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Abstract
Conjugated linoleic acid (CLA) is a dietary chemopreventive agent that induces apoptosis in the
mammary adipose vascular endothelium and decreases mammary brown adipose tissue (BAT) and
white adipose tissue (WAT). To determine onset and extent of stromal remodeling, we fed CD2F1/
Cr mice diets supplemented with 1 or 2 g/100 g mixed CLA isomers for 1–7 wk. BAT loss, collagen
deposition, and leukocyte recruitment occurred in the mouse mammary fat pad, coincident with an
increase in parenchymal-associated mast cells in mice fed both levels of CLA. Feeding experiments
with purified isomers (0.5 g/100 g diet) demonstrated that these changes were induced by trans-10,
cis-12 CLA (10,12-CLA), but not by cis-9, trans-11 CLA (9,11-CLA). This stromal remodeling did
not require tumor necrosis factor (TNF)-α, a major cytokine in mast cells, as TNF-α null mice
demonstrated collagen deposition, increased leukocytes, and BAT loss in the mammary fat pad in
response to 10,12-CLA. To test the hypothesis that mast cells recruited in response to 10,12-CLA
were required for stromal remodeling, Steel mice (WBB6F1/J-kitW/kitW-V), which lack functional
mast cells, were examined for their stromal response to 10,12-CLA. Both wild-type and Steel mice
showed a significantly increased leukocytic adipose infiltrate, collagen deposition, and decreased
adipocyte size, although BAT was maintained in Steel mice. These results demonstrate that 10,12-
CLA induces an inflammatory and fibrotic phenotype in the mouse mammary gland stroma that is
independent of TNF-α or mast cells and suggest caution in the use of 10,12-CLA for breast cancer
chemoprevention.

Introduction
The mammary gland is a complex tissue composed of epithelium embedded in a stromal matrix
containing fibroblasts, adipocytes, blood vessels, and lymphatics, as well as a variety of
infiltrating leukocytes (1,2). Although most cancers of the breast arise in the epithelium, the
stroma has potential to alter both the progression or suppression of epithelial cancers [reviewed
in (3)]. The local stromal environment has been found to influence mammary epithelial
morphogenesis (4-8), hormonal responsiveness (9), and functional differentiation (6) in vivo.
Stromal cell populations undergo changes in abundance and phenotype during the extensive
postnatal development that occurs in the mammary gland during pregnancy and lactation
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(10,11). The hormone-dependent stromal plasticity of the adult mammary gland may reflect a
potential readiness of the stroma to be modified, in a positive fashion, by chemopreventive
agents.

In addition to adipocytes and fibroblasts, other cells have the potential to modify the epithelium
directly, or indirectly, through the stroma. Peripheral blood-derived leukocytes (PBL),6
including lymphocytes, monocytes, and polymorphonuclear leukocytes [(PMN), which
include eosinophils, neutrophils, and granulocytes], can infiltrate both the adipose stroma (the
fat tissue occupying the regions between ducts and lobules) and the parenchymal stroma (the
sheath of fibrocellular stroma that surrounds the ductal and lobular epithelium). Tissue resident
leukocytes, such as macrophages and mast cells, may also play a pivotal part in augmenting
this infiltration by secreting cytokines, such as tumor necrosis factor (TNF)-α, which recruit
PBL (12). Cooperation between tissue resident leukocytes (mast cells and macrophages) and
PBL (PMN and lymphocytes) in mammary gland remodeling has been previously
demonstrated; macrophages and eosinophils are required for the terminal branching that is
essential for full epithelial development (13). Like macrophages, mast cells are abundant
mammary gland resident cells. However, unlike macrophages, mast cells are proliferation
competent and contain large abundant granules of concentrated bioactive compounds,
including leukocyte recruiting cytokines (eotaxin, tryptase) (14,15), vascular remodeling and
vascular permeability factors (vascular endothelial growth factor, heparin, TNF-α, histamine)
that stimulate fibroblast proliferation and extracellular matrix deposition (16), and enzymes
such as matrix metalloproteinases. All of these can potentially contribute to mammary stromal
remodeling (17).

Stromal remodeling has been documented to occur in the presence of several chemopreventive
compounds, including conjugated linoleic acid (CLA) [reviewed in (3)]. CLA is a family of
fatty acids containing 18 carbons with 2 double bonds in a conjugated configuration. Of the
potential isomers, cis-9, trans-11-CLA (9,11-CLA) is the dominant isomer occurring naturally
in ruminant-derived food products and trans-10, cis-12-CLA (10,12-CLA), although a minor
component in the diet, is present in dietary supplements at a 1:1 ratio with 9,11-CLA [reviewed
in (18)]. Multiple studies have demonstrated the chemopreventive effects of CLA on mammary
carcinogenesis in rats (18-20). Although CLA has also been found to directly affect the
mammary epithelial cell by decreasing the proliferation and increasing apoptosis in organoids
in primary culture (21), CLA may mediate some of its chemopreventive effects through its
induction of mammary stromal remodeling (22). These changes include decreased unilocular
adipocyte size, induction of apoptosis of the adipose vasculature and subsequent loss of brown
adipose tissue (BAT), and decreased white adipose tissue (WAT) (22). The stromal effects are
largely mediated through 10,12-CLA, although 9,11-CLA induces a less profound decrease in
unilocular adipocyte diameter (23). The objective of this study was to test the hypothesis that
mast cells or mast cell-derived cytokines such as TNF-α (a cytokine implicated in acute PBL
recruitment) are required for mammary gland stromal remodeling induced by CLA.

Materials and Methods
Animals and diets

Expt. 1: Effect of mixed CLA isomers on mammary gland remodeling—Six-wk-
old CD2F1/Cr female mice (National Cancer Institute, Frederick Cancer Research Facility,
Biological Testing Branch, Frederick, MD) were fed semisynthetic AIN-76A diets containing
5 g/100 g corn oil, without or with supplementation with 1 or 2 g/100 g CLA, as described

6Abbreviations used: BAT, brown adipose tissue; CLA, conjugated linoleic acid; 9,11-CLA, cis-9, trans-11-CLA; 10,12-CLA, trans-10,
cis-12-CLA; PBL, peripheral blood-derived leukocytes; PMN, polymorphonuclear leukocyte; TNF, tumor necrosis factor; WAT, white
adipose tissue.
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previously (22,23). CLA was obtained from Nu-Chek Prep., and contained 85–88% 9,11- and
10,12-CLA at an ~1:1 ratio, as well as trace amounts of other isomers. The mice were killed
by cervical dislocation 1, 3, 5, or 7 wk after initiation of diet and the mammary glands were
fixed in formalin for paraffin embedding. A total of 120 mice were used, with 10 mice per diet
and time point.

Expt. 2: Effect of purified CLA isomers on mammary gland remodeling—A second
group of 6-wk-old female CD2F1/Cr mice was used to determine isomer-specific effects of
CLA. Eight mice per group were fed AIN 76A diets, supplemented with 0, 0.5, or 1 g/100 g
of either 9,11-CLA or 10,12-CLA. The purified CLA isomers were obtained from Natural ASA
and were of >90% purity. Mice were killed by cervical dislocation at 3 d, 7 d, or 7 wk after
initiation of diet.

Expt. 3: Comparison of effects of dietary 10,12-CLA on mammary gland
remodeling in TNF-α null and wild-type mice—To determine the TNF-α requirement
for mammary gland remodeling, we used 7th generation C57BL/6-background TNF-α null
mice and their 7th generation TNF-α wild-type controls. These mice were originally obtained
from Dr. George Kollias (Alexander Fleming Biomedical Sciences Research Center, Vari,
Greece) at the C57BL/6 sixth generation and were bred in house. The treatment groups were
as follows: TNF+/+ mice fed the AIN-76A diet supplemented with 0 or 0.5g/100 g 10,12-CLA
(n=3 or 4 per group, respectively); and TNF−/− mice fed the AIN-76A diet supplemented with
0 or 0.5 g/100 g 10,12-CLA (n = 3 per group). Diets were fed for 7 d, and then the mice were
killed by cervical dislocation. Abdominal mammary glands were fixed in formalin for paraffin
embedding.

Expt. 4: Comparison of effects of dietary 10,12-CLA on mammary gland
remodeling in Steel and wild-type mice—To determine the mast cell requirement for
mammary gland remodeling, we compared mammary glands from wild-type (WBB6F1/J) and
Steel mice (WBB6F1/J-kitw/kitw-v) (Jackson Labs). Mice were fed the AIN-76A diet without
or with 0.5 g/100 g 10,12-CLA for 7 d (n = 3), prior to killing by cervical dislocation.
Abdominal mammary glands were fixed in formalin for paraffin embedding.

Mice were housed in accordance with the standards set by the NIH and the Roswell Park Cancer
Institute Animal Care and Use Committee. All mice consumed food and water ad libitum. The
rooms where the animals were kept were air-conditioned and humidity controlled, with light
cycles of 12 h of light, and 12 h of darkness.

Mast cell staining and analysis
To analyze mast cell recruitment, we stained paraffin sections (5 μm thick) using the May-
Grunwald Giemsa staining protocol, which causes the cell nuclei to stain blue, the cytoplasm
to stain pink, and the mast cells to stain purple with magenta-stained granules. Mast cell
abundance was evaluated under a microscope using a 20× field of view (200× total
magnification). The following items were analyzed: 1) mast cells per duct; 2) mast cells per
lobule; 3) ductules per lobule; and 4) mast cells per lobular ductule. At least 10 ducts per
mammary gland were analyzed.

Masson’s trichrome staining
Collagen was visualized in paraffin sections using the revised Masson’s trichrome staining
protocol, with Light Green dye rather than Aniline Blue dye (24). Using this procedure, we
could distinguish multiple cellular and tissue structures, with collagen and reticulin staining
greenish-blue [blue using the original aniline blue protocol (24)], nuclei staining black, and
cytoplasm, keratin, muscle fibers, and intercellular fibers staining from red to pink.
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Adipocyte diameter
Hematoxylin and eosin-stained paraffin sections were prepared from the number 4 mammary
glands of mice killed 7 d after dietary intervention. Nine fields of unilocular fat per mouse were
photographed under 20× objective magnification under bright field illumination using a Hitachi
KPD-50 camera connected to an Olympus BX40 microscope. The maximum vertical and
horizontal diameters of 15–20 randomly selected adipocytes per field (each completely
contained within the photographic field) were measured. The results were then averaged to
obtain the mean value of adipocyte diameter.

Leukocyte infiltration of the WAT
The cellular infiltration of the WAT was quantified by assessing the number of nuclei per 40×
(Fig. 2, Table 6) or 20× objective field (Table 5). Because the WAT in the mammary gland is
normally composed of very large unilocular adipocytes (with a mean diameter >50 μm) and
interspersed with a sparse capillary network, there is usually a very small number of nuclei per
field of unilocular fat. When stromal remodeling events such as involution occur, leukocyte
infiltration is seen in the mouse mammary fat pad (2). The degree of cellular infiltration above
background can be easily assessed by counting the number of nuclei in a microscopic field.
Epithelial and endothelial nuclei were excluded. In Expt. 2, mammary glands from 8 mice per
dietary treatment were examined, with 10–12 fields per section analyzed, for a minimum of
95 fields quantified per treatment group. Although it is possible to clearly distinguish some
cells in cross-section unequivocally as polymorphonuclear leukocytes, because of the cross-
sectional nature of the material being evaluated (5-μm sections), we considered it more accurate
to use the total number of nuclei per field as a surrogate index for leukocyte infiltration. In
Expt. 3, 18–24 fields from 3–4 mice per group were quantified and, in Expt. 4, 18–27 fields
from 3 mice per group were quantified.

Analysis of BAT abundance
The evaluation of percentage fields containing BAT was performed as described (23). Briefly,
mammary BAT was defined as regions of multilocular fat cells with a central nucleus,
supported by an abundant capillary network. All adipose stromal fields present in the paraffin
section were evaluated for the presence or absence of BAT under a 20× objective. The number
of fields examined were as follows. Expt. 3: n = 155, n = 125, n = 220, n = 175 fields analyzed
for TNF+/+ control, TNF+/+ 10,12-CLA, TNF−/− control, TNF−/− 10,12-CLA, respectively
(3 mice per group); Expt. 4: n =174, n =130, n =178, n =129 fields analyzed for control wild-
type, control 10,12-CLA, Steel control, and Steel 10,12-CLA groups, respectively (n = 3 mice
per group, except for Steel 10,12-CLA, where there were n = 4 mice per group).

Statistics
Means for each mouse were calculated for statistical analysis. Data were analyzed using
Minitab software as follows. For single variables, we performed 1-way ANOVA, followed by
the following post hoc tests: Expt. 1, for weights and mast cell numbers, compared with control,
Dunnett’s test; for mast cell number, leukocyte infiltration, % BAT, and WAT diameter,
Dunn’s method; and for comparison of percentage of trichrome positive WAT fields, Tukey
test. Fisher’s test was performed to assess difference between levels of CLA. To examine
interactions between 2 variables [Expt. 1, Table 2: effects of diet and time on mast cell number;
Expts. 3 and 4, effects of genotype and diet on stromal remodeling (Tables 5 and 6)], we
performed 2-way ANOVA, followed by Chi-square test. Differences with P < 0.05 were
considered significant. Values in the text are means ± SEM.

Russell et al. Page 4

J Nutr. Author manuscript; available in PMC 2008 July 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Results
CLA feeding induces collagen deposition and leukocyte recruitment

Feeding mixed CLA isomers to mice (Expt. 1) did not affect body weight until wk 5 of feeding,
when a modest, but significant, decrease occurred (Table 1). In contrast, CLA feeding induced
dramatic alterations in the mouse mammary glands, including thickening of the fibrocellular
stroma surrounding mammary ducts, as seen by Masson’s trichrome staining of paraffin
sections (Fig. 1B,C, arrow; greenish-blue staining indicates collagen), compared with mice fed
the control diet (Fig. 1A, arrow). Stimulation of collagen deposition was not limited to the
parenchymal compartment, as deposition of collagen in the WAT also occurred (Fig. 1E,F,
arrows). WAT is a depot which is normally poor in intercellular interstitial matrix (Fig. 1D),
although adipocytes are surrounded by a closely apposed basement membrane. CLA also
induced collagen deposition in the BAT (Fig. 1H,I, arrows).

Within and adjacent to this region of collagen deposition, cellular infiltration occurred in the
adipose compartments (Fig. 1E,F, arrowheads). The WAT is normally a paucicellular
environment, consisting of adipocytes and stromal vascular stem cells interlaced with blood
vessels, and lymphatics. The cellular infiltrate consisted largely of PMN, which are defined
morphologically as small round cells with condensed chromatin and a multi-lobed nucleus.

10,12-CLA, but not 9,11-CLA, induces PMN infiltration and collagen deposition in the WAT
To determine which isomer of CLA was responsible for collagen deposition and PMN
recruitment to the mammary fat pad, we fed CD2F1/Cr mice purified isomers of CLA and the
mice were analyzed for changes in the fat pad at early (d 7) and later (wk 7) time points after
CLA supplementation was initiated (Expt. 2). No alterations in body weight occurred except
at wk 7, and then only in the group receiving the highest dose of 10,12-CLA (1 g/100 g), which
showed a modest but significant decrease (23). CLA induced deposition of fibrillar collagen
in the white fat as early as 7 d after diet initiation in mice fed 0.5% 10,12-CLA (Fig. 2C, arrow),
but not in those fed the control diet (Fig. 2A), or the diet supplemented with 9,11-CLA (Fig.
2B). These differences were maintained at wk 7 (Fig. 2D–F).

To quantify the changes in collagen deposition, we examined trichrome-stained serial paraffin
sections. We evaluated WAT staining only (and ignored the interstitial protein clearly
associated with trabeculae, large blood vessels, or surrounding the epithelium), and found the
percentage of trichrome-positive WAT fields was 21.5 ± 2.9% (SEM), 16.5 ± 2.6% and 79.5
± 2.9% in the control, 9,11-CLA, and 10,12-CLA groups. Both the 9,11-CLA group and the
10,12-CLA group differed from the control group (P < 0.05, n = 4 mice per group).

Isomer-specific effects of 10,12-CLA were also seen in the induction of PMN recruitment to
the mammary WAT (Fig. 2C and F, arrowheads). 10,12-CLA supplementation significantly
and dose-dependently increased leukocyte recruitment as early as d 7 (Fig. 2G). Leukocyte
recruitment in the mice fed the 9,11-CLA supplemented diet was similar to that of the control
group.

CLA feeding rapidly induces an increase in mast cells associated with the mammary
parenchymal stroma

Feeding mixed CLA isomers for 7 wk (Expt. 1) specifically increased mast cell staining in the
parenchymal-associated stroma rather than the adipose stroma, with that in the fibrocellular
stroma surrounding mammary ducts and lobules (Fig. 3, Tables 2 and 3) significantly greater
than that in mice fed the control diets (Fig. 3A). As early as 1 wk after initiating dietary
supplementation, the number of mast cells in the fibrocellular stroma surrounding each duct
was greater in mice fed either the 1 g/100 g or 2 g/100 g mixed isomer CLA-supplemented
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diets than in those fed the control diet (Table 2). Although this CLA-dependent increase was
maintained over the 7 wk feeding, a dose-dependent effect of CLA occurred only at wk 5 (Table
2, and Fig. 3).

Independent of diet, there were time-dependent increases in the background numbers of mast
cells associated with the fibrocellular stroma (Table 2, first column). The number of mast cells
per duct increased from wk 1 to wk 3 of diet treatment (P < 0.05) and, in fact, was almost
doubled in the control dietary group, a time period which corresponds to an age of 7–9 wk. A
smaller increase occurred in mice at later time points, suggesting that the greatest age-
dependent increase in mast cells is associated with ductal growth during the peripubertal period.
There was no interaction between diet and time.

To determine whether mast cell changes were also present in the lobular parenchymal stroma,
we assessed the number of mast cells associated with the lobular stroma and expressed data
per lobular ductule to compensate for the different degrees of lobular development during the
estrous cycle (25). Similar to its effects on the ductal stroma, CLA significantly increased mast
cell number in the lobular stroma (Table 3).

10,12-CLA is the isomer responsible for the recruitment of mast cells
The ability of CLA to recruit mast cells into the ductal stroma was isomer specific (Table 4,
Expt. 2). No change occurred in the mammary glands of mice fed 9,11-CLA at any time point
examined. However, ductal mast cell number in the parenchymal stroma was significantly
increased at 7 wk in mice fed the diet supplemented with 1 g/100 g 10,12-CLA. Mast cells also
accumulated in association with the vascular extracellular matrix (data not shown).

Is TNF-α required for CLA-induced stromal remodeling?
To determine whether TNFα, an abundant cytokine in mast cells, was required for CLA-
induced leukocyte recruitment and subsequent mammary gland remodeling, we fed TNF null
and wild-type mice the control or 0.5 g/100 g 10,12-CLA-supplemented diets for 7 d (Expt.
3). TNF deficiency did not alter adipose leukocyte recruitment (Table 5), protein deposition
in the interstitial matrix of the mammary fat pad, or mast cell infiltration (data not shown) in
mice fed 10,12-CLA. However, loss of brown fat in the mammary gland was incomplete when
compared with TNF wild-type mice, which showed a total loss of mammary BAT during the
same time period (Table 5).

Does mammary gland remodeling require mast cells?
To determine whether an increase in mast cells was required for the stromal remodeling induced
by 10,12-CLA, mast cell-negative Steel mice (WBB6F1/J-kitw/kitw-v) and wild-type
(WBB6F1/J) mice were fed control or 0.5 g/100 g 10,12-CLA-supplemented diets for 7 d. The
mammary glands were subsequently observed for stromal remodeling (Expt. 4). Similar to
CD2F1/Cr mice, 10,12-CLA induced protein deposition in the WAT (Fig. 4, arrows) and
leukocyte infiltration in the mammary glands (Fig. 4, arrowheads) of both wild-type and Steel
mice. Interestingly, the baseline number of infiltrating cells was significantly greater and the
starting adipocyte size significantly smaller in Steel mice than in control mice. Regardless,
both Steel mice and their wild-type controls showed an increased leukocyte infiltration and a
decrease in mean white adipocyte diameter in response to 10,12-CLA (Table 6). Feeding 10,12-
CLA did not completely ablate BAT in the wild-type or Steel mice, but it did significantly
decrease BAT in the wild-type mice (Table 6).
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Discussion
Breast cancer incidence varies widely in different countries. One possible factor is societal
differences in consumption of foods containing cancer-protective compounds such as CLA.
However, epidemiological studies vary in their conclusions about the effects of consumption
of CLA-rich foods, or of levels of serum or tissue CLA, on breast cancer risk. Although a case-
control study demonstrated a decreased risk of breast cancer in women with a high intake of
dairy products rich in CLA (26), other studies have not confirmed this (27-29); this is probably
due to the small range of CLA intake. Despite the varied conclusions of these epidemiological
studies, animal studies have verified that dietary supplementation with purified CLA isomers
is sufficient to inhibit mammary carcinogenesis [reviewed in (18)].

Possible mechanisms whereby CLA inhibits the development of mammary tumors include
systemic immune or hormonal changes, as well as local changes in the mammary gland
microenvironment. In terms of large scale changes in energy expenditure, body weight changes
in response to CLA feeding were not observed until after 5 wk of feeding (Table 1); it is
therefore unlikely that they contribute to the observed changes in the mammary stroma that
occur shortly after diet initiation. Local effects on the mammary gland microenvironment
include direct effects on the mammary epithelium (21,30), as well as protective changes within
the stroma, including inhibition of angiogenesis and locally decreased vascular endothelial
growth factor [reviewed in (18)]. This study demonstrates that these stromal vascular changes
are accompanied by additional modifications, such as increased extracellular matrix protein
deposition in association with both the parenchymal and adipose compartments of the
mammary gland. By trichrome staining, this protein deposit was found to be rich in collagen,
a normal component of the ductal interstitial matrix, but not the adipose stroma in human
mammary gland (31).

The CLA-induced increase in matrix deposition in the mammary fat pad was specific to the
10,12-CLA isomer and was accompanied by a rapid increase in cells, including PMN, in the
normally paucicellular fat pad. The resulting appearance of the mammary fat pad in 10,12-
CLA–fed mice was, in fact, very similar to that observed in involution (1,2,32,33), both in the
abundance of infiltrating leukocytes, and in the extracellular matrix deposition observed
between individual adipocytes. However, in contrast to involution, in which mammary
adipocytes increase in both size and abundance (1), the remodeling induced by 10,12-CLA is
accompanied by a decrease in white adipocyte size and abundance (23).

The increase in PMN and extracellular matrix deposition seen in the mammary fat pad in
response to 10,12-CLA suggests that fibrosis, a state in which fibroblasts increase both in
number and matrix-secreting activity, occurred. This process can be induced by the activation
of fibroblasts by inflammatory cells, such as PMN, one of the cell types that accumulates in
the mammary fat pad in response to 10,12-CLA. The mechanisms whereby fibrosis might be
induced by PMN include the elaboration of inflammatory cytokines, such as TNF, which has
been shown to induce fibrosis (34). In fact, TNF-deficient mice have been shown to be resistant
to the experimental induction of fibrosis in other systems (35). In our studies, TNF was not
required for mammary adipose remodeling, as TNF null mice remained capable of PMN
recruitment and decreased BAT. Despite the fact that the loss of mammary BAT in CLA-fed
TNF null mice was incomplete, this was not significantly different from that in control mice
fed 10,12-CLA.

Although both wild-type and Steel mice retained BAT after 7 d of feeding, CLA-fed Steel mice
showed an attenuation of BAT ablation compared with their wild-type (WBB6F1/J)
counterparts, suggesting that mast cells contribute to the diet-induced remodeling of BAT that
occurs in the mouse mammary gland. It is also evident that strain background plays a role in
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the remodeling, because ablation of BAT (and its supporting vasculature) in response to 10,12-
CLA is normally brisk and virtually complete within 7 d in other mouse models, including
C57BL/6 TNF-control mice (in this study) and in a larger study with CD2F1/Cr mice (23).

The isomer-specific PMN recruitment and collagen deposition in the mammary fat pad was
associated with additional collagen deposition in the sheath of interstitial matrix surrounding
the epithelial compartment and recruitment of mast cells to both the lobular and ductal
parenchymal stroma. Parenchymal stroma-associated mast cells can act to recruit PMN to the
adjacent adipose compartment, via the secretion of a number of biological effectors, including
cytokines such as IL-4, IL-5, and TNF, eicosanoids, platelet activating factors, proteoglycans
such as heparin, and proteases (36). The ability of 10,12-CLA to induce some mammary
adipose remodeling (PMN recruitment and collagen I deposition) in mast cell–deficient Steel
mice suggests that mast cells do not play a critical role in decreased adipocyte size or PMN
recruitment to the mammary fat pad.

The function of the increased mast cells seen in response to 10,12-CLA is not known. Although
10,12-CLA has been associated with decreased angiogenesis and apoptosis of the adipose
vasculature (23), mast cells are usually associated with increased angiogenesis (37,38). The
overall role of mast cells as an accelerator or inhibitor of breast cancer is still unknown. Their
association with breast cancer induction is suggested by several studies, including increased
incidence of breast cancer in women with high histamine levels (39,40) and growth inhibition
by mast cell stabilizers (41). Furthermore, mast cells accumulate at sites of hyperplasia (42,
43), and at the tumor-host interface (17,44), and this accumulation has been associated with
increased risk of metastasis (45,46).

In contrast, an increased number of mast cells and increased histamine levels were associated
with a favorable prognosis and enhanced survival in a human breast cancer study of 187 women
(47). It is noteworthy that this study showed no correlation between mast cell number and
inflammatory infiltrates (47), suggesting that the presence of mast cells is not sufficient to
indicate their functional activation state. Moreover, in a study of 483 women, tumor-free lymph
nodes were found to have higher numbers of mast cells than lymph nodes containing breast
cancer metastases (48). However, a study with 424 patients found no significant difference in
10-y disease-free survival in patients with high vs. low mast cell numbers associated with their
breast tumors (49).

The conflicting literature regarding the ability of mast cells to act in a chemoprotective or
cancer-promoting manner in the breast during cancer induction and/or progression suggests
that the effects of the tissue-resident mast cells may depend on other factors in the local breast
microenvironment regulating their activation status, similar to the ability of macrophages to
act in a chemoprotective or cancer-promoting manner [reviewed in (50)]. The observation that
10,12-CLA induces a seemingly inflammatory mammary phenotype, complete with leukocyte
recruitment and fibrosis, is surprising, given the generally protective effects of this isomer in
mammary and other tumor models. These results may suggest that caution is warranted against
the ingestion of this specific isomer at the high doses that are potentially attainable through
supplementation with synthetic (rather than dietary) sources.
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FIGURE 1.
Deposition of interstitial matrix in response to feeding CD2F1/Cr mice with mixed isomers of
CLA (Expt. 1). Accumulation of collagen in the mammary glands was visualized as greenish-
blue staining, using Masson’s trichrome, and can be seen in the fibrocellular stroma
surrounding ducts (A-C, arrows), in the WAT (E,F, arrows), and in the BAT (H,I, arrows) of
mice fed diets supplemented with 1 or 2 g/100 g mixed CLA isomers for 7 wk. Infiltrating cells
in the adipose tissue are indicated by arrowheads. Magnification bar, 50 μm.
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FIGURE 2.
Isomer- and dose-dependence of the effects of CLA on extracellular matrix deposition and
PMN recruitment to the mammary fat pad in CD2F1/Cr mice (Expt. 2). Grayscale image of
Masson’s trichrome-stained sections showing collagen deposition in the WAT at wk 1 in
response to the 10,12 isomer of CLA (C, arrow), and at 7 wk of feeding (arrow in F indicates
collagen deposition). Arrowheads indicate PMN. Images were photographed with a 20×
objective. The change in cellular recruitment to the WAT at d 7 in response to CLA isomers
is shown quantitatively (G). Bars indicate means ± SEM (n = 8 mice per group, 95–96 fields
per mouse). Means without a common letter differ, P < 0.05.
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FIGURE 3.
CLA induces an increase in duct-associated mast cells in the mammary gland of C2DF1/Cr
(Expt. 1). May-Grunwald Giemsa staining of paraffin sections revealed the presence of
abundant large cells containing basophilic granules (arrowheads, cells stained dark blue but
shown here in grayscale as black) associated with the fibrocellular stroma surrounding
mammary ducts in mice fed CLA (C, arrowhead). Duct of a mouse fed control diet (A). Duct
of mouse fed 1 g/100 g mixed CLA isomers for 7 wk (B). Duct of mouse fed 2 g/100 g mixed
CLA isomers for 7 wk (C). All images were photographed using a 20× objective. The inset in
C is a 2-fold magnification of the area around the arrowhead. Arrows indicate the fibrocellular
stroma surrounding ducts.
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FIGURE 4.
The effect of 10,12-CLA on extracellular matrix deposition and PMN recruitment in the
mammary fat pad of mast-cell negative Steel mice (WBB6F1/J-kitW/kitW-V) and their wild-
type controls (WBB6F1/J) (Expt. 4). Analysis of mammary glands from mast-cell negative
Steel mice after short-term CLA feeding (7 d with 0.5 g/100 g 10,12-CLA) revealed that
interstitial matrix protein deposition and PMN recruitment occur in the absence of functional
mast cells. Arrows indicate sites of protein accumulation; arrowheads show PMN.
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TABLE 1
Effect of feeding mixed CLA isomers on body weight of CD2F1/Cr mice (Expt. 1)1

CLA, g/100 g

Time 0 1 2

wk g
0 19.8 ± 0.3 19.9 ± 0.2 19.8 ± 0.2
1 21.1 ± 0.4 20.0 ± 0.5 19.5 ± 0.5
3 21.1 ± 0.2 20.2 ± 0.2 20.6 ± 0.2
5 22.4 ± 0.4a 20.8 ± 0.2b 21.0 ± 0.3b

7 23.5 ± 0.7a 21.2 ± 0.4b 21.7 ± 0.5b

1
Values are means ± SEM (n = 10, except 0 wk: n = 40). Means in a row with superscripts without a common letter differ, P < 0.05.
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TABLE 2
Effect of mixed CLA isomers on the number of mast cells in the parenchymal stroma surrounding ducts in CD2F1/Cr
mouse mammary glands (Expt. 1)1

CLA, g/100 g

Time 0 1 2

wk n/40× duct-containing field
1 0.20 ± 0.05 0.46 ± 0.09 0.64 ± 0.30
3 0.44 ± 0.14a 1.19 ± 0.30*b 1.82 ± 0.52b

5 0.45 ± 0.10*a 1.67 ± 0.29b 1.72 ± 0.18b

7 0.97 ± 0.25*a 1.33 ± 0.23a,b 2.06 ± 0.44b

1
Values are means ± SEM (n = 10, except values with *: n = 9). Means in a row with superscripts without a common letter differ, P < 0.05.
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TABLE 3
Effect of mixed CLA isomers on the number of mast cells in the parenchymal stroma surrounding lobules in CD2F1/
Cr mouse mammary glands (Expt. 1)1

CLA, g/100 g

Time 0 1 2

wk n/lobular ductule in a 40× field
1 0.19 ± 0.05a 0.19 ± 0.04a 0.46 ± 0.14b

3 0.32 ± 0.08a 0.58 ± 0.17a 1.14 ± 0.25b

5 0.26 ± 0.10a 0.78 ± 0.10b 1.07 ± 0.18b

7 0.60 ± 0.25 0.78 ± 0.19 1.09 ± 0.20

1
Values are means ± SEM (n = 10). Means in a row with superscripts without a common letter differ, P < 0.05.
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TABLE 5
10,12-CLA induces PMN recruitment and decreases BAT in C57BL/6 TNF null mice (Expt. 3)1

Variable Genotype Control 10,12-CLA

Nuclei, n/20× WAT field C57BL/6-TNF+/+ 72.6 ± 4.4a 170.8 ± 30.9b

C57BL/6-TNF−/− 66.8 ± 6.5a 168.2 ± 17.8b

Fields with BAT, % C57BL/6-TNF+/+ 35.7 ± 5.2a 0 ± 0b

C57BL/6-TNF−/− 33.0 ± 9a 5.25 ± 4.03b*

1
Values are means ± SEM (n = 3, except *: n = 4). Means for a variable without a common letter differ, P < 0.05.
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TABLE 6
10,12-CLA induces only partial mammary gland stromal remodeling in mast-cell negative Steel mice (WBB6F1/J-
kitw/kitw-v (Expt. 4)1

Variable Genotype Control 10,12-CLA

Nuclei, n/40× WAT field WBB6F1/J 19.4 ± 1.4a 66.8 ± 12.9c

WBB6F1/J-kitw/kitw-v 32.9 ± 3.1b 87.4 ± 19.7c

WAT adipocyte diameter, μm WBB6F1/J 86.8 ± 3.0a 79.4 ± 3.4c

WBB6F1/J-kitw/kitw-v 79.3 ± 0.4b 74.2 ± 2.2c

Fields with BAT, % WBB6F1/J 34.5 ± 4.7a 20.5 ± 6.9b

WBB6F1/J-kitw/kitw-v 36.0 ± 4.3a 30.1 ± 2.8a

1
Values are means ± SEM (n = 3). Means for a variable without a common superscript letter differ, P < 0.05.
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