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The transcriptome is a set of genes transcribed in a given tissue
under specific conditions and can be characterized by a list of genes
with their corresponding frequencies of transcription. Transcrip-
tome changes can be measured by counting gene tags from mRNA
libraries or by measuring light signals in DNA microarrays. In any
case, it is difficult to completely comprehend the global changes
that occur in the transcriptome, given that thousands of gene
expression measurements are involved. We propose an approach
to define and estimate the diversity and specialization of tran-
scriptomes and gene specificity. We define transcriptome diversity
as the Shannon entropy of its frequency distribution. Gene spec-
ificity is defined as the mutual information between the tissues and
the corresponding transcript, allowing detection of either house-
keeping or highly specific genes and clarifying the meaning of
these concepts in the literature. Tissue specialization is measured
by average gene specificity. We introduce the formulae using a
simple example and show their application in two datasets of gene
expression in human tissues. Visualization of the positions of
transcriptomes in a system of diversity and specialization coordi-
nates makes it possible to understand at a glance their interrela-
tions, summarizing in a powerful way which transcriptomes are
richer in diversity of expressed genes, or which are relatively more
specialized. The framework presented enlightens the relation
among transcriptomes, allowing a better understanding of their
changes through the development of the organism or in response
to environmental stimuli.

biological complexity � gene expression � microarrays � serial analysis of
gene expression (SAGE) � Shannon entropy

The transcriptome is highly dynamic; the relative transcription
frequencies of the genes change in response to environmen-

tal and internal stimuli redirecting the functional and structural
landscape of living organisms. Currently, we can measure tran-
scriptome changes by counting gene tags with technologies as
serial analysis of gene expression (SAGE) (1), massively parallel
signature sequencing (MPSS) (2), pyrosequencing of cDNA
libraries obtained from mRNA (3), or alternatively by measuring
light signals in DNA microarrays (4). In any case, it is difficult
to completely understand the global changes that occur in the
transcriptome, given that thousands of gene frequency measure-
ments are involved. Here, we present a set of indexes that allow
the calculation of transcriptome diversity and context special-
ization and the degree of gene specificity. These indexes are
based on the adaptation of Shannon’s information theory (5) to
the transcriptome framework. Our approach is exemplified by
the analysis of a dataset of the transcriptome of 32 human tissues,
from which �32 million gene tags were obtained (6) and a
comparable dataset for the expression of human genes in 36
human tissues using the Affymetrix GeneChip for the human
genome (7). The main conclusion of our study is that this
conceptualization allows elucidation of aspects of the transcrip-
tome previously uncharacterized due to the quantity and com-
plexity of the data.

Information theory was pioneered by Claude E. Shannon in a
seminal paper in 1948 (5), and it has been generalized and

applied to many scientific fields (8). In particular, it has been
repeatedly applied to genetics in distinct contexts (9–12). Our
approach consists of considering as symbols, in the sense of
information theory, the distinct transcripts found in a tissue and
counting their abundance to calculate information parameters.

Results and Discussion
Theoretical Framework. Consider the division of an organism in
tissues; the transcriptomes of each tissue can then be simply
described as the set of relative frequencies, pij, for the ith gene
(i � 1, 2, . . . , g) in the jth tissue (j � 1, 2, . . . , t). Then the
diversity of the transcriptome of each tissue can be quantified by
an adaptation of Shannon’s entropy formula,

Hj � ��
i�1

g

pijlog2�pij� . [1]

Hj will vary from zero when only one gene is transcribed up to
log2(g), where all g genes are transcribed at the same frequency:
1/g. If we consider the average frequency of the ith gene among
tissues, say,

pi �
1
t �

j�1

t

pij, [2]

and define gene specificity as the information that its expression
provides about the identity of the source tissue as

Si �
1
t � �

j�1

t pij

pi
log2

pij

pi
� . [3]

Si will give a value of zero if the gene is transcribed at the same
frequency in all tissues and a maximum value of log2(t) if the
gene is exclusively expressed in a single tissue. To quantify
the tissue specialization we can obtain for each jth tissue, the
average of the gene specificities, say,

�j � �
i�1

g

pijSi. [4]

�j varies from zero if all genes expressed in the tissue are
completely unspecific (Si � 0 for all i) up to a maximum of
log2(t), when all genes expressed in the tissue are not expressed
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anywhere else. If we substitute the values of pij by pi in Eq. 1 and
ignore the subindex j, we obtain a measure, say H, of the diversity
of the whole system.

To define a measure of divergence with respect to the whole
average transcriptome, let us define the average log2 of the global
transcript frequencies in a given tissue, say

HRj � ��
i�1

g

pijlog2�pi� . [5]

HRj will be equal to or larger than the corresponding Hj, reaching
equality if and only if pi � pij for all values of i. Now we can define
the Kullback–Leibler divergence of the tissue j as

Dj � HRj � Hj. [6]

Dj measures how much a given tissue j departs from the
corresponding transcriptome distribution of the whole system.

Notice that Hj, the measure of diversity, depends only on the
relative transcription frequencies of the tissue j; thus, it is
independent of the context. However, the measures of tissue
specialization and divergence, �j and Dj, respectively, depend not
only on these frequencies but also on those of the remaining
tissues; thus, these parameters are sensitive to the context where
they are measured [see supporting information (SI) Text].

So far, we have been assuming the subdivision of an organism
in a set of tissues, but the transcriptome can also be analyzed at
the individual cell level or at higher hierarchic levels as sets of
tissues (organs) or collections of organs (systems), etc. Tran-
scriptome analysis can also be approached by analyzing the same
organ or tissue under distinct developmental or environmental
conditions. For example, we can monitor the changes in tran-
scriptome from a normal to a malignant tumor or the effect of
environmental stresses in plant transcriptomes. The framework
presented here is completely general and can be used to study
transcriptome changes in complex experiments.

Simple Example. Fig. 1 presents a simple and unrealistic example
to illustrate the numerical results of the indexes presented here.

From Fig. 1, we can see that tissue a, which transcribes only the
most specific gene (S1 � 2), is the least diverse and most
specialized of tissues, whereas d, which transcribes three genes at
the same relative frequency, is the most diverse and the second
least specialized. Tissue c, transcribing two genes with low
specificities at distinct frequencies, is the least specialized with

an approximate intermediate diversity, whereas tissue b, tran-
scribing three genes, one with relatively high specificity (S4 �
1.05), is the second most diverse and specialized. The diversity
of the whole system, with H � 1.9965, almost reaches the
maximum diversity for a system with four genes, log2(4) � 2, and
the mean average diversity of the tissues, mean (�j) � 1.0424, is
almost in the center of the range of possible diversities, 0 to log2
(4) � 2 (diamond in Fig. 1B). In this example, the properties of
the transcriptome can be easily understood by inspection of the
transcription frequencies of the four genes, but in any real case,
thousands of genes are involved, and the appreciation of the
transcriptome properties becomes impossible without the tools
described here.

Analysis of Human Data: The Tissue Perspective. To exemplify our
approach with real cases, we analyzed two comparable datasets.
The first consists of �31 millions MPSS tags for 22,935 genes
measured in 32 human tissues (6), and the second is a microarray
expression profiling of 36 human tissues (7). These two datasets
share 28 human tissues and thus present the possibility of
comparing the results of our approach with two highly dissimilar
methodologies.

Fig. 2 shows a scatter plot of the values of diversity, Hj vs. the
values of specialization given by the average gene specificity of
the tissues, �j.

From the results of the MPSS dataset (Fig. 2 A and C), note
that the less diverse and more specialized organ is the pancreas,
followed by the salivary gland and stomach. As noted in ref. 6,
much of the transcriptional output in the pancreas is directed
toward the manufacture of a limited repertoire of secreted
enzymes and, to some extent, the same can be said about the
salivary gland and the stomach. We can also note how the organs
of the digestive system cover almost the entire specialization
spectrum, from the highest specialization of the pancreas to the
relative low specialization of the small intestine. When compar-
ing the values of Hj for the constitutive organs of the digestive
system in the MPSS dataset, we see a high degree of variation
from 5.2 for the pancreas up to more than double that quantity,
10.7, for the small intestine. The organs of the CNS are scattered
in a region of high diversity but relatively low specialization (Fig.
2 B and D). The testis is the organ with the most diverse
transcriptome; this is reasonable, because, as noted in ref. 6, in
the testis, no abundant tissue-specific transcripts dominate the
total population, which is derived from a large number of cell
types of both germ-line and somatic origin. Among the organs
sampled from the reproductive system, the placenta is more
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Fig. 1. Example of values of information parameters as functions of the relative frequencies of transcription of genes in a system with four tissues and four genes.
(A) Bar plot of the relative frequencies of transcription of each gene in the four tissues. Values of gene specificities, Si, are presented. (B) Scatter plot of Hj (diversity)
vs. �j (specialization, given by the average of the gene specificities) for each tissue. The value of H in the whole system and the mean of �j is plotted as a diamond.
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specialized than the testis but less diverse. Within the lymphatic
system, the bone marrow is the most specialized and the least
diverse. Within the endocrine system, which includes the hypo-
thalamus given its mainly hormonal role (MPSS dataset only,
Fig. 2 A and B), the pituitary gland is the most specialized and
diverse. For the two organs representing the respiratory system,
lung, and trachea, the lung presents a more diverse and less
specialized transcriptome than the trachea, whereas for the two
organs representing the urinary system, the kidney has a more
specialized transcriptome than the bladder. All these observa-
tions are consistent in both datasets.

When comparing the analyses resulting from the two distinct
datasets (Fig. 2 C and D), we notice a difference in the ranks
covered by Hj and �j in the two images. The ranks of Hj and �j

are narrower when estimated from the microarrays compared

with the estimation from the MPSS data, because fewer genes
with less average variation are represented in the microarray
compared with the MPSS dataset. Despite these scale differ-
ences, scatter plots C and D (Fig. 2 C and D) are remarkably
similar, taking into account that they arose from two completely
distinct methods and used different biological samples that
surely present individual noise in the estimation of the gene
frequencies. In both graphs, the most specialized tissue is the
pancreas, followed by the salivary gland, and the most diverse is
the testis. The Pearson’s correlation between the paired esti-
mates of Hj from both datasets was r � 0.68, whereas the
corresponding coefficient for �j was r � 0.90. Figs. S1, S2, and
S3 show scatter plots for the values of Hj, �j, and Dj, respectively,
estimated from each dataset. Fig. S4 shows the scatter plot of Hj

vs. �j in the microarray dataset, including all 36 human tissues.
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Fig. 2. Scatter plot of estimated values of Hj (diversity) vs. �j (specialization, given by the average gene specificity) for tissues of the human systems. Tissues are
colored by system of origin. (A and B) Results from the MPSS dataset (32 tissues); B is an amplification of the box in A. The point of H for the whole system and
the mean of �j is shown by a diamond in A. (C) Results from the MPSS dataset in 28 tissues shared with the microarray dataset. (D) Results from the microarray
dataset in the shared 28 human tissues.
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The visualization of the positions of transcriptomes in a system
of diversity and specialization coordinates, as the one presented
in Fig. 2 and Fig. S4, permits a full and comprehensible
appreciation of these transcriptome properties that is unfeasible
by other means. In ref. 6, the authors show the distribution of
transcript abundance classes in various tissues, plotting the
proportion of the transcriptome contributed by the n-most
abundant transcripts. Using this approach, they conclude that
the pancreas, salivary gland, and stomach are examples of highly
specialized tissues, whereas the fetal brain and testis are pre-
sented as examples of tissues with complex and diversified
transcriptomes. More subtle and detailed conclusions are
reached by observing Fig. 2, which presents a complete and
easy-to-interpret panorama of the diversity and specialization in
all sampled tissues.

Fig. S5 presents a scatter plot of estimated values of Dj
(divergence) vs. �j (specialization) for tissues of the human
systems resulting from the MPSS dataset. In Fig. S5, we can
appreciate distinct strategies of specialization of the tissue’s
transcriptomes. Tissues with �j � Dj are above the red line that
marks Dj � �j, whereas tissues with �j � Dj are below that line.
Tissues with �j � Dj have a specialization strategy that consists
mainly of expressing highly specialized genes, whereas tissues
with �j � Dj achieve their specialization by expressing at higher
or lower rates genes that are, on average, expressed in the whole
system. The distance of each point (tissue) to the line Dj � �j
denotes how extreme is the specialization strategy. From Fig. S5,
we notice, for example, that the tissues of the reproductive
system are in general very close to the line Dj � �j, indicating an
almost neutral specialization strategy. In contrast, all of the
tissues of the digestive system have large deviations from the
neutral specialization strategy and all, except the colon, have
values of �j � Dj, denoting a specialization strategy consisting of
the expression of mainly specialized genes. The plotting of Dj
(divergence) vs. �j (specialization), as the one shown in Fig. S5,
offers immediate and easy-to-interpret insights into the special-
ization strategies of the transcriptomes, which will be very
difficult, if not impossible, to attain without the information
tools presented. Fig. S6 presents the scatter plot of Hj vs. �j in the
microarray dataset, including the 28 tissues shared with the
MPSS dataset.

In the case of the human dataset, the information analysis can
also be performed at system level by grouping the sets of tissues
into their corresponding systems. Fig. S7 presents the graphical
result of that analysis performed over the MPSS dataset, showing
a scatter plot of estimated values of Hj (diversity) vs. �j (spe-
cialization) that also includes the estimated values of Dj (diver-
gence) for each system. These results are consistent with the
analysis performed at the finer level of tissues presented earlier.

Analysis of Human Data: The Gene Perspective. The values of Si
calculated for each of the 22,935 genes studied in the MPSS
dataset allow the quantitative classification of gene specificity, a
concept regularly used in the literature but seldom quantified
(13). In this case, the maximum value of Si for the human genes,
Si � log2(32) � 5, reached by 2,555 genes (11.14%), indicates
that the gene is exclusively transcribed in only one of the 32
tissues studied, whereas the minimum possible value of Si, zero,
unattained in the MPSS dataset, would indicate a gene with
exactly the same frequency in all tissues. Housekeeping genes
have small values of Si, indicating an even distribution across
tissues. An index for gene specificity that depends basically on its
maximum expression was applied to the human dataset (6). That
index does not have definite maximum or minimum bounds and
misses many exclusive genes, giving values that, in contrast with
our index Si, depend not only on the specificity of the gene but
also on its frequency of expression. Although the index Si easily
selects all 2,555 specific genes, the index proposed in ref. 6 can

induce a misleading inference about specificity, because many
specific genes with a value of Si � 5 give very low values of the
index proposed by ref. 6 and thus will not be classified as specific
with that index. Fig. S8 presents a scatter plot for the values of
both coefficients. Despite these differences, all genes presented
in table 3 of ref. 6 with a value of their coefficient �9 also have
a high value of Si that ranks from 4.99 to 5. Table 1 presents
examples of genes with extreme values of Si and the Si values
attained in this dataset by some genes classified as housekeeping
in the literature.

Table 1 presents five examples of the 2,555 completely specific
genes (Si � 5) selected to be shown from the MPSS dataset,
because they are the ones with the five highest average expres-
sion levels (highest pi) and are also presented as examples in ref.
6. As mentioned above, no gene attached the minimum possible
value of Si � 0 that will indicate exactly the same expression level
of transcription in all 32 tissues; however, Table 1 presents the
five genes with the lowest values of Si that rank from 0.09 to 0.10
and can be classified as housekeeping, because they present the
most even distribution of transcription expression among the
human tissues sampled. Two genes with the lowest Si in Table 1,
PSMB6 and PSMC5, belong to the proteasome that is responsible
for the degradation of abnormal intracellular proteins (14). The
gene CHMP4A, which has the second smallest value of Si, 0.09
(Table 1), is a member of the family of small coiled-coil proteins
named CHMP implicated in playing roles in multivesicular body
sorting (15), whereas COMMD3, with a value of Si � 0.09, is a
member of a gene family defined by the presence of a conserved
and unique motif termed the COMM (copper metabolism gene
MURR1) domain, which functions as an interface for protein–
protein interactions. In particular, COMMD3 has been indepen-
dently shown to be expressed at relatively even levels in 13
human tissues (16). The CTNND1 gene with a value of Si � 0.10
corresponds to catenin, a protein linked to the cytoplasmic
domain of transmembrane cadherins (17). These examples show
that measuring the specificity of genes by Si can lead to the
detection of new housekeeping genes.

Table 1 also presents the values of Si for genes repeatedly
reported in the literature as housekeeping for human studies
(18). Four of these genes (PPIA, ACG1, PGK1, and TAF11) have
values of Si between 0.22 and 0.28 that are more than double the

Table 1. Examples of genes with distinct value of specificity (Si)

Completely specific (Si � 5), highly expressed genes (tissue)
Si HUGO Description (tissue where expressed)
5.00 LIPF Lipase (stomach)
5.00 ELA3B Enastase 3B (pancreas)
5.00 RHO Rhodopsin; opsin 2, rod pigment (retina)
5.00 AZU1 Azurocidin 1 (bone marrow)
5.00 MYL2 Myosin, light polypeptide 2 (heart)
Genes with the lowest values of Si (expressed in all sampled tissues)
Si HUGO Description
0.09 PSMB6 Prosome, macropain; subunit, beta type, 6
0.09 CHMP4A Chromatin modifying protein 4A
0.09 COMMD3 B lymphoma Mo-MLV insertion region
0.10 CTNND1 Catenin (cadherin-associated protein), delta 1
0.10 PSMC5 Prosome, macropain; 26S subunit, ATPase, 5
Genes reported as housekeeping in the literature
Si HUGO Description
0.22 PPIA Cyclophilin A
0.25 ACG1 Actin, gamma 1
0.28 PGK1 Phosphoglycerate kinase 1
0.28 TAF11 TAF11; TATA box-binding protein
2.30 GAPDH Glyceraldehyde-3-phosphate dehydrogenase

HUGO, Human Genome Organization.
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values for genes with the smallest values of Si but can still be
considered to have an even distribution and thus housekeeping
genes. In contrast, the gene for GAPDH, the most popular
housekeeping gene (18), presents a value of Si � 2.3 that is
almost in the center of the possible rank of Si (0–5) and cannot
be considered as housekeeping, at least for the tissues studied.

Fig. S9 presents bar plots for the distribution of 10 specific
genes (Si � 5; Fig. S9A) and the 10 genes with the lowest values
of Si (Fig. S9B) from the MPSS dataset, where one can appre-
ciate how specific genes are expressed in only one organ, whereas
nonspecific or housekeeping genes have an approximately even
distribution among tissues.

Comparing the distributions of Si in the systems and tissues (Fig.
S10), one can appreciate in both cases an approximate U-shaped
distribution, with a larger number of genes having values closer to
the limits of the Si rank. The largest difference between the
distributions of Si is observed in the first class, which in both cases
groups the first fifth of the Si rank, and that for the system
distribution represents 36% of the genes, whereas for tissues, it
groups 25% of the genes. This shows that, when grouping the data
by systems, more genes can be classified as housekeeping or
ubiquitously distributed among the systems than when grouping by
tissues. The difference in the last class of the distributions, grouping
one-fifth of the most extreme or specialized genes, is only of �3%,
showing that this class of genes is less affected in the relative Si value
by the grouping than genes with a low value of Si.

General Considerations. The transcriptome is vastly dynamic;
frequencies of gene expression in tissues change during the
development of the organism and at the same developmental
stage in response to internal or external stimuli, modifying the
landscape of the proteome and the functional and structural
roles of the cells. In many instances in the recent literature on
transcriptomes (19–23), the concept of complexity is mentioned
in relation to the number of genes expressed and the changes of
expression patterns in distinct situations; however, problems of
quantitative evaluation of the transcriptome diversity or special-
ization and gene specificity are not addressed. The analytical
tools herein presented (Hj for measuring diversity, �j for assess-
ing context specialization, Dj for transcriptome divergence, and
Si for estimating gene specificity) allow the understanding of
these global changes, giving insights about the complex changes
occurring during these phenomena. A decrease in Hj will indicate
that fewer genes are being transcribed, or that the transcription
frequencies are less uniform, whereas an increase of �j will signal
that, on average, more specific genes are transcribed, and an
increase of Dj indicates departures from the average transcrip-
tome. With the help of the Si index, it is possible to detect genes
specific to a giving condition or that, on the contrary, are
maintained approximately at the same rate of transcription
under different situations.

In the examples presented here, we consider tissues of a given
organism; however, the information framework presented is gen-
eral, and we can speak about ‘‘subsystems’’ of a given organism,
where each subsystem can represent an order of morphological
classification, i.e., individual cells, tissues, organs, systems, etc.; a
state of development, for example plantlet, flowering plant, senes-
cent plant; normal or malignant tissue, etc.; a particular experi-
mental treatment, such as ‘‘optimal condition’’ vs. ‘‘stress condi-
tion’’ in a model organism; and so forth.

There are statistical issues about the estimation of the
information properties not detailed here. A goodness-of-fit
statistic can be readily obtained by transforming the Kullback–
Leibler distance Dj to test the null hypothesis that the tran-
scriptome of a given tissue is statistically equal to a given
distribution (24). Another issue is the estimation of confidence
intervals for Hj, Dj, �j, and Si that can be obtained by the
bootstrap method and will be presented elsewhere. Another

important statistical issue related to the information param-
eters estimation is the sample size or deepness of sampling of
the transcriptome. Because many genes are transcribed at very
low frequencies, small sample sizes, usually used in EST
studies, are likely to miss many low-expressed genes, probably
underestimating the value of Hj and distorting the true values
of Dj and �j.

When we have a snapshot of the relative frequencies of the
transcribed genes, as in the case of SAGE, MPSS, or microarray
experiments, the estimation of Hj makes it possible to objectively
quantify the diversity of a transcriptome, capturing this aspect of
its complexity. Because Hj depends only on the relative frequen-
cies of the expressed genes, it can be used to compare transcrip-
tion diversity not only between subsystems of the same organism
but also between transcriptomes of various distinct organisms,
allowing comparison among taxa.

The index Si, defined as the specificity of a gene, permits the
quantification of the relative spreadness of the genes across
subsystems, giving a quantitative base to define concepts such as
housekeeping or specialized genes recurrently used in the liter-
ature, in many cases without a quantitative assessment of their
degree of variability (13).

We have shown the method in the framework of protein-
codifying genes; however, it is applicable to any kind of transcript
tag available, including the precursors or mature forms of
noncoding RNA as iRNA, sRNA, and so forth, and to collections
of anonymous tags from tissues in an organism for which
nongenome sequences are available.

Materials and Methods
The MPSS dataset, consisting of �31 millions tags for 22,935 genes measured
in 32 human tissues analyzed and published (6), was kindly made available to
us by Jongeneel et al. The data consist of the number of tags obtained for each
gene in each tissue. To obtain the relative frequencies of expression of each
gene at each tissue, pij, the original number of tags per gene was divided by
the corresponding total number of tags in the tissue.

For the analysis of the MPSS dataset at the system level, the data from the
32 tissues were grouped into eight systems in accordance with the main
functional classification of the tissues (Table S1). To obtain the relative fre-
quencies of expression of a given gene in a specific system, we took the
average of the relative frequencies of expression of that gene in the organs
considered to form part of the corresponding system. From this matrix of
relative frequencies, {pij}, all information parameters were calculated. The
number of gene tags and the information parameters calculated from the
data are presented in Table S1.

The dataset of microarray experiments used the Affymetrix GeneChip
(Gene Expression Omnibus accession no. GDS1096), downloaded from the
National Center for Biotechnology Information site (www.ncbi.nlm.nih-
.gov). The file containing the normalized measurements for all identifiers
in all tissues was processed to obtain the average expression per gene in
each tissue. To obtain the relative frequencies of expression of each gene
at each tissue, pij, the estimated average expression of each gene in a given
tissue was divided by the sum of the average expression of all genes in that
tissue. Two analyses were performed, one including only the 28 tissues
shared with the MPSS dataset (Fig. 2D) and the other including all 36 tissues
(Fig. S4).

The analyses were performed within the R statistical language (25). The
program designed for the analyses and the full table of results for all analyses
are available on request. The program will also be deposited to form part of
the R Bioconductor software.

Note Added in Proof. The value of gene specificity (Eq. 3) is a linear function of
the entropy of a gene’s expression distribution applied in (ref. 26) to evaluate
tissue specificity.
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