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THE LANDSCAPE IN HEALTH
behavior intervention studies is
changing rapidly. Recent develop-
ments in science and technology
have resulted in a dramatic in-
crease in the available types and
formulations of feasible interven-
tions and in the ways in which in-
terventions are delivered, mes-
sages are presented, data are
collected, and so on. These ad-
vances, in turn, are leading to an
explosion in the number of possi-
ble treatment components (or de-
sign factors) that can be studied.

Traditional behavioral interven-
tion studies are typically large-scale
randomized controlled trials
(RCTs) in which the goal is to con-
firm the superiority of a new pro-
gram over an existing one. For ex-
ample, such a trial might assess
whether prostate cancer patients
who receive a decision aid (e.g., an
extensive online presentation
about the disease) are better in-
formed about their treatment op-
tions and more involved in their
health care decisions than are pa-
tients not receiving a decision aid.

Often in such trials, the new
program consists of a combination
of many interventions. Decision
aids, for instance, contain many
different components, each of
which may influence the primary
outcome variables. These confir-
mation trials do not provide direct
information on which compo-
nents are active and whether they
have been set at optimal levels.
Post hoc analyses based on non-
randomized data are usually con-
ducted to tease out this additional
information.

When RCTs are used to obtain
this information, they usually in-
volve adding or subtracting com-
ponents one at a time or, at most,
in small groups (e.g., 2 × 2 facto-
rial designs). These studies can as-
sess the impact of only a limited
number of treatment components.
By the time these findings are dis-
seminated, the population of inter-
est may have changed or the tech-
nology may be different (e.g., new
communications media are in
place or the population of interest
has become more sophisticated),
and as a result the conclusions
may no longer be valid. All of
these considerations suggest the
need for alternative methodologies
in health behavior research.

Over the past 5 years, the Cen-
ter for Health Communications Re-
search, funded by the National
Cancer Institute, has developed
and implemented a multiphase ex-
perimentation strategy for system-
atically studying new interventions
and confirming their superiority
over existing ones. Adapted from a
similar framework that has been
successfully used in engineering
applications for many years,1 this
“multiphase optimization
strategy,”2 as we have labeled it,
consists of 3 phases—screening, re-
fining, and confirming—involving
separate randomized trials.

The goal in the first phase is to
“screen” a large set of potentially
important treatment components
quickly and efficiently and identify
components that are in fact impor-
tant. This is done through a screen-
ing experiment in which the effects
of all components are examined

simultaneously. Two-level frac-
tional factorial designs (FFDs) are
useful in accomplishing this goal
economically. The Pareto princi-
ple—according to which only a
small subset of the components
and their interactions will be im-
portant—underlies the screening
phase. Thus, many interactions can
be excluded a priori, increasing the
efficiency of the design.

The second phase is aimed at
refining understanding of the ef-
fects of the important components
identified in the first phase. Existing
knowledge or working assumptions
need to be further examined and
verified in follow-up experiments,
which can untangle important ef-
fects, determine optimal “dosage”
levels (i.e., appropriate levels of
quantitative factors) via experi-
ments with 3 or more levels, and
so on. An optimal treatment pro-
gram can be formulated from the
information gained from this phase.

The final phase consists of a
confirmation trial designed to com-
pare the new program with the
gold standard and assess its advan-
tages. Although this phase is simi-
lar to RCTs with 2 arms, the multi-
phase approach allows inclusion of
only important components at
their optimized levels.

We focus on screening experi-
ments and the use of FFDs in pub-
lic health intervention research.
We discuss the role of screening
experiments in this context and il-
lustrate the usefulness of FFDs.
Factorial designs and FFDs have a
long history.3–6 They were origi-
nally developed in the context of
agricultural applications and have

Health behavior interven-
tion studies have focused pri-
marily on comparing new
programs and existing pro-
grams via randomized con-
trolled trials. However, num-
bers of possible components
(factors) are increasing dra-
matically as a result of de-
velopments in science and
technology (e.g., Web-based
surveys). These changes dic-
tate the need for alternative
methods that can screen and
quickly identify a large set of
potentially important treat-
ment components. 

We have developed and
implemented a multiphase
experimentation strategy for
accomplishing this goal. We
describe the screening phase
of this strategy and the use
of fractional factorial designs
(FFDs) in studying several
components economically.
We then use 2 ongoing be-
havioral intervention projects
to illustrate the usefulness
of FFDs. FFDs should be sup-
plemented with follow-up ex-
periments in the refining
phase so any critical as-
sumptions about interac-
tions can be verified. (Am J
Public Health. 2008;98:
1354–1359. doi:10.2105/AJPH.
2007.127563)
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TABLE 1—Full Factorial Design Corresponding to 4 Factors (A–D) and Their Interactions Assessed in the
Guide to Decide Project

Group A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

1 − − − − + + + + + + − − − − +
2 − − − + + + − + − − − + + + −
3 − − + − + − + − + − + − + + −
4 − − + + + − − − − + + + − − +
5 − + − − − + + − − + + + − + −
6 − + − + − + − − + − + − + − +
7 − + + − − − + + − − − + + − +
8 − + + + − − − + + + − − − + −
9 + − − − − − − + + + + + + − −
10 + − − + − − + + − − + − − + +
11 + − + − − + − − + − − + − + +
12 + − + + − + + − − + − − + − −
13 + + − − + − − − − + − − + + +
14 + + − + + − + − + − − + − − −
15 + + + − + + − + − − + − − − −
16 + + + + + + + + + + + + + + +

Note. The columns A, B, C, and D refer to the settings (low [minus signs] or high [plus signs]) of the 4 components: A = type of information display
(low = prose + pictograph, high = prose only), B = presentation of statistics (low = denominator of 100, high = denominator of 1000), C = information
on risks (low = incremental risk format, high = total risk format), D = order of presentation (low = risks first, high = benefits first). The remaining
columns (e.g., AB, AC) refer to the corresponding levels of the interaction effects. The first 4 elements of each row indicate the combinations of
the 4 treatment components. For example, in the first combination, all 4 components are set at the low levels. The total number of possible
combinations of 4 components at 2 levels each is 16, so there are 16 rows (groups or treatment combinations).

since found widespread use in en-
gineering. Here we provide an
overview of FFDs and use 2 proj-
ects from our center to demon-
strate their usefulness (more infor-
mation about FFDs is available
from standard textbooks1,7,8).

Successful use of FFDs relies on
the principle of effect sparsity.
There are 2 types of sparsity, one
in which few factors are active and
one in which higher order interac-
tions are negligible. One can use
existing knowledge (theory, experi-
ence, or empirical evidence) in for-
mulating working assumptions
about interactions. Results from
the screening experiment will sug-
gest which of these assumptions
are critical, and suitable follow-up
experiments must be conducted in
the refining phase to determine
which groups of interactions are
“aliased” (as described later).

GUIDE TO DECIDE
PROJECT

The first example we use to il-
lustrate the value of FFDs is the
Guide to Decide project, which fo-
cuses on the effectiveness of deci-
sion aids for women who are at
high risk of breast cancer. Tamox-
ifen reduces the risk of a primary
diagnosis of breast cancer by 50%
but has significant side effects.9

The decision to take tamoxifen re-
quires that women understand the
benefits (reducing their risk of de-
veloping breast cancer) versus the
risks (side effects) of the drug.
Women must also know their
baseline risk of breast cancer.

Our goal was to determine how
decision aids influence women’s
knowledge of complex statistical
information, their risk perceptions,
and their health behaviors. The
benefits of decision aids are well
established.10,11 However, only lim-
ited research has attempted to
provide an understanding of why

decision aids are effective and
which of the different components
(factors) contribute to better deci-
sionmaking.

The screening phase of the
study consisted of an examination
of the effectiveness of 5 communi-
cation factors, each with 2 levels,
in a Web-based decision aid: infor-
mation presented in text only or
text in combination with a picto-
graph (“type of information dis-
play”; factor A), risk statistics pre-
sented in a denominator of 100 or
1000 (“presentation of statistics”;
factor B), information on risks pre-
sented in an incremental format
(incremental risk of tamoxifen side
effects) or total risk format (“risk
presentation”; factor C), order of
presentation of risks and benefits
(“order of presentation”; factor D),
and information on other health
risks provided or not provided
(“health risk context”; factor E).
We return to this example later in
the article.

FULL FACTORIAL DESIGNS

For simplicity, we restrict atten-
tion to the first 4 factors—A (type
of information display), B (presen-
tation of statistics), C (risk presenta-
tion), and D (order of presenta-
tion)—assessed in the Guide to
Decide project. Table 1 shows a
full factorial design corresponding
to the 4 factors and all of their in-
teractions. Because there are 16
(24) possible combinations of the 4
factors each at 2 levels (high and
low), there are 16 groups (rows in
Table 1). The minus and plus signs
under the A through D columns in
Table 1 indicate the 2 settings (i.e.,
low or high, respectively) of the 4
factors. For example, all of the par-
ticipants assigned to group 1 (row
1) will receive the treatment com-
bination with all 4 factors (A–D)
set at their low level.

Participants were assigned to
the 16 groups as follows: N par-
ticipants were randomly assigned

to the 16 groups, with K partici-
pants in each group. Let N be
the total number of participants
in the study. It is most efficient,
in a statistical sense, to assign
an equal number of participants
to all groups. Therefore, let
K=N÷16 be the number of par-
ticipants per group. 

Note that this design leads to a
single randomized trial rather than
16 different trials corresponding to
the 16 groups. In particular, the
main effect of a factor is obtained
by combining the data from all 16
groups. To illustrate this process,
let Y1, Y2, . . ., Y16 be the average
response in each group (row in
Table 1); that is, Y1 is the average
of the responses from the K partici-
pants in group 1, and so on. Then
the main effect of factor A is de-
noted by

(1) ([Y1+Y2+Y3+Y4+Y5+Y6+
Y7+Y8]−[Y9+Y10+Y11+Y12+
Y13+Y14+Y15+Y16])÷16,
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TABLE 2—Numbers of
Groups in a 2-Level Full
Factorial Design as Numbers
of Factors Increase

No. of Factors No. of Groups

2 4

3 8

4 16

5 32

6 64

8 256

10 1 024

15 32 768

that is, multiplying the Ys by the
minus and plus signs in the A col-
umn in Table 1, summing them,
and then dividing by 16. Note
that the main effect estimate is
based on the data from all 16
groups, so the factorial design
combines information across all of
the groups (rows).

The columns AB (type of infor-
mation display—presentation of sta-
tistics), AC (type of information dis-
play—risk presentation), and so
forth in Table 1 correspond to 2-,
3-, and 4-way interaction effects. In
2-level designs, these interaction
columns can be obtained through
simply multiplying the correspon-
ding main effect columns. For ex-
ample, AB is obtained by multiply-
ing columns A and B and treating
the minus and plus signs as −1 and
1, respectively. The interaction ef-
fects are estimated in a manner
similar to that for the main effects.
For example, the AB interaction ef-
fect is denoted by

(2) ([Y1+Y2+Y3+Y4+Y13+Y14+
Y15+Y16]−[Y5+Y6+Y7+Y8+
Y9+Y10+Y11+Y12])÷16,

that is, multiplying the Ys by the
minus and plus signs in the AB
interaction column, summing
them, and dividing by 16.

The design in Table 1 is bal-
anced in a number of different
ways. For example, each factor
occurs at low and high levels an
equal number of times, and each
combination of factors occurs an
equal number of times (e.g., the 4
different combinations of the AB
pair [minus–minus, minus–plus,
plus–minus, plus–plus] all occur
4 times). This balance leads to
statistical efficiency with respect
to estimating main effects and in-
teractions. Furthermore, the
columns in the design matrix
(Table 1) are orthogonal to each
other, resulting in uncorrelated
estimates.

The problem with full factorial
designs is that the number of
groups increases rapidly with the
number of factors and their levels.
Table 2 shows the situation for 2-
level factors. The problem is worse
for factors with more levels; even
for 3 factors at 5 levels, there are
125 (5×5×5) groups. Full factorial
designs are geared toward estimat-
ing main effects and higher-order
interactions. However, in many ex-
periments, it is likely that only a
small proportion of the factors are
active. Also, most of the higher-
order interactions will be negligible
and are not of primary interest in
the screening stage. As noted by
Box et al., “there tends to be a re-
dundancy in [full factorial de-
signs]—redundancy in terms of an
excess number of interactions that
can be estimated and sometimes in
an excess number of [components]
that are studied.”1(p375) FFDs ex-
ploit this redundancy, allowing the
effects of additional factors to be
examined economically.

HALF-FRACTION
FRACTIONAL FACTORIAL
DESIGNS

Suppose one wants to use an
FFD with 16 groups to study all 5
Guide to Decide project factors. If
the fourth-order ABCD interaction

is negligible, one can vary the fifth
factor (E) according to the ABCD
column in Table 1. This results in
the 2 effects being “aliased”; that
is, the effect of E cannot be sepa-
rated from that of ABCD (E=
ABCD). (If U and V are 2 effects,
it can be stated that U=V if U
and V are aliased.) If our assump-
tion about the ABCD interaction
is valid, then any significant effect
associated with the ABCD column
should be attributed to the main
effect of factor E.

There are additional conse-
quences associated with aliasing.
The relationship E=ABCD im-
plies that A=BCDE, B=ACDE,
C=ABDE, and D=ABCE; in
other words, each main effect
is aliased with a fourth-order
interaction. In addition, all 2-
factor interactions are aliased
with 3-factor interactions: AB=
CDE, AC=BDE, AD=BCE, AE=
BCD, BC=ADE, BD=ACE, BE=
ACD, CD=ABE, CE=ABD, and
DE=ABC.

We can estimate 2-factor in-
teractions only if we know that
the 3-factor interactions are
negligible. This is reasonable in
many situations. If so, we can use
the 16-group design to study 5
factors simultaneously. This FFD
is a half fraction of a 25 full fac-
torial. It is attractive in that all
main effects are aliased with
fourth-order or higher order in-
teractions and all 2-way interac-
tions are aliased with third-order
or higher-order interactions.
Thus, we can estimate all main
effects and second-order interac-
tions provided all third-order
and higher-order interactions
are negligible.

GUIDE TO DECIDE
REVISITED

The usefulness of a half frac-
tion for studying 5 factors in 16

groups can be illustrated with
the Guide to Decide example. (A
16-group design can also be ob-
tained as a one quarter fraction
of a 26 full factorial design. Later
we describe how this design can
be used to study 6 factors in 16
groups.) Table 3 shows the 16-
group FFD, which we obtained
by setting E=ABCD, used in the
screening phase of the study.
This design reduced the number
of groups by half but allowed us
to estimate all of the main effects
and 2-factor interactions assum-
ing that third-order and higher-
order interactions were absent.

The screening phase of the
study involved 632 women who
were at high risk of having a first
breast cancer diagnosis in the
subsequent 5 years. Three pri-
mary outcome measures were
assessed: (1) participants’ knowl-
edge of the risks and benefits of
tamoxifen, (2) their perceptions of
these risks and benefits, and (3)
their intentions to take additional
action or seek more information.

Table 4 shows the results of
our analysis for one outcome
measure: knowledge of risks and
benefits. Only significant main ef-
fects and interactions are shown
(with the exception of the picto-
graph measure, for which there
was a small main effect but sig-
nificant interactions). The main
effect of incremental risk format
was significant; the negative coef-
ficient indicated that the low
level (incremental risk format)
was more effective than the high
level (total risk format). The sig-
nificant positive interaction with
pictograph showed that when the
incremental risk format was
used, knowledge scores were
lower among women who re-
ceived risk information in a text-
only format but not among
women who received risk infor-
mation in a pictograph format.
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TABLE 3—Fractional Factorial Design for the Guide to Decide Project

Factor A: Factor B: Factor C:  Factor D: Factor E: 
Information Presentation Risk Order of Health

Group Display of Statistics Presentation Presentation Risk Context

1 Pictograph 100 Incremental Benefits first Present

2 Pictograph 100 Incremental Risks first Absent

3 Pictograph 100 Total Benefits first Absent

4 Pictograph 100 Total Risks first Present

5 Pictograph 1000 Incremental Benefits first Absent

6 Pictograph 1000 Incremental Risks first Present

7 Pictograph 1000 Total Benefits first Present

8 Pictograph 1000 Total Risks first Absent

9 Prose only 100 Incremental Benefits first Absent

10 Prose only 100 Incremental Risks first Present

11 Prose only 100 Total Benefits first Present

12 Prose only 100 Total Risks first Absent

13 Prose only 1000 Incremental Benefits first Present

14 Prose only 1000 Incremental Risks first Absent

15 Prose only 1000 Total Benefits first Absent

16 Prose only 1000 Total Risks first Present

Note. The 4 columns for factors A–D correspond to those in Table 1 (see Table 1 for fractional factorial design used here). The final column
(factor E; information on other risk factors provided or not provided) corresponds to the ABCD column in Table 1. This fractional factorial design
aliases the main effect of E with the ABCD interaction.

TABLE 4—Results of Analyses of Guide to Decide Participants’
Knowledge Scores

b P

Pictograph (vs text) 0.001 .996

Incremental risk (vs total) –0.674 <.001

Pictograph × Incremental Risk 0.791 <.001

100 risk denominator (vs 1000) 0.493 .003

Pictograph × Risk Denominator –0.364 .114

Note. Analyses controlled for participants’ numeracy scores. Although the main effect of
pictograph was not important, it is included because of its significant interactions with
other factors.

Risk denominator was also sig-
nificant; use of the 1000-person
denominator increased knowl-
edge relative to use of the 100-
person denominator. The Picto-
graph×Risk Denominator
interaction suggested that pic-
tographs could partially mediate
knowledge deficits resulting from
the use of 100-person denomina-
tors; however, this interaction
was only marginally important.

The results from the screening
phase provided clear guidelines for

the phase 2 refining experiment,
which is currently under design. In
phase 2, all numerical information
will be presented in pictographs,
and the incremental risk format
will be used (because of the strong
main effect of incremental risk and
its interaction with pictograph).
Contextual information will not be
included. Phase 2 will examine 4
new components of the risk–bene-
fit decision aid. In addition, both ta-
moxifen and raloxifene (a recently
approved drug) will be assessed.

PROJECT QUIT

Project Quit, another Center for
Health Communications Research
project funded by the National
Cancer Institute, focuses on smok-
ing cessation. We use it here to
demonstrate a one fourth fraction
of a 64-group design. (For illustra-
tive purposes, we present a slightly
modified version of the actual ex-
periment.) Computer-tailored pro-
grams have been used in several
smoking cessation studies.12–15

However, most of the research thus
far has focused on whether the
new treatments are effective and
not on why or how they are effec-
tive. Our goal in this project was to
use the multiphase framework to
identify the treatment components
important for smoking cessation.
Phase 1 (the screening phase) was
a 6-month Web-based study in-
volving 1848 participants. The pri-
mary outcome measure was absti-
nence over a 7-day period
(assessed via the question, “Did

you smoke a tobacco cigarette in
the past 7 days?”).

Six components (factors) were
assessed in the project, each with 2
levels. Factor A was type of expo-
sure (a single, large set of materials
or multiple correspondences over
several weeks). Factor B was out-
come expectation depth (the high-
depth group received individual-
ized feedback and advice for
quitting, and the low-depth group
received general feedback related
to motives for quitting). Factor C
was success story depth (members
of the high-depth group read a
story tailored to their specific so-
ciodemographic backgrounds;
members of the low-depth group
read a story tailored to their
gender).

Factor D was efficacy expecta-
tion (the high-depth group re-
ceived feedback and advice on the
most significant barriers to quit-
ting, and the low-depth group re-
ceived advice on a broader range
of barriers). Factor E was source
personalization level (the high-
depth group received personalized
materials, including a photograph
of and supportive text from the
study HMO’s individual smoking
cessation team; the low-depth
group version included only a pho-
tograph). Finally, factor F was type
of framing (gain framing [positive
aspects of quitting] or loss framing
[negative effects of continued
smoking]).

A full factorial experiment with
6 factors requires 64 groups, which
is not practical. With respect to the
Project Quit application, previous
experience suggested that factor B
(outcome expectation depth) could
interact with factors C (success
story depth), D (efficacy expecta-
tion), and F (type of framing). In
addition, we believed a priori that
the DF interaction (Efficacy Expec-
tation×Framing) might be active
and that all other interactions
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would be small. Thus, we wanted
to be able to estimate the BC, BD,
BF, and DF interactions assuming
that all other interactions were
small. We could then use a 16-
group design with the aliasing rela-
tionships E=ABC and F=ACD
(when products are taken, this im-
plies the additional aliasing
EF=BD), representing a one
fourth fraction of a 64-group FFD.

In this example, unlike the deci-
sion aid example, some of the 2-
factor interactions were aliased
with other 2-factor interactions.
Consider the 2-factor interactions
we identified a priori as possibly
being active, that is, those on the
left-hand sides of the following
equations: BC=AE, BD=EF,
BF=DE, and DF=BE. Fortu-
nately, these interactions were
aliased with other second-order in-
teractions that were considered
negligible. This was not by acci-
dent. The aliasing structure
(E=ABC and F=ACD) was se-
lected judiciously to accomplish
this goal.

Of course, our assumption
about the interactions could have
been wrong. Many intervention re-
searchers view such a possibility as
a severe limitation of FFDs.16,17

However, in our framework, FFDs
are embedded within a multiphase
strategy, so one can conduct fol-
low-up experiments in the refining
phase to verify any critical working
assumptions (this concept is well
known within the design literature;
see Collins et al.2 and Wu and
Hamada8 for examples of follow-
up experiments intended to re-
solve ambiguities in aliased inter-
action effects).

In the analysis, we fit the binary
outcome variable (abstinence or
nonabstinence) to the intervention
components and several baseline
sociodemographic characteristics.
Motivation was the only significant
sociodemographic variable.

Among the components, the ef-
fects of source personalization
(P= .027) and success story
(P= .046) were significant; high
depth levels of both of these fac-
tors increased quit rates. Outcome
expectations and efficacy expecta-
tions were marginally significant
(P= .195 for both). The other main
effects were not significant. In ad-
dition, none of the 2-factor interac-
tions were significant (including
BC, BD, BF, and DF, which we
had believed might produce signif-
icant results).

These findings demonstrate the
effect-sparsity principle: only 2 of
the 6 components were important,
and there were no significant inter-
actions. We were able to examine
several components economically
using only a 16-arm trial. The re-
finement phase of Project Quit is
under way; in this phase, the ef-
fects of added source personaliza-
tion and variations in story design
on smoking cessation will be ex-
amined in another randomized
trial.

SUMMARY

Advances in technology (e.g.,
Web-based surveys) are leading to
a vast increase in the number of
possible treatment components in
behavior intervention research.
There is a need for alternative
methods that can screen a large set
of potential components and iden-
tify important ones that can be sub-
sequently used in intervention pro-
grams. There is also a need for an
understanding of optimal levels of
program components. However,
full factorial experiments require a
large number of groups and thus
are not practical. For example, in
our projects, such an experiment
would have required the design
and implementation of 32 or 64
combinations of tailoring programs.
FFDs are a promising alternative.

These designs are used extensively
in engineering, and as shown in
this article, they can also be useful
in health behavior studies.

Fractional factorial experiments
have been conducted in the be-
havior intervention literature.16,17

However, some of these experi-
ments have involved fractional de-
signs only in the loose sense of the
term, without the elegant structure
and statistical properties associated
with the designs discussed here.
The latter are sometimes referred
to as regular fractional factorial de-
signs.8 They involve a very simple
aliasing structure in which 2 ef-
fects are completely aliased with
each other. In other types of FFDs,
such as Plackett–Burman designs,
the aliasing structure is more com-
plex.1,7,8 The interaction effects of
these FFDs are not as easy to un-
tangle in the refining phase of a
multiphase experiment, so we do
not recommend their use in the
screening phase.

It is important to emphasize the
usefulness of FFDs in health be-
havior studies within a multiphase
approach. The iterative strategy in
the multiphase approach allows re-
searchers to further investigate the
important assumptions implicit in
FFDs during the refining phase.
Such a strategy is critical if FFDs
are to be used successfully in be-
havioral intervention research.
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