However, this approach does not fully
utilize all the available information, and thus may be inefficient. This gives rise to the need for
the application of novel survival methods that can efficiently analyze clustered dental survival
data.
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There have been considerable statistical methods reported for the analysis of clustered survival
data (Klein, 1992; Lee et al., 1992; Lin, 1994; Hougard, 1995, 2000; Parner, 1998; Spiekerman
and Lin, 1998; Cai et al., 2000, 2002; Fine et al., 2003; Yin and Cai, 2005). Among these, two
types of models have been proposed: frailty models and marginal models. Frailty models
explicitly specify the within-cluster correlation structure, which allows for joint inference about
the survival times within the same cluster. Marginal models leave the correlation structure
completely unspecified, but adjust for the correlation by using robust sandwich-type estimators
for the variance. Applications of these important methodologies to dental research have not
yet been adequately explored.

We have previously applied the marginal approach (Chuang et al., 2002b) to predict covariate
specific implant failure. The marginal approach, while effective, can predict only marginal
survival probabilities of a single implant. In this research, we proposed to apply the frailty
approach to predict implant survival accounting for within-individual correlation. In contrast
to the marginal approach, the frailty approach allowed us to make joint predictions for several
implants in the same individual. The primary purpose of this research was to predict the joint
survival probability of multiple implants within the same individual, given their covariate
information, and to predict the conditional survival probability of a future implant, given the
survival status of an existing implant. The secondary aim was to compare and contrast the
marginal and frailty approaches by comparing the point and interval estimates of the survival
probabilities obtained based on the 2 methods.

MATERIALS & METHODS
Methods

The research methods have been described in detail in other studies (Chuang et al., 2002a;
Vehemente et al., 2002). We conducted a retrospective cohort study design composed of
individuals who had at least 1 Bicon® implant placed between May 20, 1992, and July 6, 2000,
at the Implant Dentistry Center based at Faulkner Hospital (IDC-FH), Boston, MA, USA. We
reviewed the participants’ records to collect information regarding exposures associated with
implant failures grouped into the following main categories: demographic, health status,
anatomic, implant- and abutment-specific, anticipated restoration, peri-operative
chemotherapy, reconstructive, and operator. The major outcome variable of interest was
implant failure, which was defined as the removal of the implant for any reason (Dental Implant
Clinical Research Group, 1997). We estimated survival time by computing the difference in
time (mos) between implant placement and implant explantation, or the date of the last follow-
up visit, for individuals whose implants had not been removed. The use of human participants
in this study followed a protocol approved by the human research committee.

Statistical Issues
In this report, our interest focused on survival prediction for multiple implants under the Cox
proportional hazards frailty model (Hougaard, 1995, 2000). Specifically, we assumed that,
conditional on some unobserved frailty random variable, the time to dental implant failure
would follow a Cox proportional hazards model. Multiple dental implants from each individual
share a common frailty random variable, which accounts for the within-individual correlation.
Under this model, we described procedures for predicting the conditional and joint survival
probabilities for dental implants with given covariate information. In particular, the non-
parametric maximum likelihood estimator for the unknown parameters in the model (Parner,
1998) was used to construct plug-in estimators for the survival probabilities. The bootstrap
method (Efron and Tibshirani, 1993) was used to obtain the interval estimates. The set of
covariates selected to be used in this study—i.e., current tobacco use, timing of implant
placement, and implant staging—was previously identified by means of the Cox frailty
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regression model, adjusted for clustered observations (Chuang et al., 2005). Databases were
stored in SAS-PC Version 8.2 (SAS Institute, Inc., 1999) files. The statistical program for
clustered survival predictions was written by the co-author (Cai) in the S-plus environment
(Version 6.0, 2000). [We have made the S-plus computer codes available on the Internet at the
following addresses: http://biosun1.harvard.edu/~tcai/FUN_CoxFrailtyPred.q and
http://biosun1.harvard.edu/~tcai/CoxFrailtyPred.q.]

Statistical Notation
Let Tik denote the failure time of the kth implant for the ith individual, k = 1,2,3,….,Ki; i =
1,2,3,…,n, where n is the sample size. Let Zik be the corresponding covariate vector for Tik and
Cik be the censoring time. For Tik, one can observe only Xik = min(Tik, Cik) and δik = 1(Tik =
Xik). Conditional on the covariate vector Zi = (Zi1,…,ZiKi)′, the censoring vector, Ci = (Ci1,
…,CiKi)′, is assumed to be independent of the failure time vector, Ti = (Ti1,…,TiKi)′. We assume
that, conditional on Zi and an unobserved frailty wi, Tik follows a Cox proportional hazards
model:

(1)

where λik (t) is the hazard function for Tik, λ0 (t) is an unspecified baseline hazard function,
and β is the true regression coefficient vector. The frailty wi accounts for the within-individual
correlation, due to some unobserved common covariate information. The unobserved Wi’s are
assumed to be independent and identically distributed, with unit mean and some unknown
variance σ2. Different individuals could have different values of frailty, and the variability in
the Wi’s reflects the heterogeneity of risks between individuals. For computational
convenience, the frailty distribution is often taken to be a Gamma, i.e., wi~σ2gamma(σ−2), and
thus we assume a gamma-frailty throughout.

Various inference procedures have been proposed for the covariate effect β, the baseline

cumulative hazard function, , and the variance component σ2 (Klein, 1992;
Nielsen et al., 1992; Parner, 1998). One popular estimator is the non-parametric maximum
likelihood estimator (NPMLE) studied by Parner (1998). The NPMLE can be implemented
through an EM-algorithm (Therneau and Grambsch, 2000), which alternates between two
steps: (1) the M-step, in which β and Λ0 are updated as in normal Cox regression by treating
the current estimates of {w1, …, wn} as fixed values and offsets; and (2) the E-step, in which
{w1,…, wn} are computed as the expected value, given the current values of β and Λ0 and the
data. These estimates depend on σ2 and are denoted by β ̂ (σ2) and Λ̂0(·|σ2). σ2 can then be
estimated by maximizing the profile log-likelihood (Parner, 1998). [See Hougaard (2000) and
Therneau and Grambsch (2000) for more details on the estimation procedures for β, Λ0, and
the variance component σ2.]

To predict the survival probabilities for the implants based on the Cox gamma frailty model,
we noted that the survival probability for an implant with covariate Z can be expressed as:

(2)

Note that S(t|Z) here is the population average survival probability, averaged across all implants
with covariate Z and all possible frailty levels w. A plug-in estimator for S(t|Z) may be obtained
as Ŝ (t|Z) = {1 + σ̂2Λ ̂0(t)eβ̂’Z}−σ ̂2, where σ̂2, β ̂, and Λ ^0 are the respective estimators for σ2,
β, and Λ0. The main strength of the frailty model is in its ability to make simultaneous joint
inference about the survival probabilities of multiple implants from the same individual. For
example, for K implants of an individual with covariate levels (Z11,…,Z1K), the joint survival
probability, S(t1,…,tK) = P(T11 ≥ t1,…, T1K ≥ tK | Z11,…, Z1K), can be estimated by
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(3)

This also allowed us to predict the conditional survival probability for a future implant, given
the information on the survival of existing implants and their covariate levels. This can be
achieved based on the definition of the conditional probability:

(4)

To construct confidence intervals for these predicted survival probabilities, we needed to
account for the variabilities in all the estimated parameters, and thus required the estimation
of the covariance of θ ̂ = σ ̂2, β ̂, Λ ̂0(t1),…, Λ ̂ 0(tK))′. Due to the difficulty in obtaining an analytical
variance-covariance estimator for θ̂, we approximated the limiting distribution of θ̂ by the
bootstrap method (Efron and Tibshirani, 1993; Monaco et al., 2005), which is widely used in
practice when analytical variance of an estimator is difficult to obtain. To account for within-
individual correlations, we treated multiple observations from the same individual as a unit,
and thus the original dataset was treated as n datapoints. We obtained each bootstrap sample
by sampling a size of n datapoints with replacement from the original data; we used a total of
1000 bootstrap samples. For the mth bootstrap sample, we obtained a bootstrap estimator for
3, denoted by θ ̂(m). Plugging θ ̂(m) into Eq. (3), we obtained a corresponding bootstrap estimator
for the survival probability Ŝ(m)(t1,…tK). Then the distribution of θ̂, Ŝ(t1,…tK), and the
estimated conditional probabilities could be approximated by the empirical distribution of their
respective bootstrap replicates. For example, the variance of Ŝ(t1,…tK) can be estimated by

A 95% confidence interval for S(t1,…,tK) can be obtained based on the 2.5% and 97.5%
quantiles of {Ŝ(1)(t1,…tK), …,Ŝ(1000)(t1,…tK)}.

RESULTS
The study group had 677 participants, who had 2349 dental implants placed. On average, 3.5
implants (range, 1–22) were placed per person. There were 137 implants that failed. There
were 57 smokers (10.3%, N = 554). Out of 2349 implants, 339 (14.4%) were placed in one
stage, and 243 (10.3%) were placed immediately after tooth extraction. The details of the
descriptive statistics have been described (Chuang et al., 2002a).

We previously identified 3 key variables associated with implant survival: current tobacco use
(yes or no), timing of implant placement (delayed vs. immediate), and implant staging (one-
or two-stage) (Chuang et al., 2002a). Based on a clustered marginal approach (Chuang et al.,
2002b), we found that, among those who had a delayed procedure, did not smoke, and
underwent a two-stage implant procedure (best-case scenario), the predicted one- and five-year
survival rates were 97.2% and 93.4%, respectively. For those who had an immediate implant
placed, smoked, and underwent a one-stage procedure (worst-case scenario), the predicted
survival rates at 1 and 5 yrs were 58.5% and 27.6%, respectively. We compared the predicted
survival probabilities based on the marginal approach (Chuang et al., 2002b) and the current
frailty prediction method for non-smokers with immediate implant placement in one stage
(Table 1). The predicted 12-month (1 yr) survival was 83.7%, based on the marginal method,
and 85.8% with the frailty method. Estimates from these 2 methods were not drastically
different, suggesting that both models may fit the data well.
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In this study, we were particularly interested in making joint inference about multiple implants
in the same individual. First, we considered the subgroup of non-smoking persons having 2
immediate implants placed in 1 stage. The predicted survival probability (95% confidence
interval) was 75.1% (62.1%, 84.7%) for both implants surviving 12 mos (1 yr), and was 55.4%
(36.2%, 71.6%) for both implants surviving 60 mos (5 yrs) (Table 2). In an individual with an
existing implant, one may be interested in predicting the survival for a future implant, given
the survival status of the current implant. For example, for a non-smoker with an existing
immediate one-stage implant that has survived 1 yr, the predicted probability for a future
implant with the same covariate surviving one year is 87.5%, with a 95% confidence interval
(80.3%, 92.4%) (Table 3). We next considered those who were non-smokers having the first
implant placed in a delayed fashion in 1 stage, and having the second implant placed in an
immediate fashion in 1 stage. The predicted one- and five- survival rates for such 2 implants
were 79.6% (70.3%, 86.5%) and 61.6% (44.0%, 74.4%), respectively (Table 4). The results of
the above analyses were specific and unique only to the frailty approach prediction method.
This cannot be performed with the marginal approach method.

DISCUSSION
Multivariate failure times with clustered or dependent data observations are commonly
encountered in dental research. To make valid and efficient statistical inference in such settings,
one needs to account for within-cluster correlations. Useful tools for analyzing clustered
survival data include the marginal and frailty survival models. The marginal approach leaves
the correlation structure unspecified, and adjusts for the correlation by using a sandwich-type
variance estimator (Lee et al., 1992). The frailty approach specifies the correlation structure
through the distribution of the unobserved shared frailty random variable w. One main
advantage of the frailty model is in its ability to make joint prediction of the survival of multiple
implants from the same individual. It also allows us to predict the survival of a future implant
based on the survival status of current implants and covariate information. The purposes of
this study were two-fold: to produce joint predictions of the survival of multiple implants,
based on valid and efficient survival methods, accounting for within-cluster correlation; and
to compare and contrast how the marginal approach and the frailty approach differ in survival
predictions, given important exposure information. The estimators used in this paper for the
unknown parameters in the frailty model were based on the non-parametric maximum
likelihood method (Parner, 1998), and the implementation of this method has been discussed
in detail (Therneau and Grambsch, 2000).

To illustrate the strength of the frailty model, we investigated within-cluster implant prediction
using the ‘other implant(s) information’ from the same individual. Our first model (marginal
method) consisted of results from our previous study (Chuang et al., 2002b) (Table 1). In our
second model, we utilized the frailty approach using implants from the same individual for
survival predictions (frailty method). When comparing the two valid analytic strategies, we
found that the one- and five-year survival point estimates did not differ drastically, but the
variance estimates did differ. The 95% confidence intervals for the marginal method were
wider than those of the frailty method. This can be partly attributed to the fact that the frailty
method assumes a stronger model by specifying the correlation structure. In the setting of
clustered observations, we believe that both methods are valid and efficient, as long as the
assumed models fit the data well. The ultimate choice of method depends on the research
question and the goals for the particular study.

In summary, clustered survival observations are frequently encountered in many different areas
of person-oriented dental research. In particular, we are interested in making joint predictions
for the survival of multiple dental implants in the same individual, given various clinical
parameters. The Cox frailty model used in this study produced valid and efficient estimates,
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with the strength of allowing for joint prediction. Using available information about clinical
parameters, along with the survival status of existing implants, we were able to make more
precise predictions about the survival of future implants. Such predictions can assist in surgical
treatment-planning and thus lead to better clinical decision-making and patient care.
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