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It is well known that transcription can induce torsional stress in
DNA, affecting the activity of nearby genes or even inducing
structural transitions in the DNA duplex. It has long been assumed
that the generation of significant torsional stress requires the DNA
to be anchored, forming a limited topological domain, because
otherwise it would spin almost freely about its axis. Previous
estimates of the rotational drag have, however, neglected the role
of small natural bends in the helix backbone. We show how these
bends can increase the drag several thousandfold relative to prior
estimates, allowing significant torsional stress even in linear un-
anchored DNA. The model helps explain several puzzling experi-
mental results on structural transitions induced by transcription of
DNA.

1. Introduction and Summary

DNA can be regarded as a linear repository of sequence
information or as a chemical compound subject to various

modifications (e.g., methylation), and each of these viewpoints is
important for understanding some aspects of gene function and
regulation. However, many other important processes require an
appreciation of DNA as a physical elastic object in a viscous
environment. For example, the action-at-a-distance between
eukaryotic promoters and their enhancers involves an effective
concentration of bound enhancer units depending on both
torsional and bend rigidity of DNA.

Although the equilibrium statistical mechanics of stiff mac-
romolecules such as DNA is a classical topic (see, e.g., ref. 1), still
the nonequilibrium transport properties of such molecules re-
main incomplete, in part because of the experimental difficulty
of probing those properties. In particular, Liu and Wang pro-
posed that the transport of torsional stress (torque) along DNA
during transcription could play a role in gene regulation (the
‘‘twin-supercoiled domain model’’) (2). Transcription causes
axial rotation of the transcribed DNA relative to the transcribing
polymerase. If free rotation is hindered in some way, a resulting
torsional stress will propagate down the DNA, destabilizing (or
overstabilizing) the double helix structure at some distant point.
The resulting ‘‘topological coupling’’ between nearby genes has
been observed in several experiments (see Section 2 below).

Liu and Wang assumed a simple mechanism for the transport
of torsional stress, following Levinthal and Crane (3). (Levinthal
and Crane’s ‘‘speedometer-cable’’ motion will be called ‘‘plumb-
er’s-snake’’ motion or ‘‘spinning’’ motion in this paper.) In a
viscous medium, a straight infinite rod meets a frictional resis-
tance to axial rotation given by:

t 5 mspinvL. [1]

Here the torque t (with dimensions of energy) depends on the
rotation rate v (radiansysec) and length L via a friction constant
mspin. A simple calculation (4) gives mspin 5 4phR2 '1.3z10215

dynzsec, where R ' 1 nm is the rod radius, and h 5 0.01
ergzseczcm23 is the viscosity of water. Other authors give slightly
different prefactors (5).

Liu and Wang pointed out that the torsional friction constant
mspin appearing in Eq. 1 is extremely small because of the factor
of R2, so they concluded that no significant torsional stress was
possible in DNA of reasonable length without some additional
physical anchoring. Absent such anchoring, both linear (open)

and circular (plasmid) DNA would spin in place, like a plumber’s
snake (3). For concreteness, we will consider below the example
of a linear DNA of length 3.5 kbp (1,200 nm), rotated at its end
with angular frequency v 5 60 radiansysec; a related case is a
7-kbp construct, linear or circular, rotated near its center. In
either case, formula 1 gives a maximum torsional stress t '
9z10218 dynzcm. Because the torque needed to denature DNA
locally is several thousand times greater (see below), Liu and
Wang’s conclusion seems to be safe.

The analysis of this paper was motivated by several experi-
mental observations, which defy the familiar analysis just sum-
marized (Section 2 below). A variety of assays, both in living cells
and in vitro, have found significant torsional stress after tran-
scription at a single promoter on unanchored DNA constructs.
All these experiments are sensitive to topoisomerase, pointing to
the role of torsional stress. The estimates given above imply that
such large stresses are impossible.

To resolve this paradox, the analysis in Sections 3 and 4 below
will show that the classical formula 1 can be very misleading: it
vastly underestimates the torsional stress on the DNA duplex
near the transcribing polymerase. The discussion rests on the
observation that DNA is a heteropolymer, i.e., it is naturally bent
on length scales longer than its persistence length of about 50 nm.
For a curved molecule to spin in place without dragging sideways
through the surrounding medium, as assumed in formula 1,
requires constant flexing. The natural bends resist this f lexing,
forcing the molecule to translate through the fluid and greatly
increasing the viscous drag through the surrounding water. (Fig.
1d summarizes the model.) This enhanced drag indeed explains
the large observed torsional stress near the point of transcrip-
tion.

2. Experiments
2.1. General. This section briefly reviews a few of the relevant
experimental results, focusing on in vitro assays. Section 3 below
describes our physical model. RNA polymerases are efficient
motors: for example, Escherichia coli RNA polymerase can
generate forces of up to 20 pN against an opposing load (6).
When the same mechanical energy is expended against a tor-
sional load, it corresponds to a torque of 20 pNz0.34 nmystep
divided by 2p radians for every 10.5 steps, or 10213 dynzcm, more
than enough to induce structural transitions in DNA. The speed
of transcription ranges from 50 ntysec in eukaryotes to twice as
great for T7 (7). The corresponding rotational driving rates are
then v 5 30 and 60 radiansysec, respectively.

The actual torsional stress during transcription need not,
however, attain the maximal value just given. Liu and Wang’s
twin-supercoiled domain model rests on the observation that
torsional stress will build up only if (a) the polymerase itself is
prevented from counterrotating about the DNA template, and
(b) a suitable torsional load opposes the rotation of the DNA at
a point sufficiently close to the cranking polymerase. The present
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paper is concerned mainly with point b, but for completeness we
first digress to discuss a.

Anchoring at the transcribing polymerase. A number of effects
can prevent counterrotation of the polymerase. For example, in
eukaryotes the polymerase may be physically attached to the
nuclear matrix. Even without a rigid attachment, the eukaryotic
polymerase holoenzyme is physically quite large and thus offers
a large hydrodynamic drag to rotation. Similarly, in prokaryotes,
the nascent RNA transcript can begin translation before it is fully
transcribed, leading effectively to a large complex consisting of
polymerase, transcript, and ribosome. Liu and Wang proposed a
particularly attractive possibility: if the emerging protein is
membrane bound (for example, the tetracycline resistance tet gene
product), it can anchor its ribosome to the cell membrane (2). Many
experiments have shown that translation of tet greatly increases
twin-supercoiled domain effects (see ref. 8 and refs. therein).

The above mechanisms operate only in vivo. Remarkably,
twin-supercoiled domain effects have also been observed in a
number of in vitro assays, where no cellular machinery exists (see
Section 2.2). At least three mechanisms can nevertheless create
significant drag opposing counterrotation of the polymerase: (i)
polymerase has been found to create a tight loop in the DNA,
greatly increasing its effective hydrodynamic radius and hence
the drag for counterrotation (9); (ii) the nascent RNA transcript
itself will create some hydrodynamic drag to rotation (10); (iii)
under the conditions of most experiments (e.g., ref. 10), poly-
merase is present at concentrations leading to batteries of

simultaneously transcribing complexes. To relieve torsional
stress, all active complexes would have to counterrotate simul-
taneously, with a drag proportional to their total number.

Anchoring elsewhere. Thus, even in vitro, transcription can
effectively lead to the cranking of DNA by a nearly immobilized
polymerase. As mentioned in point b above, however, cranking
at one point still does not suffice to create torsional stress: DNA
rotation must be effectively hindered somewhere else as well,
because otherwise both linear and circular DNA would simply
spin freely in place at the driving rate v.

As in point a, many mechanisms can anchor DNA in the
crowded cellular environment. For example, in eukaryotes a
DNA-binding protein could tie the DNA onto some part of the
nuclear matrix. Another possibility, envisioned by Liu and Wang
and implemented in several experiments, is to bind a second
polymerase to the DNA and rely on its resistance to rotation as
in a above. The second polymerase can either be stalled or actively
transcribing in the opposite (divergent) sense from the first.

Once again, however, the clearest results come from the in
vitro assays mentioned earlier, in which only a single promoter is
active on a circular (10–14) or even linear (L. B. Rothman-
Denes, personal communication; D. Levens, personal commu-
nication) template. In these experiments the only known hin-
drance to free spinning motion is the torsional hydrodynamic
drag. If DNA were effectively a simple straight rod of diameter
2 nm, then the estimate in Eq. 1 would apply, and we could
confidently predict that transcription would generate negligible
torsional stress. Because the experiments contradict this expec-
tation, we must modify the naı̈ve physical picture of the transport
of torsional stress in DNA.

2.2. Experimental Results. In vitro. Tsao et al. made a circular
plasmid with only one promoter actively transcribing (10). They
assayed transient torsional stress in the wake of polymerase by
allowing topoisomerase I to selectively eliminate negative su-
percoils, then measuring the remaining degree of positive su-
percoiling via two-dimensional electrophoresis. They found that
transcription induces a degree of supercoiling ‘‘much bigger than
expected’’ and concluded that, ‘‘It is possible that the degree of
supercoiling generated by transcription is underestimated in the
theoretical calculation’’ of ref. 2.

Dröge and Nordheim assayed torsional stress in a 3-kbp
circular plasmid using the B–Z structural transition (11). They
concluded that, ‘‘Interestingly our results suggest that diffusion
rate of transcription-induced superhelical twists must be rela-
tively slow compared with their generation, and that under in
vitro conditions localized transient supercoiling can reach unex-
pectedly high levels.’’ Similarly, Dröge later found that tran-
scription can induce site-specific recombination in vitro (12).
Here the conclusion is that transcription created local torsional
stress, in turn driving local writhing and bringing recombination
sites into synapsis. Wang and Dröge later extended these exper-
iments and called attention to the fact that torsional strain
remains localized in a gradient region close to the polymerase,
instead of spreading rapidly around the plasmid and canceling at
the antipodal point (14).

Drolet, Bi, and Liu studied the reciprocal effects of topoisom-
erase I and gyrase (13), assaying with one-dimensional electro-
phoresis. The result of interest to the present paper is that they
found that membrane anchoring via the nascent TetA protein
was not necessary for transcription-induced supercoiling, in
contrast to earlier in vivo studies.

Finally, Rothman-Denes and Levens (personal communica-
tions) have used linear (open) 2,300-nm templates including a T7
RNA polymerase promoter near the center. Transcription from
this promoter by T7 RNA polymerase generates torsional stress.
Rothman-Denes et al. used the activity of a bacteriophage N4
early promoter as a stress reporter. This promoter is inactive in

Fig. 1. Four increasingly realistic models of cranked DNA motion. (a) Straight
rigid rod, assumed in the derivation of the naı̈ve formula Eq. 1. (b) Naturally
straight but thermally bent rod. (c) Naturally bent rigid rod. (d) Hybrid motion
of a naturally bent semiflexible rod. The rod rotates rigidly on length scales
shorter than LC while flexing on scales longer than LC.
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its unstressed state and activated through cruciform extrusion at
a superhelical density scrit 5 20.03 (15), corresponding to a
torsional stress of tcrit ' 7z10214 dynzcm, consistent with the
estimate given above.† Levens instead used an element of the
human c-myc gene, which interacts with single-stranded DNA
binding proteins and measured unwinding using potassium
permanganate, which reacts with single-stranded tracts. The
results of both sets of experiments suggest that structural tran-
sitions are induced by T7 RNA polymerase transcription. Thus
it again appears that transcription of linear DNA can create
torsional stress several thousand times greater than that pre-
dicted by the classical formula (1).

In vivo. As mentioned above, in vivo experiments are harder to
interpret, but nevertheless we mention a few illustrative results
to show the very general character of the frictional-drag paradox.

Rahmouni and Wells used a circular 6.3-kb plasmid, reporting
its torsional stress via the B–Z structural transition (20, 21). They
concluded that ‘‘the diffusion of supercoils must be slower than
was originally predicted’’ (in ref. 2).

Lilley and collaborators have carried out an extensive series of
experiments reviewed in ref. 8. Their conclusion that an ‘‘as yet
unidentified topological barrier should exist’’ may point to the
same surprisingly large rotational drag argued for in the in vitro
experiments above. In later work, they also found that the
transcribing polymerase need not be physically anchored, rein-
forcing the argument in point a of Section 2.1 above (22, 23).

Turning finally to experiments in eukaryotes, we mention only
two experiments of Dunaway and coworkers. Dunaway and
Ostrander sought to eliminate any anchoring of their DNA
template by injecting linear DNA with no subsequences known
to associate with the nuclear architecture into Xenopus oocytes
(24). They injected an exogenous (bacterial) polymerase into
their oocytes and ensured that its promoter was the only
spontaneously transcribing promoter on their template. They
also used linear templates, reducing the likelihood of any
entanglement effects. Using 3.6- to 4.5-kb templates with a
ribosomal RNA promoter to report torsional stress, they con-
cluded that ‘‘localized, transient domains of supercoiling’’ could
occur in open DNA, trapping significant torsional stress. Simi-
larly, later work by Krebs and Dunaway concluded that, ‘‘The
viscous drag against a large DNA molecule is apparently suffi-
cient to prevent transcription-generated supercoils from diffus-
ing rapidly off the end of the DNA, so DNA length creates a
topological domain’’ (25). Once again, this conclusion is remark-
able in that it contravenes the estimates in Section 1 above.

3. Physical Picture
As described in Section 1, the surprising physical aspect of the
experiment is the buildup of torsional stress in the DNA, when
nothing seems to prevent the molecule from spinning almost
freely in place. Apparently the simple physical model of a
uniform elastic rod in a viscous fluid has left out some crucial
effect. One may at this point be tempted to abandon simple
physical models altogether, pointing to the many specific bio-
chemical features of real DNA which they omit. But the elastic
rod model successfully describes many detailed features of DNA
stretching and fluorescence-depolarization experiments, includ-
ing effects of torsional stress (e.g., refs. 17 and 26). Moreover, the
surprising observed behavior is generic and robust, not specific
to a particular situation, suggesting that the model needs only
some simple new ingredient to capture the observed behavior.

In this section, we argue that augmenting the elastic rod model
by including the natural bends in the DNA duplex dramatically
changes the transport of torsional stress. The strength of these
bends has been independently measured; it is not a new free
parameter. Their effect on the equilibrium properties of DNA
coils has long been recognized. In this section and the next, we
instead study their effects far from equilibrium.

3.1. Need for Spin Locking. Imagine a given segment of an elastic
rod (modeling a twist-storing polymer such as DNA) as con-
tained in a black box with only the two ends of the rod accessible.
Cranking one end about its axis amounts to injecting a conserved
quantity, ‘‘linking number’’ (or Lk), into the rod.‡ We can
schematically think of linking number as taking one of five
pathways away from the cranking site:

1. Lk can be elastically stored as twist in the rod: the rod
segment can rotate about its axis by an amount which depends
on position along the rod.

2. Lk can be elastically stored as writhe: the rod can begin to
supercoil.

3. Lk can be transported by spinning (plumber’s-snake) mo-
tion, emerging at the far end with no net change in the rod state.

4. Lk can be transported by rigid rotation (crankshaft motion)
of the whole segment about some axis.

5. Lk can be lost via the action of topoisomerase.
We are interested in steady-state transport, in the absence of

topoisomerase, so we consider only the competition between
pathways nos. 3 and 4.

This picture allows a more precise summary of the paradox
reviewed in Sections 1 and 2 above. The steady transport of
injected Lk will meet with resistance in the form of effective
frictional constants mspin for spinning and mrigid for rigid rotation,
hence a total frictional constant mtot 5 (mspin

21 1 mrigid
21)21. But

we have seen that experimentally mtot is much larger than the
theoretically expected value of mspin. No matter how large mrigid
may be, it cannot resolve this paradox. In particular, the well-
known coupling between torsional stress and writhing motion
(see, e.g., refs. 27 and 28 and refs. therein) is of no help, because
the problem is precisely that there is little torsional stress.

What is needed is a way to shut down pathway no. 3, i.e., to
lock the spin degree of freedom, at least partially.

The fact that a uniform rod is never actually straight on length
scales beyond its bend-persistence length A does not help either.§
Spinning creates no long-range hydrodynamic interaction, be-
cause the fluid velocity field falls off on the scale of the rod
diameter R 5 1 nm (4). Because A is much larger than R, the
straight rod approximation is adequate (29). Certainly the
spinning in place of a thermally bent but naturally straight rod
requires continuous flexing of the rod, because the direction of
curvature rotates in the material frame of the rod, but the elastic
cost of a bend in a cylindrical rod depends only on the magni-
tude, not the direction, of the curvature, and this does not
change: such a rod has no energetic barrier to spinning.

To summarize, the naı̈ve Eq. 1 will be accurate, and torsional
stresses will be small, unless some sort of locking mechanism
inhibits free spinning of linear DNA in solution. To find such a
mechanism, we must now introduce some new element of
realism into our description of DNA.

†We estimate that about 30% of the superhelical density goes into twisting the double helix
(and the rest into the mean writhe) (16). Multiplying 0.3scrit by the microscopic twist
stiffness CkBt ' 4.5z10219 erg cm (17) and the relaxed link density 2py(10.5 bpz0.34 nm/bp)
gives the above estimate for tcrit. Direct physical manipulation on stretched DNA gives
similar results (18, 19).

‡Strictly speaking, Lk is well defined only for a closed loop. Nevertheless, the change in Lk
in an open segment with fixed end is well defined and must vanish, whatever happens
inside the black box. Rotating one end about its axis thus injects a conserved quantity.

§Even in the absence of thermal motion, a naturally straight rod will bend when cranked
fast enough, executing a hybrid of rigid rotation and spinning (C. W. Wolgemuth, T. R.
Powers, and R. E. Goldstein, personal communication). Wolgemuth et al. found, however,
that for the parameters of interest to us here, the Lk transport is dominated by spinning,
exactly as argued above.

14344 u www.pnas.org Nelson



3.2. Natural Bends. As mentioned in Section 1, the key ingredient
missing so far from our model is the natural curvature of the
DNA duplex. Immense effort has been focused on predicting the
precise conformation of a DNA tract given its base pair se-
quence, by using molecular modeling, oligomer crystallography,
and NMR, among other techniques. Fortunately, for our prob-
lem it suffices to characterize the average effect of curvature
over hundreds of base pairs. For such purposes, a very simple
phenomenological approach suffices.

Natural DNA is a stack of similar but nonidentical subunits,
arranged in an order that is fixed but random for our purposes.
It is crucial that even though these bends are random, their
effects do not average to zero on length scales much longer than
one base pair. Instead, the minimum-energy conformation of
such a stack may be regarded as a distorted helix whose backbone
follows a random walk, with a structural persistence length P.
Note that P is a purely geometrical parameter, having nothing to
do with the mechanical bend stiffness kbend of DNA nor the
thermal energy kBT. Instead, P reflects the information content
in a piece of DNA.

Just as in the straight case, bent (natural) DNA can also be
deformed away from its minimum-energy state at some enthal-
pic cost characterized by a bend stiffness kbend, with units
energyzlength. Because fluctuations are controlled by the ther-
mal energy kBT, we define the bend length A 5 kbendykBT. The
combined effect of thermal and natural bends then makes DNA
a random coil with total persistence length¶ Atot 5 (A21 1 P21)21

(32). Under physiological conditions, Atot has the familiar value
of 50 nm. Experiments on artificial naturally straight DNA make
it possible to determine A and P separately, yielding A ' 80 nm
and P ' 130 nm (33).i

3.3. Hybrid Motion. We wish to explore the consequences of the
natural bends introduced in the previous subsection for the
transport of torsional stress in DNA. Before doing any calcula-
tions, it is worthwhile to formulate some intuitive expectations,
based on four increasingly realistic cartoons for the steady-state
motion of a cranked DNA segment of contour length l (Fig. 1
a–d).

As noted in Section 1, a straight rigid segment (Fig. 1a) would
encounter a torsional drag per unit length mspinv or a net drop
in torsional stress between the ends of mspinvl, with friction
constant mspin given below Eq. 1. We argued in Section 3.1 that
the case of a naturally straight but semiflexible segment is similar
(Fig. 1b).

Matters change considerably when we introduce natural
bends. If the rod were perfectly rigid (Fig. 1c), it would have to
execute crankshaft motion; individual rod elements would then
drag sideways through the fluid. We will see below that as l
increases, the corresponding drag per unit length would increase
without bound. On long enough scales, then, we may expect that
any realistic molecule cannot be regarded as infinitely stiff.

At the other extreme, we could imagine the naturally bent rod
spinning in place. This, however, would mean that every joint
periodically bends oppositely to its preferred conformation. The
corresponding elastic energy cost creates a barrier to this motion.

We will argue that, in fact, a real semiflexible heteropolymer
chooses a compromise between these extremes of motion,

selecting a crossover scale LC and executing a hybrid motion
(Fig. 1d). On length scales shorter than LC, this motion is nearly
rigid, because, as just argued, an activation barrier resists f lexing.
On longer length scales, the motion must cross over to spinning,
because as just argued rigid (crankshaft) motion meets a large
viscous drag on long scales.

We must now justify these intuitive ideas and obtain a
numerical estimate for the crucial crossover scale LC. Because LC
will turn out to be significantly longer than the base pair step size,
we will conclude that the spinning (plumber’s-snake) motion is
effectively locked, as we argued was necessary in Section 3.1.

4. Scaling Analysis
We must now justify and quantify the expectations sketched in
Section 3.

4.1. Spin Locking. Consider first the hypothetical case of a per-
fectly rigid naturally bent rod (Fig. 1c). The viscous force per
length f on a straight rod much longer than its radius R, dragged
sideways through a viscous medium, is:

f ; mdragy 5
4ph

0.8 1 ln~Xy2R!
y, [2]

where y is the speed and X is the rod length. Our polymer is, of
course, not straight on length scales beyond its structural per-
sistence length P, so we substitute P for the long-scale cutoff X
in Eq. 2. Because the dependence on X is weak, this is a
reasonable approximation.** Taking P 5 130 nm and R 5 1 nm
gives mdrag ' 2.5z1022 ergzseczcm23.

Suppose we crank a rod segment of arc length l, which then
rotates rigidly about an axis. Each element of the rod then moves
through fluid at a speed y 5 r'v, where r' is the distance from
the rod element to the rotation axis (Fig. 1c). Multiplying the
moment arm r' times the drag force (Eq. 2) and integrating over
the curve yields the torque drop Dt 5 mdragvl^r'

2& across the
segment. Here ^r'

2& is the average of r'
2 along the rod segment.

Each rod segment of course has a different sequence and
hence a different preferred shape. Each segment will therefore
have a different value of ^r'

2&. Fortunately, we are interested in
the sum of the torque drops across many segments, each with a
different random sequence. Thus we may replace ^r'

2& by its
ensemble average over sequences, which we will call ^^r'

2&&. This
average has a simple form: Eq. 7.31 of ref. 1 gives ^^r'

2&& 5 lPy9,
and hence:

Dt 5 mdragvl2Py9. [3]

In the language of Section 3.1, we have just estimated the drag
torque mrigidvl, finding mrigid ' mdraglPy9. Indeed, we see that the
drag per unit length grows with l, as suggested in Section 3.3
above. Formula 3 is valid when the segment length l is longer
than P, an assumption whose self consistency we will check
below.

We can now relax the artificial assumption of a perfectly rigid
rod and thus pass from Fig. 1c to the more realistic Fig. 1d.
Suppose that a long polymer has been subdivided into segments
of length l, each approximately executing rigid rotation about a
different axis. The axes will all be different, because we are
assuming that l is longer than the structural persistence length P.
To join these segments smoothly as they rotate, each segment
therefore needs to flex. On average, each segment must peri-
odically bend one end relative to the other by about 90°. The least
costly conformational change that accomplishes this is to spread

¶Some authors call P the ‘‘static persistence length’’ and A the ‘‘dynamic persistence
length.’’ Schellman and Harvey verified Trifonov et al.’s heuristic derivation of this formula
within a number of detailed models (30). Because P 21 , A21, we can regard the bend
disorder as smaller than the thermal disorder. In this case, Trifonov’s formula also gives the
effective persistence length measured by fitting DNA stretching experiments to the naı̈ve
worm-like chain model (31).

iAlthough Bednar et al. (33) did not estimate the uncertainty in their determination of P,
it may well be large. They note, however, that their direct experimental determination
agrees with the model-dependent prediction of Bolshoy et al. (34).

**A rod pulled at some angle other than 90° to its tangent will have a drag given by Eq. 2
with a slightly different prefactor; we will neglect this difference and use Eq. 2 in all cases.
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the bending strain uniformly along the entire segment length l;
we can then estimate the elastic bending-energy cost as††

lkbendy2 (py2l)2. This energy barrier becomes small for large l,
just the opposite trend to that of Eq. 3. The physical reason for
this behavior is that we do not insist on ironing out every small
kink in the rotating rod’s shape; the rod segment can satisfy the
imposed conditions on its ends by deforming only a fraction of
its many intrinsic bends.

The bending energy needed to crank the segment through an
angle u is roughly the above expression times 1

2
(1 2 cos u); the

torque needed to increase u is then the derivative of this formula,
1
2

sin u. Thus the driving torque needed to overcome the
bending-energy barrier turn through a complete revolution is
just one-half of the above expression. The crossover length LC is
then the value of l at which the viscous torque drop (Eq. 3) just
balances this critical value:

mdragvLC
2 Py9 5

kBT
2

A
LC

p2

8
. [4]

Substituting the numerical values, we find LC ' 450 nm for T7
RNA polymerase and slightly larger for other slower poly-
merases.

Our crossover length has indeed proven to be longer than the
structural persistence length P, so the assumption l . P made
above is self consistent. Indeed, LC has proven to be about 1.4
kbp. In our illustrative example of a 7-kbp DNA construct
cranked at the midpoint, we see that intrinsic bends shut down
spinning motion almost completely: the naı̈ve model of Section
1 does not describe the true motion at all. We must now see what
this implies for the overall torsional stress on the construct.

4.2. Hydrodynamic Interactions. In contrast to spinning in place,
dragging a thin rod sideways sets up a long-range flow field. Now
that we know that spinning is effectively forbidden, we must
therefore study the possibility of long-range hydrodynamic in-
teractions between rod segments.

The theory of polymer dynamics tells us that a short random
coil dragged through fluid can be viewed as a set of thin-rod
elements moving independently in a motionless background (the
‘‘free-draining’’ case), but a long coil instead moves as a solid
spherical object because of hydrodynamic interactions (35). The
crossover between these two regimes is controlled by the di-
mensionless parameter Q [ =LyAtot mdragyh. Free draining
corresponds to the case Q ,, 1. For our illustrative example of
a coil of length L 5 2,300 nm and total persistence length Atot
5 50 nm, we get Q 5 17, interactions are important, and the coil
moves as a solid sphere.

The viscous drag torque on such a coil is t 5 mcoilvL, where
mcoil 5 4

9
=3p3LA3z1.26h (see Section 31 of ref. 1). Dividing this

torque equally between the upstream and downstream halves of
the construct, we find the estimated torsional stress on either side
of the cranking point to be vz1.0z10215dynzcm sec. Taking v 5
60 radianysec then gives a torsional stress of 6z1014 dynzcm,
comparable to the value quoted in Section 2 as necessary to
induce structural transitions and about seven thousand times
greater than the naı̈ve estimate given below Eq. 1.

4.3. Relation to Prior Theoretical Work. The viewpoint taken in this
paper can be regarded as a synthesis of two established threads.

Fluid-mechanics work. One of these threads studies the deter-
ministic dynamics of externally driven (i.e., far from equilibrium)
rods in a viscous environment. For example, Garcia de la Torre
and Bloomfield studied the effects of a single permanent large-
angle bend on viscous drag (5), obtaining precise versions of
some of the formulae given above. Individual large-angle bends
caused by DNA-binding factors may well be present in vivo, but
our point here is that a statistical distribution of small finite-
stiffness bends still leads to dramatic effects.

Several authors have studied the interplay between shape and
twist in the dynamics of naturally straight flexible rods in a
viscous medium (36–38), again obtaining precise formulae for
situations simpler than that studied here. It would be very
interesting to incorporate intrinsic bends into their formalism.

Finally, Marko has proposed that the impulsive (jumpy) action
of RNA polymerase can lead to transient torsional stresses
greater than predicted by the naı̈ve formula (Eq. 1) (39). The
range of this enhancement, however, depends on the time scale
of each step and may be too short to explain the observed
phenomena. Experimental measurement of this time scale will
be needed to assess this proposed mechanism.

Simulation work. A second thread is the extensively studied
problem of the equilibrium fluctuations of a polymer, particu-
larly the diffusive torsional motion of DNA as measured in
fluorescence experiments. Most of this work used Monte Carlo
or Brownian dynamics numerical simulation techniques; most
did not introduce long-range hydrodynamic interactions as we
did in Section 4.2 above.

Fujimoto and Schurr noted that fitting experimental f luores-
cence polarization anisotropy data to a model of intrinsically
straight DNA yielded an effective hydrodynamic radius that
increased with increasing segment length (40). They suggested
the possibility that this effect could be caused by permanent or
long-lived bends in DNA.

Collini et al. took up the same problem (28), explicitly
introducing intrinsic bends. Their physical model, however, was
the crankshaft motion of a perfectly rigid zig-zag shape. The
zig-zag shape introduces structure on one length scale. A major
point of the scaling analysis in Section 4 above, however, was that
the minimum-energy conformation of natural DNA is actually a
random coil, and random walks have structure on all length
scales. A second key point of our analysis was that DNA is not
infinitely stiff, leading to the crossover phenomenon found in
Section 4.1.

Schurr et al. distinguished between ‘‘phase-locked bends,’’
equivalent to the natural bends in the present work, and ‘‘non-
phase-locked bends,’’ including the thermal bends of the present
work.‡‡ They verified, using Monte Carlo simulation, that in the
absence of natural bends, the torsional drag on a thermally bent
rod is the same as that for a straight rod, as argued physically in
Section 3.1 above. Schurr et al. went on to anticipate the hybrid
motion studied in the present work, proposing that ‘‘beyond
some length the degree of global phase locking should decrease,
as the motion approaches that of a wobbly eccentric speedom-
eter cable, and the effective hydrodynamic radius should reach
a plateau value, which is possibly 1.2 nm. The available evidence
indicates that this radius is independent of length for L . 60 nm’’
(29). The authors did not, however, present a model incorpo-
rating random natural-bend disorder.

The present work predicts instead that the response of DNA
to external cranking is controlled by an effective drag constant
that does not saturate until L . LC. The crossover scale LC
depends on the transcription rate via Eq. 4 and is typically
hundreds of nanometers; the saturation value of the effective
hydrodynamic radius is then much greater than 1.2 nm. The

††Natural DNA can have localized regions of reduced bend stiffness. These flexible tracts
will not significantly affect this estimate unless they are spaced more closely than the
length scale LC found below.

‡‡Another example of a nonphase-locked bend could be a universal joint: a bend main-
taining fixed polar angle but free to swivel in the azimuthal direction. Schurr et al. also
distinguish between slowly and rapidly relaxing bends. The present work assumes that
the large external applied torsional stress (absent in the equilibrium situation studied in
ref. 29) suffices to overcome any kinetic barriers to elastic deformation of the DNA
duplex.
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driven situation of interest here is not, however, the same as the
equilibrium situation studied in ref. 29.

Finally, A. Maggs has independently shown that in a naturally
straight thermally bent rod, twist relaxation follows the same
diffusive law as in a rigid straight rod, out to extremely long scales
(over 2 kbp) (A. Maggs, personal communication). Beyond this
scale, Maggs found that pathway no. 2 in Section 3.1 above begins
to affect twist relaxation, leading to an interesting new scaling
relation.

5. Conclusion
The analysis of this paper rests on a surprising fact from
slender-body viscous hydrodynamics. The drag torque for spin-
ning a thin rod behaves reasonably as one decreases the rod
radius R: it is proportional to R2. In surprising contrast, the drag
force for pulling such a rod sideways is practically independent
of R (Eq. 2 above). The only length scale available to set the
rotational drag for rigid crankshaft motion is the radius of
curvature of the rod. But a randomly bent rod has structure on
every length scale, so the drag torque per length increases
without bound for longer segments until the crossover condition,
Eq. 4, is met. Because the crossover scale LC proves to be long,
cranked DNA is effectively spin locked on scales shorter than
at least 1 kbp. This observation explains why the naı̈ve formula,
Eq. 1, is inapplicable, eliminating the paradox described in
Section 1.

The transport of torsional stress may enter in many cell
processes. Although this paper has stressed its possible role in
gene regulation, torsional stress has recently been assigned a role
in the disassembly of nucleosomes in front of an advancing

polymerase complex (e.g., refs. 41 and 42) in chromatin remod-
eling (e.g., ref. 43) and in the action of enzymes on DNA (e.g.,
ref. 44). The ideas of this paper may be relevant to these
problems too, although of course in eukaryotes the phenomenon
described here may be preempted by the effects of higher-order
chromatin structure. Direct manipulation of single DNA mole-
cules sometimes involves cranking as well (e.g., ref. 45).

The simple scaling analysis used in this paper makes some
testable predictions. The key claim has been that intrinsic bends
can have a huge effect on the transport of torsional stress along
DNA. For example, synthetic DNA engineered to be less bent
than natural sequences (33) will have longer crossover scale LC

(Eq. 4) and hence should support less torsional stress for a given
length. Shortening a linear template below LC should also
sharply reduce the overall drag coefficient. More generally, none
of the experimental papers cited earlier made quantitative
estimates of the effective torsional friction constant needed to
explain their results. One could imagine an in vitro experiment
using local stress reporters (e.g., the B–Z structural transition)
inserted at various positions to get the full torsional stress profile
in space and time, as function of transcription rate. Even a
limited subset of this quantitative information would yield
insight into the mechanisms of torsional stress transport.
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