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Postoperative or posttraumatic sepsis remains one of the leading causes of morbidity and mortality in
hospital populations, especially in populations in intensive care units (ICUs). Central to the successful control
of sepsis-associated infections is the ability to rapidly diagnose and treat disease. The ability to identify sepsis
patients before they show any symptoms would have major benefits for the health care of ICU patients. For this
study, 92 ICU patients who had undergone procedures that increased the risk of developing sepsis were
recruited upon admission. Blood samples were taken daily until either a clinical diagnosis of sepsis was made
or until the patient was discharged from the ICU. In addition to standard clinical and laboratory parameter
testing, the levels of expression of interleukin-1� (IL-1�), IL-6, IL-8, and IL-10, tumor necrosis factor-�, FasL,
and CCL2 mRNA were also measured by real-time reverse transcriptase PCR. The results of the analysis of the
data using a nonlinear technique (neural network analysis) demonstrated discernible differences prior to the
onset of overt sepsis. Neural networks using cytokine and chemokine data were able to correctly predict patient
outcomes in an average of 83.09% of patient cases between 4 and 1 days before clinical diagnosis with high
sensitivity and selectivity (91.43% and 80.20%, respectively). The neural network also had a predictive accuracy
of 94.55% when data from 22 healthy volunteers was analyzed in conjunction with the ICU patient data. Our
observations from this pilot study indicate that it may be possible to predict the onset of sepsis in a mixed
patient population by using a panel of just seven biomarkers.

Sepsis is defined as a systemic inflammatory response syn-
drome (SIRS) in response to infection which, when associated
with acute organ dysfunction, may ultimately cause severe life-
threatening complications (1). Eventually it leads to a complex
syndrome characterized by progressive circulatory collapse, re-
sulting in renal and respiratory failure and abnormalities in
coagulation, plus profound and unresponsive hypotension. Al-
though such a sudden and overwhelming response to infection
is comparatively rare among otherwise healthy adults, there is
an increased risk of sepsis in seriously ill patients in intensive
care, immunocompromised individuals, burn patients, and
young children. A survey of the epidemiology of sepsis in the
United States has estimated the annual incidence of sepsis to
be about 0.3% of the population per year (about 750,000
cases), with 30% mortality in diagnosed cases (2).

The diagnosis of sepsis relies on overt symptoms of systemic
illness (temperature, blood pressure, heart rate, etc.), as well as
the indication of the presence of an infectious organism
through microbial culture from clinical samples (24). After the
onset of sepsis, the effectiveness of intervention with antibiotics
or other therapeutics rapidly diminishes. A novel method of
diagnosis that could identify presymptomatic individuals could
therefore reduce morbidity and mortality in these patients.

One possible diagnostic strategy for sepsis would be to mon-
itor changes in molecules associated with the host response to

pathogens. Circulating levels of procalcitonin (7, 27, 29) and
C-reactive protein (CRP) (11, 30, 38) have been shown to be
useful indicators of sepsis in intensive care unit (ICU) patients.
In addition, changes in the individual levels of the host immune
system mediators interleukin-1� (IL-1�) (3), IL-6 (13), IL-8
(20), IL-10 (36), tumor necrosis factor alpha (TNF-�) (14),
FasL (16), and monocyte chemoattractant protein 1 (MCP-1)
(6) in the blood of ICU patients have been highlighted as
indicative of sepsis. Furthermore, a recent study has identified
significant differences in the levels of a range of proinflamma-
tory cytokines between hospital patients with Burkholderia
pseudomallei-induced sepsis and healthy volunteers (42). How-
ever, these studies have focused on changes that occur follow-
ing the onset of sepsis. Few have examined changes in biomar-
ker expression in a patient population prior to the onset of
sepsis (23, 37, 39). Since the nature of the host response that
leads to sepsis is highly complex (8), it is likely that any
presymptomatic diagnostic test will have to utilize a set of
parameters rather than one specific biomarker. We therefore
designed a pilot study to examine whether it was possible to
predict the development of sepsis by measuring the expression
of a number of biomarkers in the blood of presymptomatic
individuals before the onset of clinical sepsis. This was done by
comparing blood samples of ICU patients who went on to
develop sepsis with samples from ICU patients that were dis-
charged with no further complications.

MATERIALS AND METHODS

Patients. During a yearlong period, a total of 92 patients who were determined
to be at risk of developing sepsis due to their admission diagnosis were recruited
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into the study upon entry into the ICU at the Queen Alexandra Hospital,
Portsmouth, Hampshire, United Kingdom (Fig. 1). The study was approved by
the local ethics committee and prior consent to take part in the study granted
either by the individual or a close relative. Twenty-five ICU patients developed
sepsis, according to the criteria defined during the 1991 American College of
Chest Physicians/Society of Critical Care Medicine Consensus Conference (1).
For comparison with the 25 sepsis patients, we selected an age-matched control
group of 22 patients from the remaining group of patients that did not develop
sepsis, the nonsepsis group. Patients that were on antibiotics prior to the devel-
opment of sepsis were excluded from the study. Further reverse transcriptase
PCR (RT-PCR) analysis of the samples from the remaining 45 nonsepsis patients
was not performed.

Study. Blood samples were collected daily between 0600 h and 1200 h, using
arterial lines if present, until either the day of diagnosis for sepsis patients or the
day of discharge for nonsepsis patients. For nonsepsis patients, the length of stay
in the ICU was a maximum of 2 days. This meant that one or two blood samples
were taken for analysis. In the cases where two blood samples were taken, the
second sample was used for further analysis, since patients were more acclimated
to ICU conditions and the second samples were therefore a better match for
those from the sepsis patients, whose stay was usually much longer. An amount
of 2.5 ml fresh blood was mixed with 25 ml RNA/DNA stabilization reagent for
blood/bone marrow (Roche, United Kingdom) and stored at �80°C for later
measurement of cytokine mRNA expression. Analysis of samples for clinical
purposes was undertaken on site on the same day as sample collection. Further
analysis was undertaken retrospectively once all sepsis patients in the study had
been selected and a comparable nonsepsis patient group identified. The data
presented in this study are only from these two patient groups; the remaining
patient samples were not processed. Sepsis patient data from 4 days prior to
sepsis diagnosis until the day of diagnosis only were analyzed. Cytokine analysis
was conducted away from the hospital, and the results gained were not used to
influence patient management.

Real-time RT-PCR analysis of cytokine expression by blood leukocytes.
mRNA was extracted by using a commercial mRNA isolation kit for blood/bone
marrow (Roche). PCR assays were designed and optimized for the histone H3
housekeeping gene described by Wells and Kedes (41), using commercial prim-
ers (Oswell Scientific, Southampton, United Kingdom) and a hydrolysis probe

using a 6-carboxyfluorescein quencher and 6-carboxytetramethylrhodamine re-
porter dye (Applied Biosystems, Cheshire).

To measure the threshold cycle (�CT) values for the cytokine mRNAs, Taq-
Man PCR assay kits for human FasL, MCP-1, TNF-�, IL-1�, IL-6, IL-8, and
IL-10 were used (Applied Biosystems, United Kingdom). �CT values for cyto-
kine mRNAs were calculated by subtracting the CT value for the cytokine from
the CT value obtained for the housekeeping gene.

Statistical and neural network analysis. Neural networks are mathematical
techniques for discovering nonlinear relationships between a number of variables
and an outcome. For this study, the variables describe the patient data and the
outcome is the imminent onset of sepsis. Finding a relationship between the two
would allow us to predict sepsis from test results.

The analysis of patient data used multilayer perceptron architecture with a
single hidden layer (35). The parameter setting used the back-propagation algo-
rithm (Fig. 2). The standard practice when building neural-network-based clas-
sifiers is to use the majority of the available data to set the parameters of the
model and to use the remainder to test the performance of the model on data
that has not had an effect on the model’s parameters. In this way, it is possible
to test the model’s ability to correctly classify new data. We chose to split the data
70% for model building and 30% for testing. The results reported in this paper
refer to the correct classification rate for the test data.

With small data sets such as ours, there is still a risk that the portion of data
set aside for testing will produce a good classification rate by chance. To mitigate
this risk, we built five neural network classifiers, each with a different random test
set of 30% of the data. The agreement of their classification scores by the mean
and variance around that mean for each set of parameters analyzed (e.g., cyto-
kines or clinical parameters) is indicated in Results. Clinicians with no experi-
ence in using neural networks should seek assistance from an expert in the field,

FIG. 1. Summary of the study design.

FIG. 2. Structure of a typical back-propagated multilayered per-
ceptron used in this study. The predictive efficacy of a group of input
parameters, such as expression levels of IL-1�, IL-6, IL-8, IL-10,
TNF-�, CCL2, and FasL, was tested through the construction of a
simple two-output neural network. Input parameters from a random
70% of the patient data were used to train the model to indicate what
cytokine levels looked like in those patients that went on to develop
sepsis and in those that did not. Each input parameter was assigned an
arbitrary weighting during the training phase of model construction,
and this was adjusted by an algorithm hidden layer that gave a predic-
tion as to whether the group of input parameters had come from a
patient that went on to develop sepsis (S) or had come from a patient
that did not develop sepsis (C). The model then compared this pre-
diction with the actual patient classification. It then adjusted the
weightings and bias used to generate the initial classification and re-
peated the classification process (back propagation). This process was
repeated until there was no significant improvement in classification
output. Once the network was optimally trained, its predictive accuracy
was tested using the remaining, unseen 30% of patient data.
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since the analysis described is not intended as a resource for learning about
neural networks.

The Andersen-Darling normality test and the F test were used to assess the
distribution of ages and the acute physiology and chronic health evaluation II
(APACHE II) scores within each patient group. No significant variation was
observed, so a two-sample t test was used to compare the age and APACHE II
scores of the patient groups. A Chi-squared test was performed to ascertain
whether the neural-network-derived predictive accuracies were statistically dif-
ferent from chance (1:1 odds of correct prediction). The data were organized as
numbers of correct and incorrect predictions (for both sepsis and nonsepsis
patient data). In addition, the test was used to examine differences between sets
of input parameters (e.g., the predictive accuracies of a network trained on
cytokine data versus the predictive accuracies of a network trained on clinical
data). Since six outcomes were possible using the test, a Bonferroni correction
was applied so that the � rejection rate was a P value of 0.008. All tests were
undertaken by using Minitab software (version 14.13).

RESULTS

Patients. The criteria for sepsis definition were the manifes-
tation of SIRS (two out of the four following parameters: white
cell count above 20 [� 109/liter] or below 3 [� 109/liter],
temperature above 38°C or below 36°C, heart rate above 100
beats per minute, and ventilation rate above 20 per min, as
defined by Levy et al. [24]) in combination with positive culture
from a clinical sample. All sepsis patients were selected on
these criteria. Six of the 22 ICU control patients were under-
going an SIRS response at the time of sampling. No microbi-
ological organisms were isolated from clinical samples from
these control patients. There was no significant difference in
the mean ages of the sepsis and nonsepsis groups, which were
60.16 (range 20 to 83) and 60.18 (range 24 to 82) (P � 0.996),
respectively. In the sepsis patient group, the male-to-female
ratio was 16/9, while in the nonsepsis group, the ratio was 17/5.
There was a statistically significant difference in the mean
APACHE II scores of the sepsis and nonsepsis patients, which
were 18.88 (range 8 to 37) and 14.04 (range 8 to 33), respec-
tively, on the day of admission into the ICU (P � 0.014). A
summary of patient admission diagnoses and relevant micro-
biology results is given in Table 1.

Analysis of parameters for ICU patients that went on to
develop sepsis. Binary linear regression analysis of the RT-
PCR and clinical data obtained during this study indicated that
there was no significant difference between the levels of pa-
rameters measured in ICU patients that went on to develop
sepsis and those that did not (data not shown). An alternative
method of analysis using nonlinear neural networks was un-
dertaken to assess whether any nonlinear patterns in parame-
ter expression between patients that went on to develop sepsis
(presymptomatic patients) and those that did not could be
discerned. Insufficient patient data were collected on each day
prior to sepsis diagnosis for a temporal model of the events
that lead to the development of sepsis. To overcome this, all
the data for presymptomatic patients during the period when
an infection was likely to develop, days �4 to �1, were pooled
in order to answer the question of whether an individual was
going to develop sepsis rather than when an individual was
going to develop sepsis.

Neural network analysis of cytokine mRNA expression in
presymptomatic patients. Five independent neural networks
using blood leukocyte IL-1�, IL-6, IL-8, IL-10, MCP-1, TNF-�,
and FasL (“cytokine” group) expression from patient samples
collected between days 4 and 1 prior to sepsis diagnosis indi-

cated that the levels of expression of proinflammatory cyto-
kines gave a highly significant predictive accuracy of 83.09%
for sepsis (P � 0.0001) (Fig. 3). The specificity and sensitivity
of the five cytokine models were assessed by calculating the
positive predictive value (PPV) and negative predictive value
(NPV), respectively (Fig. 4). The neural network built with
cytokine input parameters had a PPV of 91.67% and an NPV
of 80.2%.

Neural network analysis of clinical parameters alone or in
combination with cytokine expression. Five separate networks
using a set of clinical parameters that included blood creati-
nine and CRP levels and total peripheral blood monocyte,
lymphocyte, neutrophil, and white cell counts, gave an average
predictive accuracy of 69.35% that was not significant (Fig.
3). The neural networks built with clinical parameters had
an average PPV of 70.91% and an average NPV of 66.67%
(Fig. 4).

Five further networks constructed from both sets of cytokine
and clinical parameters had an average predictive accuracy of
79.7% that was also not significant (Fig. 3). The combined
parameter networks had a PPV of 70.51% and an NPV of
82.76%.

Differentiation between sepsis patients and healthy volun-
teers. To further assess the predictive accuracy of the cytokine
and chemokine data, the model using nonsepsis patient data
and all sepsis patient cytokine data from between 4 days and 1
day prior to sepsis diagnosis was reinterrogated. The ability of
the model to correctly classify a new set of blood samples based
purely on the blood cytokine profile from healthy volunteers
from within the laboratory was assessed. The expression levels
of IL-1�, IL-6, IL-8, IL-10, MCP-1, TNF-�, and FasL in blood
samples from 22 healthy male volunteers (aged between 18 and
40) were compared with expression levels in the group of
presymptomatic sepsis and nonsepsis ICU patients described
above. The cytokine and chemokine model had a predictive
accuracy of 95.45% (95% confidence limit of 7.48) following
five iterations of the network as described above.

DISCUSSION

Many immune response parameters fluctuate throughout
the course of sepsis (12), so analysis using simple linear tech-
niques cannot be used easily. We believe that the use of non-
linear tools, such as neural networks, is well suited for these
types of data. Indeed, neural networks have been used to
analyze ICU patient data to determine outcomes for critically
ill patients (18). Neural networks have been successfully ap-
plied in several studies that have measured a number of clinical
parameters and then predicted outcomes successfully following
the development of sepsis (18, 25). Since we have created
models based on patient data gained before the diagnosis of
sepsis, our studies extend the use of neural networks from a
tool for sepsis prognosis to an aid for the prediction of sepsis.
The successful prediction of which patients are likely to de-
velop sepsis should improve outcomes in the ICU, as it will
allow more-focused or more-intensive monitoring and earlier
therapeutic or prophylactic intervention.

The best-performing neural network models were those that
used proinflammatory cytokine and chemokine mRNA expres-
sion in peripheral blood cells. This is perhaps not surprising, as
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these immune mediators have been implicated in the disease
process associated with sepsis and high levels are associated
with mortality in patients with established sepsis (40). They are
also produced during the early stages of microbial infection,
when overt clinical symptoms are not apparent (33). The host

immune response that follows is highly complex (8, 10), and it
is clear that linear analysis models have difficulty providing
predictive accuracy for these complex immunological interac-
tions in which cytokine values will fluctuate throughout the
course of illness.

TABLE 1. Summary of patient admission diagnoses and relevant microbiology results in a nonsepsis ICU population and a
sepsis ICU populationa

Group and age (yrs) Sex Diagnosis on admission APACHE II score Microbiology result(s) (site)

Nonsepsis ICU
patients

59 M Esophagectomy 19
72 M Esophagogastrectomy 13
66 M Elective AAA repair 12
58 M AAA 15
69 M Ruptured AAA 15
82 M AAA 33
60 M Post-Whipple’s operation 19
67 M Tumor embolism 9
76 M Infrarenal AAA 22
54 M Epilepsy 23
66 M Postoperative hemorrhage 15
74 M AAA 17
67 M Overdose 18
42 M Aorta bifemoral graft 8
77 M Postcystectomy 12
40 M Whipple’s operation 8
48 M Post-cardiac surgery gastrointestinal bleed Not recorded
54 F Overdose 7
42 F Overdose 8
35 F Hematoma on thyroid 9
54 F Asthma 12
62 F Respiratory arrest 7

Sepsis ICU patients
53 M Brittle asthma 16 Pseudomonas spp. (NBL)
54 M Overdose 20 S. pneumoniae (sputum) and Neisseria spp.

(blood)
72 M AAA repair 18 S. aureus (sputum)
50 M Status epilepticus 8 C. difficile and MRSA (stool and sputum)
66 M Emergency AAA 21 Klebsiella spp. (NBL)
21 M Cardiogenic shock due to amphetamines,

pulmonary edema, myocardial infection
12 H. influenzae and E. coli (NBL),

Enterococcus spp. (CVP tip)
74 M Ischemic bowel 21 Klebsiella spp. (NBL)
75 M Left hemicolectomy 24 Pseudomonas spp. (NBL and wound)
74 M AAA right hemicolectomy 15 S. epidermis (wound)
58 M Cardiac arrest, cardiogenic shock 20 H. influenzae (NBL)
54 M Head injury 12 S. pneumoniae and H. influenzae (NBL)
37 M Injury to femur and knee, massive transfusion,

and coagulopathy
10 Pseudomonas spp. and S. epidermis

(CVP tip)
70 M Ruptured AAA 37 Enterococcus (wound)
42 M Paracetamol overdose 27 S. aureus and H. influenzae (sputum)
47 M Trans-hiatus esophagectomy 12 S. epidermis (blood)
75 M Perforated duodenal ulcer and fistula 26 Candida (sputum)
75 F Elective AAA repair 16 Enterococcus spp. (blood)
67 F Femoral popliteal bypass, failed extubation 17 S. aureus (NBL) and Enterococcus spp.

(urine)
38 F RTA chest trauma 13 H. influenzae (NBL) and Candida spp.

(sputum)
83 F Guillain-Barré syndrome 20 S. aureus (NBL and CVP tip)
65 F Subendocardial myocardial infarction 21 MRSA (CVP tip)
44 F Airway obstruction grade II, surgical trachea 27 S. aureus (sputum)
67 F Respiratory failure, systemic lupus erythematosus 20 Pseudomonas spp. (ileal conduit) and

Candida spp. (urine)
76 F Myocardial infarction 24 Candida spp. (sputum)
67 F Aorta bifemoral bypass, basal pneumonia 15 Coliforms (NBL)

a A blank space under “Microbiology result” indicates no microbes found. M, male; F, female; AAA, abdominal aortic aneurysm; NBL, nonbronchoscopic
bronchoalveolar lavage; MRSA, methicillin-resistant S. aureus; CVP tip, central venous pressure tip; RTA, road traffic accident.
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The ability of a set of proinflammatory markers to indicate
sepsis suggests that they form part of an immune signature that
is characteristic of sepsis. Previous studies have noted differ-
ences in immune parameters that can be used to characterize
the host response to diseases caused by different agents. The
levels of IL-1�, IL-6, and IL-18 are higher in the plasma of
patients with sepsis induced by gram-positive bacteria than in
patients with sepsis induced by gram-negative bacteria (19).
Neisseria meningitidis induces more IL-10 but less IFN-	 pro-
duction than Streptococcus pneumoniae, while Staphylococcus
aureus induced minimal secretion of both cytokines (4). The
results of analysis of samples from patients with staphylococcal
enterotoxin B- and lipopolysaccharide-induced septic shock
have identified pathogen-specific genomic markers and indi-
cates that some can also be stage specific (26). Different tran-
scriptional programs can be triggered upon in vitro exposure of
immune cells to distinct pathogens (5, 9, 28). Recent data
suggest that different classes of infectious agent elicit different
host responses, as indicated by distinct gene expression pat-
terns in blood (21, 32, 34). It is now possible to distinguish
patterns of gene expression in blood leukocytes from patients
with acute infections caused by four common human patho-
gens (influenza A virus, Staphylococcus aureus, Streptococcus
pneumoniae, and Escherichia coli) (31). These analyses have
utilized bioinformatics and statistical methods for class com-
parison or prediction algorithms to identify discriminative mo-
lecular signatures corresponding to a particular infection. The
results of these studies all suggest that patterns of immune
parameters exist that could be used to predict the development
of sepsis in patients who have suffered trauma, have infections,
or have undergone major surgery (15).

Our neural network model derived from clinical data that
included the numbers of leukocytes of various leukocyte sub-
sets and levels of creatinine and CRP, plus patient tempera-
ture, had some utility in the prediction of sepsis (although this
was not significant). This is perhaps not surprising, since half of
the input parameters are related to the quantification of vari-

ous innate cells whose number will change according to the
type of proinflammatory signal received. In addition, CRP
levels have been indicated to be a good prognostic indicator
(29) in pediatric sepsis patients; however, because CRP values
vary from person to person, baseline values are needed to
monitor early or small increases in CRP levels.

Our results suggest that we have found a pool of genes
whose expression prior to the onset of sepsis gives a generic
indicator of disease, in particular, sepsis, rather than a specific
indicator of an infectious agent. In other words, we believe we
may have created a model of commonalities of sepsis regard-
less of the specific etiologic agent. This is in contrast to the
results of a recent study of the expression of a panel of proin-
flammatory cytokines and chemokines which have been used to
indicate differences between patients with B. pseudomallei-in-
duced sepsis and noninfected control volunteers (42).

While we hypothesize that the models created in our study
are identifying patients who are going to develop sepsis, we
may also be identifying individuals who are more likely to
develop sepsis because of a genetic predisposition. There is a
strong genetic influence on the outcome of sepsis, with poly-
morphisms in genes coding for TNF-�, TNF-�, IL-1Ra, IL-6,
IL-10, heat shock protein, Toll-like receptor 2, and Toll-like
receptor 4 being linked to increased susceptibility to sepsis
(22). In addition, underlying disorders like cancer or major
surgery may increase the likelihood of sepsis in individuals
(17).

In conclusion, we have successfully created neural network
models that could predict which ICU patients were going to go
on to develop sepsis. While the pattern that the neural network
identifies and uses to predict sepsis is not known (i.e., a generic
response to infection and sepsis or a genetic predisposition for
sepsis), our future plans are to validate the findings from this
pilot study in a substantially larger patient population to ad-
dress some of the questions raised in this study.
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FIG. 3. Average predictive accuracies for sets of cytokine, clinical,
and combined cytokine and clinical parameters for predicting ICU
patient outcome. Neural network analysis of each set of input param-
eters was repeated 5 times, and a mean predictive accuracy calculated.
Each analysis used a randomized data set to train the network and then
test its ability to differentiate between sepsis and nonsepsis control
patients. The significance of each set of input parameters was assessed
by using the chi-square test plus Bonferroni’s correction (a P value of
0.008). Error bars show 95% confidence limits. *, significant result
(P � 0.0001).

FIG. 4. The specificity and sensitivity of the neural network models
constructed using cytokine, clinical, or combined cytokine and clinical
input parameters. The PPV, or specificity, of the combined five itera-
tions of the model for each set of input parameters was calculated as
described in Materials and Methods. The NPV, or sensitivity, of the
combined five iterations of the model for each set of input parameters
was calculated as described in Materials and Methods.
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